is equal to
if [ "$a" -eq "$b" ]
is not equal to
if [ "$a" -ne "$b" ]
is greater than
if ["$a" -gt "$b" ]
is greater than or equal to
if [ "$a" -ge "$b" ]
is less than
if [ "$a" -lt "$b" ]
is less than or equal to
if [ "$a" -le "$b" ]
is less than (within double parentheses)
(("$a" < "$b"))
is less than or equal to (within double parentheses)
(("$a" <= "$b"))
is greater than (within double parentheses)
(("$a" > "$b"))
is greater than or equal to (within double parentheses)
(("$a" >= "$b"))
is equal to
if [ "$a" = "$b" ]
is equal to
if [ "$a" == "$b" ]
This is a synonym for =.
[[ $a == z* ]] # true if $a starts with an "z" (pattern matching) [[ $a == "z*" ]] # true if $a is equal to z* [ $a == z* ] # file globbing and word splitting take place [ "$a" == "z*" ] # true if $a is equal to z* # Thanks, S.C. |
is not equal to
if [ "$a" != "$b" ]
This operator uses pattern matching within a [[ ... ]] construct.
is less than, in ASCII alphabetical order
if [[ "$a" < "$b" ]]
if [ "$a" \< "$b" ]
Note that the "<" needs to be escaped within a [ ] construct.
is greater than, in ASCII alphabetical order
if [[ "$a" > "$b" ]]
if [ "$a" \> "$b" ]
Note that the ">" needs to be escaped within a [ ] construct.
See Example 26-5 for an application of this comparison operator.
string is "null", that is, has zero length
string is not "null".
The -n test absolutely requires that the string be quoted within the test brackets. Using an unquoted string with ! -z, or even just the unquoted string alone within test brackets (see Example 7-5) normally works, however, this is an unsafe practice. Always quote a tested string. [1] |
Example 7-4. arithmetic and string comparisons
#!/bin/bash a=4 b=5 # Here "a" and "b" can be treated either as integers or strings. # There is some blurring between the arithmetic and string comparisons, #+ since Bash variables are not strongly typed. # Bash permits integer operations and comparisons on variables #+ whose value consists of all-integer characters. # Caution advised. echo if [ "$a" -ne "$b" ] then echo "$a is not equal to $b" echo "(arithmetic comparison)" fi echo if [ "$a" != "$b" ] then echo "$a is not equal to $b." echo "(string comparison)" # "4" != "5" # ASCII 52 != ASCII 53 fi # In this particular instance, both "-ne" and "!=" work. echo exit 0 |
Example 7-5. testing whether a string is null
#!/bin/bash # str-test.sh: Testing null strings and unquoted strings, # but not strings and sealing wax, not to mention cabbages and kings... # Using if [ ... ] # If a string has not been initialized, it has no defined value. # This state is called "null" (not the same as zero). if [ -n $string1 ] # $string1 has not been declared or initialized. then echo "String \"string1\" is not null." else echo "String \"string1\" is null." fi # Wrong result. # Shows $string1 as not null, although it was not initialized. echo # Lets try it again. if [ -n "$string1" ] # This time, $string1 is quoted. then echo "String \"string1\" is not null." else echo "String \"string1\" is null." fi # Quote strings within test brackets! echo if [ $string1 ] # This time, $string1 stands naked. then echo "String \"string1\" is not null." else echo "String \"string1\" is null." fi # This works fine. # The [ ] test operator alone detects whether the string is null. # However it is good practice to quote it ("$string1"). # # As Stephane Chazelas points out, # if [ $string 1 ] has one argument, "]" # if [ "$string 1" ] has two arguments, the empty "$string1" and "]" echo string1=initialized if [ $string1 ] # Again, $string1 stands naked. then echo "String \"string1\" is not null." else echo "String \"string1\" is null." fi # Again, gives correct result. # Still, it is better to quote it ("$string1"), because... string1="a = b" if [ $string1 ] # Again, $string1 stands naked. then echo "String \"string1\" is not null." else echo "String \"string1\" is null." fi # Not quoting "$string1" now gives wrong result! exit 0 # Also, thank you, Florian Wisser, for the "heads-up". |
Example 7-6. zmost
#!/bin/bash #View gzipped files with 'most' NOARGS=65 NOTFOUND=66 NOTGZIP=67 if [ $# -eq 0 ] # same effect as: if [ -z "$1" ] # $1 can exist, but be empty: zmost "" arg2 arg3 then echo "Usage: `basename $0` filename" >&2 # Error message to stderr. exit $NOARGS # Returns 65 as exit status of script (error code). fi filename=$1 if [ ! -f "$filename" ] # Quoting $filename allows for possible spaces. then echo "File $filename not found!" >&2 # Error message to stderr. exit $NOTFOUND fi if [ ${filename##*.} != "gz" ] # Using bracket in variable substitution. then echo "File $1 is not a gzipped file!" exit $NOTGZIP fi zcat $1 | most # Uses the file viewer 'most' (similar to 'less'). # Later versions of 'most' have file decompression capabilities. # May substitute 'more' or 'less', if desired. exit $? # Script returns exit status of pipe. # Actually "exit $?" unnecessary, as the script will, in any case, # return the exit status of the last command executed. |
logical and
exp1 -a exp2 returns true if both exp1 and exp2 are true.
logical or
exp1 -o exp2 returns true if either exp1 or exp2 are true.
These are similar to the Bash comparison operators && and ||, used within double brackets.
[[ condition1 && condition2 ]] |
if [ "$exp1" -a "$exp2" ] |
Refer to Example 8-3 and Example 26-9 to see compound comparison operators in action.
[1] | As S.C. points out, in a compound test, even quoting the string variable might not suffice. [ -n "$string" -o "$a" = "$b" ] may cause an error with some versions of Bash if $string is empty. The safe way is to append an extra character to possibly empty variables, [ "x$string" != x -o "x$a" = "x$b" ] (the "x's" cancel out). |