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Chapter 25
Composites: fibrous, particulate and foamed

Introduction

The word “composites” has a modern ring. But using the high strength of fibres to
stiffen and strengthen a cheap matrix material is probably older than the wheel. The
Processional Way in ancient Babylon, one of the lesser wonders of the ancient world, was
made of bitumen reinforced with plaited straw. Straw and horse hair have been used
to reinforce mud bricks (improving their fracture toughness) for at least 5000 years.
Paper is a composite; so is concrete: both were known to the Romans. And almost all
natural materials which must bear load – wood, bone, muscle – are composites.

The composite industry, however, is new. It has grown rapidly in the past 30 years
with the development of fibrous composites: to begin with, glass-fibre reinforced polymers
(GFRP or fibreglass) and, more recently, carbon-fibre reinforced polymers (CFRP). Their
use in boats, and their increasing replacement of metals in aircraft and ground transport
systems, is a revolution in material usage which is still accelerating.

Composites need not be made of fibres. Plywood is a lamellar composite, giving a
material with uniform properties in the plane of the sheet (unlike the wood from
which it is made). Sheets of GFRP or of CFRP are laminated together, for the same
reason. And sandwich panels – composites made of stiff skins with a low-density core
– achieve special properties by combining, in a sheet, the best features of two very
different components.

Cheapest of all are the particulate composites. Aggregate plus cement gives concrete,
and the composite is cheaper (per unit volume) than the cement itself. Polymers can
be filled with sand, silica flour, or glass particles, increasing the stiffness and wear-
resistance, and often reducing the price. And one particulate composite, tungsten-
carbide particles in cobalt (known as “cemented carbide” or “hard metal”), is the basis
of the heavy-duty cutting tool industry.

But high stiffness is not always what you want. Cushions, packaging and crash-
padding require materials with moduli that are lower than those of any solid. This can
be done with foams – composites of a solid and a gas – which have properties which
can be tailored, with great precision, to match the engineering need.

We now examine the properties of fibrous and particulate composites and foams in
a little more detail. With these materials, more than any other, properties can be
designed-in; the characteristics of the material itself can be engineered.

Fibrous composites

Polymers have a low stiffness, and (in the right range of temperature) are ductile.
Ceramics and glasses are stiff and strong, but are catastrophically brittle. In fibrous
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composites we exploit the great strength of the ceramic while avoiding the catastrophe:
the brittle failure of fibres leads to a progressive, not a sudden, failure.

If the fibres of a composite are aligned along the loading direction, then the stiffness
and the strength are, roughly speaking, an average of those of the matrix and fibres,
weighted by their volume fractions. But not all composite properties are just a linear
combination of those of the components. Their great attraction lies in the fact that,
frequently, something extra is gained.

The toughness is an example. If a crack simply ran through a GFRP composite, one
might (at first sight) expect the toughness to be a simple weighted average of that of
glass and epoxy; and both are low. But that is not what happens. The strong fibres pull
out of the epoxy. In pulling out, work is done and this work contributes to the tough-
ness of the composite. The toughness is greater – often much greater – than the linear
combination.

Polymer-matrix composites for aerospace and transport are made by laying up glass,
carbon or Kevlar fibres (Table 25.1) in an uncured mixture of resin and hardener. The
resin cures, taking up the shape of the mould and bonding to the fibres. Many com-
posites are based on epoxies, though there is now a trend to using the cheaper polyesters.

Laying-up is a slow, labour-intensive job. It can be by-passed by using thermoplast-
ics containing chopped fibres which can be injection moulded. The random chopped
fibres are not quite as effective as laid-up continuous fibres, which can be oriented to
maximise their contribution to the strength. But the flow pattern in injection moulding
helps to line the fibres up, so that clever mould design can give a stiff, strong product.
The technique is used increasingly for sports goods (tennis racquets, for instance) and
light-weight hiking gear (like back-pack frames).

Making good fibre-composites is not easy; large companies have been bankrupted
by their failure to do so. The technology is better understood than it used to be; the
tricks can be found in the books listed under Further reading. But suppose you can
make them, you still have to know how to use them. That needs an understanding of
their properties, which we examine next. The important properties of three common
composites are listed in Table 25.2, where they are compared with a high-strength steel
and a high-strength aluminium alloy of the sort used for aircraft structures.

Table 25.1 Properties of some fibres and matrices

Material Density r(Mg m−3) Modulus E(GPa) Strength sf (MPa)

Fibres
Carbon, Type1 1.95 390 2200
Carbon, Type2 1.75 250 2700
Cellulose fibres 1.61 60 1200
Glass (E-glass) 2.56 76 1400–2500
Kevlar 1.45 125 2760

Matrices
Epoxies 1.2–1.4 2.1–5.5 40–85
Polyesters 1.1–1.4 1.3–4.5 45–85
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Table 25.2 Properties, and specific properties, of composites

Material Density r Young’s Strength Fracture E/r E1/2/r E1/3/r sy/r
(Mg m−3) modulus  sy(MPa) toughness

E(GPa) KIC(MPa m1/2)

Composites
CFRP, 58% uniaxial C in epoxy 1.5 189 1050 32–45 126 9 3.8 700
GFRP, 50% uniaxial glass in polyester 2.0 48 1240 42–60 24 3.5 1.8 620
Kevlar-epoxy (KFRP), 60% uniaxial 1.4 76 1240 – 54 6.2 3.0 886

Kevlar in epoxy

Metals
High-strength steel 7.8 207 1000 100 27 1.8 0.76 128
Aluminium alloy 2.8 71 500 28 25 3.0 1.5 179
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Fig. 25.1. (a) When loaded along the fibre direction the fibres and matrix of a continuous-fibre composite
suffer equal strains. (b) When loaded across the fibre direction, the fibres and matrix see roughly equal
stress; particulate composites are the same. (c) A 0 –90° laminate has high and low modulus directions;
a 0– 45–90–135° laminate is nearly isotropic.

Modulus

When two linear-elastic materials (though with different moduli) are mixed, the
mixture is also linear-elastic. The modulus of a fibrous composite when loaded along
the fibre direction (Fig. 25.1a) is a linear combination of that of the fibres, Ef, and the
matrix, Em

Ec | | = Vf Ef + (1 − Vf)Em (25.1)

where Vf is the volume fraction of fibres (see Book 1, Chapter 6). The modulus of the
same material, loaded across the fibres (Fig. 25.1b) is much less – it is only

    
E

V

E

V

Ec
f

f

f

m
⊥

−

= +
−











    

 1
1

(25.2)

(see Book 1, Chapter 6 again).
Table 25.1 gives Ef and Em for common composites. The moduli E| | and E⊥ for a

composite with, say, 50% of fibres, differ greatly: a uniaxial composite (one in which
all the fibres are aligned in one direction) is exceedingly anisotropic. By using a cross-
weave of fibres (Fig. 25.1c) the moduli in the 0 and 90° directions can be made equal,
but those at 45° are still very low. Approximate isotropy can be restored by laminating
sheets, rotated through 45°, to give a plywood-like fibre laminate.
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Fig. 25.2. The stress–strain curve of a continuous fibre composite (heavy line), showing how it relates to
those of the fibres and the matrix (thin lines). At the peak the fibres are on the point of failing.

Tensile strength and the critical fibre length

Many fibrous composites are made of strong, brittle fibres in a more ductile polymeric
matrix. Then the stress–strain curve looks like the heavy line in Fig. 25.2. The figure
largely explains itself. The stress–strain curve is linear, with slope E (eqn. 25.1) until the
matrix yields. From there on, most of the extra load is carried by the fibres which con-
tinue to stretch elastically until they fracture. When they do, the stress drops to the yield
strength of the matrix (though not as sharply as the figure shows because the fibres do
not all break at once). When the matrix fractures, the composite fails completely.

In any structural application it is the peak stress which matters. At the peak, the
fibres are just on the point of breaking and the matrix has yielded, so the stress is given
by the yield strength of the matrix, σ m

y, and the fracture strength of the fibres, σ f
f,

combined using a rule of mixtures

σTS = Vf σ ff  + (1 − Vf)σ m
y . (25.3)

This is shown as the line rising to the right in Fig. 25.3. Once the fibres have fractured, the
strength rises to a second maximum determined by the fracture strength of the matrix

σTS = (1 − Vf)σ m
f (25.4)

where σ m
f  is the fracture strength of the matrix; it is shown as the line falling to the

right on Fig. 25.3. The figure shows that adding too few fibres does more harm than
good: a critical volume fraction     Vfcrit

 of fibres must be exceeded to give an increase in
strength. If there are too few, they fracture before the peak is reached and the ultimate
strength of the material is reduced.

For many applications (e.g. body pressings), it is inconvenient to use continuous
fibres. It is a remarkable feature of these materials that chopped fibre composites
(convenient for moulding operations) are nearly as strong as those with continuous
fibres, provided the fibre length exceeds a critical value.

Consider the peak stress that can be carried by a chopped-fibre composite which has
a matrix with a yield strength in shear of σ m

s (σ m
s ≈ 1–2 σ m

y ). Figure 25.4 shows that the
axial force transmitted to a fibre of diameter d over a little segment δx of its length is

δF = πdσ m
sδx. (25.5)
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Fig. 25.3. The variation of peak stress with volume fraction of fibres. A minimum volume fraction (    Vfcrit
) is

needed to give any strengthening.

Fig. 25.4. Load transfer from the matrix to the fibre causes the tensile stress in the fibre to rise to peak in the
middle. If the peak exceeds the fracture strength of the fibre, it breaks.

The force on the fibre thus increases from zero at its end to the value
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at a distance x from the end. The force which will just break the fibre is
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Equating these two forces, we find that the fibre will break at a distance
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from its end. If the fibre length is less than 2xc, the fibres do not break – but nor do
they carry as much load as they could. If they are much longer than 2xc, then nothing
is gained by the extra length. The optimum strength (and the most effective use of the
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Fig. 25.5. Composites fail in compression by kinking, at a load which is lower than that for failure in tension.

fibres) is obtained by chopping them to the length 2xc in the first place. The average
stress carried by a fibre is then simply σ f

f /2 and the peak strength (by the argument
developed earlier) is
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This is more than one-half of the strength of the continuous-fibre material (eqn. 25.3).
Or it is if all the fibres are aligned along the loading direction. That, of course, will not
be true in a chopped-fibre composite. In a car body, for instance, the fibres are ran-
domly oriented in the plane of the panel. Then only a fraction of them – about   

1
4  – are

aligned so that much tensile force is transferred to them, and the contributions of the
fibres to the stiffness and strength are correspondingly reduced.

The compressive strength of composites is less than that in tension. This is because the
fibres buckle or, more precisely, they kink – a sort of co-operative buckling, shown in
Fig. 25.5. So while brittle ceramics are best in compression, composites are best in tension.

Toughness

The toughness Gc of a composite (like that of any other material) is a measure of the energy
absorbed per unit crack area. If the crack simply propagated straight through the matrix
(toughness G m

c ) and fibres (toughness G f
c ), we might expect a simple rule-of-mixtures

Gc = Vf G
f
c + (1 − Vf)G m

c . (25.10)

But it does not usually do this. We have already seen that, if the length of the fibres is
less than 2xc, they will not fracture. And if they do not fracture they must instead pull
out as the crack opens (Fig. 25.6). This gives a major new contribution to the tough-
ness. If the matrix shear strength is σ m

s (as before), then the work done in pulling a fibre
out of the fracture surface is given approximately by
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The number of fibres per unit crack area is 4Vf /πd2 (because the volume fraction is the
same as the area fraction on a plane perpendicular to the fibres). So the total work done
per unit crack area is
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Fig. 25.6. Fibres toughen by pulling out of the fracture surface, absorbing energy as the crack opens.
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This assumes that l is less than the critical length 2xc. If l is greater than 2xc the fibres
will not pull out, but will break instead. Thus optimum toughness is given by setting
l = 2xc in eqn. (25.12) to give
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The equation says that, to get a high toughness, you should use strong fibres in a weak
matrix (though of course a weak matrix gives a low strength). This mechanism gives
CFRP and GFRP a toughness (50 kJ m−2) far higher than that of either the matrix (5 kJ m−2) or
the fibres (0.1 kJ m−2); without it neither would be useful as an engineering material.

Applications of composites

In designing transportation systems, weight is as important as strength. Figure 25.7
shows that, depending on the geometry of loading, the component which gives the
least deflection for a given weight is that made of a material with a maximum E/ρ (ties
in tension), E1/2/ρ (beam in bending) or E1/3/ρ (plate in bending).

When E/ρ is the important parameter, there is nothing to choose between steel,
aluminium or fibre glass (Table 25.2). But when E1/2/ρ is controlling, aluminium is
better than steel: that is why it is the principal airframe material. Fibreglass is not
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Fig. 25.7. The combination of properties which maximise the stiffness-to-weight ratio and the strength-to-
weight ratio, for various loading geometries.

significantly better. Only CFRP and KFRP offer a real advantage, and one that is now
exploited extensively in aircraft structures. This advantage persists when E1/3/ρ is the
determining quantity – and for this reason both CFRP and KFRP find particular applica-
tion in floor panels and large load-bearing surfaces like flaps and tail planes.

In some applications it is strength, not stiffness, that matters. Figure 25.7 shows that
the component with the greatest strength for a given weight is that made of the mater-
ial with a maximum σy/ρ (ties in tension),     σ ρy

2 3/ /  (beams in bending) or     σ ρy
1 2/ /

(plates in bending). Even when σy/ρ is the important parameter, composites are better
than metals (Table 25.2), and the advantage grows when     σ ρy

2 3/ /  or     σ ρy
1 2/ /  are dominant.

Despite the high cost of composites, the weight-saving they permit is so great that
their use in trains, trucks and even cars is now extensive. But, as this chapter illus-
trates, the engineer needs to understand the material and the way it will be loaded in
order to use composites effectively.

Particulate composites

Particulate composites are made by blending silica flour, glass beads, even sand into a
polymer during processing.
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Particulate composites are much less efficient in the way the filler contributes to the
strength. There is a small gain in stiffness, and sometimes in strength and toughness,
but it is far less than in a fibrous composite. Their attraction lies more in their low cost
and in the good wear resistance that a hard filler can give. Road surfaces are a good
example: they are either macadam (a particulate composite of gravel in bitumen, a
polymer) or concrete (a composite of gravel in cement, for which see Chapter 20).

Cellular solids, or foams

Many natural materials are cellular: wood and bone, for example; cork and coral, for
instance. There are good reasons for this: cellular materials permit an optimisation of
stiffness, or strength, or of energy absorption, for a given weight of material. These
natural foams are widely used by people (wood for structures, cork for thermal insula-
tion), and synthetic foams are common too: cushions, padding, packaging, insulation,
are all functions filled by cellular polymers. Foams give a way of making solids which
are very light and, if combined with stiff skins to make sandwich panels, they give
structures which are exceptionally stiff and light. The engineering potential of foams is
considerable, and, at present, incompletely realised.

Most polymers can be foamed easily. It can be done by simple mechanical stirring or
by blowing a gas under pressure into the molten polymer. But by far the most useful
method is to mix a chemical blowing agent with the granules of polymer before pro-
cessing: it releases CO2 during the heating cycle, generating gas bubbles in the final
moulding. Similar agents can be blended into thermosets so that gas is released during
curing, expanding the polymer into a foam; if it is contained in a closed mould it takes
up the mould shape accurately and with a smooth, dense, surface.

The properties of a foam are determined by the properties of the polymer, and by
the relative density, ρ/ρs: the density of the foam (ρ) divided by that of the solid (ρs) of
which it is made. This plays the role of the volume fraction Vf of fibres in a composite,
and all the equations for foam properties contain ρ/ρs. It can vary widely, from 0.5 for
a dense foam to 0.005 for a particularly light one.

The cells in foams are polyhedral, like grains in a metal (Fig. 25.8). The cell walls,
where the solid is concentrated, can be open (like a sponge) or closed (like a flotation
foam), and they can be equiaxed (like the polymer foam in the figure) or elongated

Fig. 25.8. Polymeric foams, showing the polyhedral cells. Some foams have closed cells, others have cells
which are open.
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Fig. 25.9. The compressive stress–strain curve for a polymeric foam. Very large compressive strains are
possible, so the foam absorbs a lot of energy when it is crushed.

(like cells in wood). But the aspect of structures which is most important in determin-
ing properties is none of these; it is the relative density. We now examine how foam
properties depend on ρ/ρs and on the properties of the polymer of which it is made
(which we covered in Chapter 23).

Mechanical properties of foams

When a foam is compressed, the stress–strain curve shows three regions (Fig. 25.9). At
small strains the foam deforms in a linear-elastic way: there is then a plateau of deforma-
tion at almost constant stress; and finally there is a region of densification as the cell
walls crush together.

At small strains the cell walls at first bend, like little beams of modulus Es, built in at
both ends. Figure 25.10 shows how a hexagonal array of cells is distorted by this
bending. The deflection can be calculated from simple beam theory. From this we
obtain the stiffness of a unit cell, and thus the modulus E of the foam, in terms of the
length l and thickness t of the cell walls. But these are directly related to the relative
density: ρ/ρs = (t/l)2 for open-cell foams, the commonest kind. Using this gives the
foam modulus as
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Real foams are well described by this formula. Note that foaming offers a vast range of
modulus: ρ/ρs can be varied from 0.5 to 0.005, a factor of 102, by processing, allowing
E to be varied over a factor of 104.

Linear-elasticity, of course, is limited to small strains (5% or less). Elastomeric foams
can be compressed far more than this. The deformation is still recoverable (and thus
elastic) but is non-linear, giving the plateau on Fig. 25.9. It is caused by the elastic
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Fig. 25.10. Cell wall bending gives the linear-elastic portion of the stress–strain curve.

buckling of the columns or plates which make up the cell edges or walls, as shown in
Fig. 25.11. Again using standard results of beam theory, the elastic collapse stress σ *el can
be calculated in terms of the density ρ. The result is

σ *el 
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


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2
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s
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As before, the strength of the foam is controlled by the density, and can be varied at
will through a wide range. Low-density (ρ/ρs = 0.01) elastomeric foams collapse under
tiny stresses; they are used to package small, delicate instruments. Denser foams (ρ/ρs

= 0.05) are used for seating and beds: their moduli and collapse strengths are 25 times
larger. Still denser foams are used for packing heavier equipment: appliances or small
machine tools, for instance.

Fig. 25.11. When an elastomeric foam is compressed beyond the linear region, the cell walls buckle
elastically, giving the long plateau shown in Fig. 25.9.
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Fig. 25.12. When a plastic foam is compressed beyond the linear region, the cell walls bend plastically,
giving a long plateau exactly like that of Fig. 25.9.

Cellular materials can collapse by another mechanism. If the cell-wall material is
plastic (as many polymers are) then the foam as a whole shows plastic behaviour. The
stress–strain curve still looks like Fig. 25.9, but now the plateau is caused by plastic
collapse. Plastic collapse occurs when the moment exerted on the cell walls exceeds its
fully plastic moment, creating plastic hinges as shown in Fig. 25.12. Then the collapse
stress σ *pl of the foam is related to the yield strength σy of the wall by

σ *pl 
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Plastic foams are good for the kind of packaging which is meant to absorb the energy
of a single impact: polyurethane automobile crash padding, polystyrene foam to protect
a television set if it is accidentally dropped during delivery. The long plateau of the
stress–strain curve absorbs energy but the foam is damaged in the process.

Materials that can be engineered

The materials described in this chapter differ from most others available to the
designer in that their properties can be engineered to suit, as nearly as possible, the
application. The stiffness, strength and toughness of a composite are, of course, con-
trolled by the type and volume fraction of fibres. But the materials engineering can go
further than this, by orienting or laminating the fibre weave to give directional proper-
ties, or to reinforce holes or fixing points, or to give a stiffness which varies in a
controlled way across a component. Foaming, too, allows new degrees of freedom to
the designer. Not only can the stiffness and strength be controlled over a vast range
(104 or more) by proper choice of matrix polymer and foam density, but gradients of
foam density and thus of properties can be designed-in. Because of this direct control
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over properties, both sorts of composites offer special opportunities for designing
weight-optimal structures, particularly attractive in aerospace and transport. Examples
of this sort of design can be found in the books listed below.

Further reading

M. R. Piggott, Load Bearing Fibre Composites, Pergamon Press, 1980.
A. F. Johnson, Engineering Design Properties of GFRP, British Plastics Federation, 1974.
M. Grayson (editor), Encyclopedia of Composite Materials and Components, Wiley, 1983.
P. C. Powell and A. J. Ingen Housz, Engineering with Polymers, 2nd edition, Chapman and Hall,

1998.
L. J. Gibson and M. F. Ashby, Cellular Solids, 2nd edition, Butterworth-Heinemann, 1997.
D. Hull, An Introduction to Composite Materials, Cambridge University Press, 1981.
N. C. Hillyard (editor), Mechanics of Cellular Plastics, Applied Science Publishers, 1982.

Problems

25.1 A unidirectional fibre composite consists of 60% by volume of Kevlar fibres in a
matrix of epoxy. Find the moduli Ec|| and Ec�. Comment on the accuracy of your
value for Ec�. Use the moduli given in Table 25.1, and use an average value where
a range of moduli is given.
Answers: 77 GPa and 9 GPa.

25.2 A unidirectional fibre composite consists of 60% by volume of continuous type-1
carbon fibres in a matrix of epoxy. Find the maximum tensile strength of the
composite. You may assume that the matrix yields in tension at a stress of
40 MPa.
Answer: 1336 MPa.

25.3 A composite material for a car-repair kit consists of a random mixture of short
glass fibres in a polyester matrix. Estimate the maximum toughness Gc of the
composite. You may assume that: the volume fraction of glass is 30%; the fibre
diameter is 15 µm; the fracture strength of the fibres is 1400 MPa; and the shear
strength of the matrix is 30 MPa.
Answer: 37 kJ m–2.

25.4 Calculate the critical length 2Xc of the fibres in Problem 25.3. How would you
expect Gc to change if the fibres were substantially longer than 2Xc?
Answer: 0.35 mm.


