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MILANKOVIĆ MILUTIN AND ASTRODYNAMICS 
 

 
Vladan Djordjević wrote that Milutin Milanković ranks among those great 

scientists of the world who marked the 20th century ....... The chief idea underlying his 

longstanding work is that climatic variations on the Earth result from regular changes 

in celestial mechanics (periodical change of the Earth's axis tilt, eccentricity of the 

Earth' orbit and change of the ecliptic angle), which in turn causes cyclic changes in 

the intensity of insulation [3]. 

In 1988., the fourth issue of the university book under the title Foundation of 

Celestial Mechanics written by Milutin Milanković[2], was published by scientific book 

publisher «Naučna knjiga» on 97 pages. In Preface to the first issue from 1947. of this 

book manuscript, the author wrote that the content of the book was in accordance with 

the Program of the new curriculum at University of Belgrade, and also that the book 

contained those parts of celestial mechanics which study the motion of the planets and 

their secular perturbations. Also, he pointed out that by using own, proper results from 

own papers published in 1939 and 1941 by Serbian Academy of Sciences, the main 

attitudes of the expressed theory are obtained in a shorter and more synoptic way. This 

university book contains the following seven chapters: Newton's law of gravity, Problem 

of two bodies in celestial mechanics, Unperturbed planetary motions around the sun, 

General integrals on the motion of N-bodies, General theory of planetary perturbations, 

Introduction of vector elements in the calculus of perturbations, Review of the classical 

theory of perturbations, Secular perturbations. 

In the first Chapter of the manuscript under the title Kepler's Law, Milanković 
writes that by accepting Copernicus' heliocentric system and by using Tiho Brahe's 

results of the motion of planet Mars, Kepler in the geniuses way derived own laws and 

published the first two laws in the famous monograph Astronomia nova de mortibus 

stellae Martis, 1609 and the third in the book Harmonices mundi, 1619. This university 

book concludes by the following sentences: «Numerical calculations of the secular 

change of the planet elements show that eccentricity and inclinations of the orbits of all 

big planets oscillate between narrow, defined, boundaries, as it is supposed in theory of 

the secular perturbations of the planets. In 1997 in edition Choose works of Milutin 

Milanković in the seven volumes, in third volume, Milanković's Celestial mechanics 

was published again. 
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One of the first papers written by Tatomir P. Andjelić, an honorary teaching 

assistant of applied mathematics at Faculty of Philosophy in Belgrade, and published in 

1935, was a review entitled Celestial mechanics by M. Milanković. The paper was 

written after comments and presentation of this book by M. Milanković in Yugoslav 

Professors society. Milanković's Celestial mechanics was the first book published in this 

area of sciences, in which vector calculus was applied for expression, and assistant 

Tatomir P. Andjelić grow fond of this method, who obtained a good basis and 

knowledge of vectors during the study at University in Heidelberg.   

  In March 1984, academician Tatomira P. Andjelića gave me his newly 

published book Introduction to Astrodynamics [2], as a present with a sentence as a 

dedication. This book was published in 1993, on 153 pages in the periodic edition 

Matematički vidici, in which special publications Monograph in a different area of 

mathematics and mechanics was published at Mathematical institute of SANU. In 

Preface to this book, the author writes that during a long period he gave lectures in 

astrodynamics, as a one of the subjects in postgraduate study of mechanics at Faculty of 

Mathematical and Natural Sciences in Belgrade. As a professor, he concluded that with 

the current cosmic research and challenges, it is useful, not only in the specialist 

publications, but also in postgraduate study, to point out the problems of astrodynamics. 

This is an important way for a student to obtain basic knowledge for further education 

and research. 

 In this sense, in this book academician Andjelić presented in main an 

introduction necessary for the next scientific research in the area of astrodynamics. His 

book contains elements of rocketdynamics, astronomy, celestial and rational mechanics, 

together with theoretical description chain of cosmic motion and some own results and 

application examples.  
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Dear Reader of the Journal Scientific Review, 
 
 

This Special Issue of the Journal Scientific Review published by 
Serbian Scientific Society contains invited/selected full papers presented 
at The Symposium Nonlinear Dynamics – dedicated to Milutin Milanković 
(Dalj, May 28, 1879Beograd, December 12, 1958), Multidisciplinary and 
Interdisciplinary Applications, (SNDMIA 2012), Belgrade, October 15, 
2012., (Eigth Serbian Symposium in area of Nonlinear Sciences), 
(Симпозијум Нелинеарна динамика  Мулти и интердисциплинарне 
примене). Special Issue contains 7 full papers of Plenary Lectures, 6 full 
paper of Invited Lectures and 17 full papers of Contributed Lectures. Eight 
papers were authored by aboard scientist and other 22 full papers by 
Serbian scientists and researchers. Selected papers for this Special Issue 
are from different area of Nonlinear Dynamics: Nonlinear Mechanics, 
Nonlinear dynamic in Physicchemical systems, Nonlinear biodynamical 
systems, Mathematical methods, and other area of sciences. 

In Appendix of the Issue are few republished selected abstracts of 
plenary lectures which contents are published in other scientific journals 
aboard. Also, Appendix of the Issue contains brief review information about 
Symposia in Serbia and a short scientific biography of Professor Danilo P. 
Rašković, under which influence started research projects in area of 
nonlinear oscillations at Mechanical Engineering Faculty University of Niš. 
He established first collaboration of researchers from Serbia with 
academician Yuri Alekseevich Mitropolyskiyimportant scientist from area 
of asymptotic methods on nonlinear Mechanics and main founder of and 
next International Conference of Nonlinear Oscillations (First ICNO Kiev 
1961 – last ICNO Cracow 1990), now continued under the name European 
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Nonlinear Oscillation Conferences (First ENOC Hamburg 2993 next ENOC 
Wien 2014).  

The Symposium Nonlinear Dynamics – devoted to Milutin Milanković 
(Dalj, May 28, 1879Beograd, December 12, 1958), Multidisciplinary and 
Interdisciplinary Applications, (SNDMIA 2012), Belgrade, October 15, 
2012., (Eigth Serbian Symposium in area of Nonlinear Sciences), 
(Симпозијум Нелинеарна динамика  Мулти и интердисциплинарне 
примене) was held in Belgrade, Serbia, and is organized by the Department 
of NaturalMathematical Sciences of the Serbian Scientific Society and 
supported by Project ON174001 (20112014) coordinated through 
Department of Mechanics at Mathematical Institute SANU, in the 
framework of the scientific activities of the active researchers in area of 
Nonlinear Dynamics in Serbia and Russia. 
 Scientific support to the Symposium Nonlinear Dynamics – 
dedicated to Milutin Milanković (Multidisciplinary and Interdisciplinary 
Applications, (SNDMIA 2012), Belgrade, October 15, 2012 
(http://afrodita.rcub.bg.ac.rs/~nds/indexe.html) was given by following 
scientific institution in Serbia: Project ON174001 (20112014) coordinated 
through Department of Mechanics at Mathematical Institute SANU, Projet 
OI 172015 through Faculty of Physical Chemistry, University of Belgrade 
and  III 45001 Institute of Chemistry, Technology and Metallurgy, 
University of Belgrade, Department of Catalysis and Chemical Engineering, 
Belgrade, Institute „Vincha“, The Society of Physical Chemists of Serbia, 
Faculty of Physical Chemistry University of Belgrade, „Mihajilo Pupin 
Institute“ University of Belgrade,  Faculty of Technical Sciences Kosovska 
Mitrovica, University of Pristina with allocated place in Kosovska Mitrovica, 
Serbian Society of Mechanics and Section for Nonlinear Phenomena and 
Complex Systems (funded   27.02.1993 with  President Slobodan Anić) and 
Society Milutin Milanković. 
 The objective of the SYMPOSIUM was to bring together scientists 
and engineers working in different areas of science to present and discuss 
recent developments on different problems of nonlinear dynamics with 
multi and interdisciplinary applications.  
 
MAIN TOPICS OF THE SSYMPOSIUM 

A* Models and methods (analytical, numerical, geometrical, 
experimental) in nonlinear dynamics. 
 Qualitative and quantitative analysis of nonlinear dynamic systems. 
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B* Nonlinear dynamics of continuous, discontinuous and hybrid 
systems. 

C* Bifurcations and chaos. 
D*  Nonlinear stochastic systems. 
E*  Nonlinear dynamic phenomena. 
F* Control of oscillations and chaos. 
G* Applications in mechanics at different scales, and real problems 

from any branch of engineering science including mechanical, civil, 
electronic, electrical, communication, medical, materials. 

H* Crossdisciplinary topics from applied mathematics, physics, 
biophysics, genetics, nanotechnology, finance, medicine and earth sciences. 
 

A ROUND TABLE: Research ethics and evaluation of scientific and 
technological research results was held successfully and the following 
participants took part with corresponding address talks: Marina V.  
Shitikova, Pavel S. Krasilnikov, Hiroshi Yabuno, Mikhail Zakrzhevsky, Albert 
C. J. Luo, Marina Shitikova, Ljiljana KolarAnić, Slobodan Anić, Alexandra 
Maluckov, Ilya B. Simanovskii, Žarko Mijajlović, Željko ČupiĆ, Stevan 
Maksimović, Alexander Zlenko, Katica R. (Stevanović) Hedrih and other 
participants. 
 

Since 1992, the European Mechanics Society (EUROMECH) 
organizes European Nonlinear Oscillations Conferences (ENOCs) through its 
ENOC Committee. Actually, these events have a much longer tradition, since 
they are successors of the former ICNO (International Conference on 
Nonlinear Oscillations) series held from 1961 to 1990 in EastEuropean 
countries. Starting with the 1st International Conference on Nonlinear 
Oscillations organized in Kiev, 1961, by Professor Yu. A. Mitropolsky, twelve 
ICNOs were held till 1990. Then, starting with the 1st European Nonlinear 
Oscillations Conference in Hamburg, 1992, six ENOCs were organized till 
2008 (Prague, Copenhagen, Moscow, Eindhoven, St. Petersburg). Details are 
done in Appendix II. 

Professor G. Rega was organizer last ENOC Rome 2011 and we point 
out his sentences: “It is a great privilege to host the 50th Anniversary 
Conference of the ICNOENOC series in Rome, for the first time in a 
SouthEuropean country”.  
 First Serbian Scientific meeting in area of Nonlinear mechanics 
(nonlinear oscillations and nonlinear dynamics) was organized by Serbian 
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Society of Mechanics and Yugoslav society of Mechanics in 1984 in 
Arandjelovac. Academician Yu. Alekseevich Mitropolsky attended this 
Serbian Symposium and give one Plenary invited Lecture. Starting from this 
period Series of the scientific Symposia or MiniSymposia were organized 
by Chair of Mechanics of Mechanical Engineering Faculty, University of Niš 
supported, by Yougoslav or Serbian Society of Mechanics. Details are done 
in Appendix III. 

We are happy to report that our Symposium Nonlinear Dynamics – 
dedicated to Milutin Milanković presented 88 abstracts of the nonlinear 
dynamics contributions in different areas of sciences from 12 countries.  

We would like to thank all authors  participants of Symposia for 
their scientific contribution to Symposium Nonlinear Dynamics, as well as to 
this Special Issue of the Journal Scientific Review of Serbia Scientific 
Society. 
Financial support in parts for publishing this Issue of Journal Scientific 
Review of Serbia Scientific Society is given by Project ON174001 (2011
2014) coordinated through Department of Mechanics at Mathematical 
Institute SANU, Project OI 172015 through Faculty of Physical Chemistry, 
University of Belgrade and III 45001 Institute of Chemistry, Technology 
and Metallurgy, University of Belgrade, Department of Catalysis and 
Chemical Engineering, Belgrade, The Society of Physical Chemists of Serbia, 
„Mihajilo Pupin Institute“ University of Belgrade and Faculty of Technical 
Sciences Kosovska Mitrovica, University of Pristina with allocated place in 
Kosovska Mitrovica. 
 


Guest Editors of Special Issue of Journal Scientific Review of Serbia 

Scientific Society 

 and    
Katica R. (Stevanović) HEDRIH and  Žarko Mijajlović 

Chairs of Symposium Nonlinear Dynamics – dedicated to Milutin Milanković  
and member of Serbian Scientific Society 
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СРАВНИТЕЛЬНЫЙ АНАЛИЗ АСИМПТОТИЧЕСКИХ 

МЕТОДОВ ИНТЕГРИРОВАНИЯ НА ПРИМЕРЕ УРАВНЕНИЯ 

БЕЛЕЦКОГО 

  

Павел Красильников  
 

Кафедра ``Дифференциальные уравнения'', МАИ Волоколамское шоссе 
4, Москва, 125871, Россия   krasil06@rambler.ru 

 

 

Abstract. Small plane oscillations of the satellite in an weak elliptical orbit are 

investigated. The equation of oscillations of the satellite contains two small 

parameters:   (an orbit eccentricity) and   (a measure of a deviation of a phase point 

from zero). It is shown that the traditional analysis using connection between yhem, 

has some lacks. For example, these reduction leads to a set of the shortened equations, 

therefore the combination of solutions of these equations is required. Moreover, if you 

use the reduction then equation has not Taylor expansions in a small parameter. The 

reduction does not allow, as a rule, to investigate a bifurcation of solutions in the 

space of small parameters, to give completeness information on the oscillations, to 

investigate the oscillations along arbitrary curves of space of small parameters. 

 The small plane oscillations are investigated with the help of the generalized 

averaging method with small independent parameters. The oscillations in the first and 

second approximations of averaging method are described. It is shown that researches 

are free from reduction shortages.  

Key words: satellite; plane oscillations; two small parameters; generalized averaging 

method.  

1. ВВЕДЕНИЕ 

Основы теории малых нелинейных колебаний небесных тел на 
слабоэллиптической орбите заложены в работах Лапласа Тиссерана, Рауса [1] -- [3], 

занимавшихся теорией движения Луны относительно ее центра масс. Были 

исследованы различные типы либраций Луны, амплитуда которых имеет первый 

порядок малости по e . Первые исследования вращательных движений 

искусственных спутников Земли на эллиптической орбите при 1e =  проведены в 
статьях [4] -- [7]. Они повторяют в основном результаты классических 
исследований, когда анализ эксцентриситетных колебаний основан на уравнениях 
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линейного приближения. В работах [8, 9] содержится вывод строгих уравнений 

плоских колебаний спутника на эллиптической орбите и уравнение малых 
колебаний, исследованы эксцентриситетные колебания в первом приближении 

метода усреднения, построена область параметрических колебаний. Работа [10] 

посвящена исследованию квазилинейных нерезонансных колебаний спутника, 
статьи [11, 12] содержат результаты исследований, когда в качестве независимой 

переменной принята средняя аномалия, при этом уравнения движения разлагаются 
в ряды Тейлора и Фурье, колебания спутника описываются с точностью до 2e . 

Подробный обзор цитируемых работ дан в монографии [13]. 

При исследовании малых колебаний обычно предполагают (по умолчанию) 

наличие связи между малыми параметрами e  и ε , где ε  -- мера отклонения 
фазовой точки от начала координат, определяемая как отношение характерного 
размера по угловым переменным и скоростям к фиксированным единицам 

измерения (заданным в системе SI, CGS или MKS). К примеру, во всех 
рассмотренных выше работах полагается eε : , т.е. = eε α , где α  -- постоянная 
величина порядка единицы. Наиболее интересные нелинейные резонансные 
эффекты вращений спутника были обнаружены в работе [14] вдоль кривой 

1/3
= eε : 

исследована задача о существовании, бифуркациях и устойчивости периодических 
движений спутника с периодом, равным периоду обращения его центра масс по 
орбите. 

Цель работы -- провести сравнительный анализ асимптотических методов 
интегрирования уравнения плоских колебаний спутника, использующих редукцию 

и свободных от редукции, описать новые эффекты вращений спутника на основе 
обобщенного метода усреднения с независимыми малыми параметрами. 

2. ВИДЫ РЕДУКЦИЙ УРАВНЕНИЯ БЕЛЕЦКОГО  

Исследуем уравнение плоских колебаний спутника  
2

2

2
(1 cos ) 2 sin 3 sin = 4 sin

d d
e e n e

d d

δ δ
ν ν δ ν

ν ν
+ − +

                                  

(1) 

Здесь приняты следующие обозначения: 2
= ( ) /n A C B− , , ,A B C  -- 

главные центральные моменты инерции аппарата, e -- эксцентриситет орбиты 

спутника, δ  -- удвоенный угол между радиусом вектором центра инерции аппарата 
и осью z , направленной по его главной центральной оси инерции, относительно 
которой момент инерции равен C , ν  -- истинная аномалия. 

Полагаем δ  малым: = , =δ εδ δ εδ′ ′ . Здесь ,δ δ′  величины порядка 
единицы, ε  -- малый параметр. Уравнение колебаний спутника примет вид  

2

2

2
(1 cos ) 2 sin sin( ) = 4 sin , = 3

d d
e e e n

d d

δ δ
ε ν ε ν ω εδ ν ω

ν ν
+ − +

        

(2) 

Линеаризуя это уравнение по δ , получим сингулярно возмущенное 
уравнение  
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2

2

2
(1 cos ) 2 sin = 4 sin , = 3

d d e
e e n

d d

δ δ
ν ν ω δ ν ω

ν ν ε
+ − +

 
частным случаем которого (при =1ε ) является уравнение линейных колебаний 

спутника, полученное в работе [8]. 

Рассмотрим редукции задачи, приводящие уравнение (2) к виду, 
содержащему один малый параметр. Будем считать, что однопараметрическое 
семейство кривых ( , , ) = 0f eε α , (0,0, ) = 0f α  (α  -- параметр семейства), 
покрывает всю плоскость параметров { },eε , когда α  пробегает область 

допустимых значений Λ . Вдоль каждой кривой семейства уравнение (2) зависит от 
одного малого параметра. 

Поделив уравнение (2) на (1 cos )e ν+ , разложим его в ряд по малым 

параметрам ,eε . С этой целью представим функции 1
(1 cos )e ν −+  и sin( )εδ  в 

виде рядов:  
2 1

=0 =0

1 ( )
= ( 1) , sin( ) = ( 1)cos

1 cos (2 1)!

k
n n kn

n k

e
e k

εδ
ν εδ

ν

+∞ ∞

− −
+ +

∑ ∑  

Принимая во внимание формулу Коши произведения рядов  

=0 =0 =0 =0

=

k

i j s k s

i j k s

a b a b
∞ ∞ ∞

−

 
⋅  

 
∑ ∑ ∑ ∑  

получим, после преобразований, уравнение плоских колебаний спутника в виде 
ряда по независимым малым параметрам , eε :  

( )2

=0

2 2 1

2

=1 =0

= 2sin 2 ( 1) cos

( 1) cos
(2 1)!cos

n n n

n

k s s sk
k k

s
k s

e e

e

s

δ ω δ ν δ µ ν

ε δ
ω ν

ν

∞

− +∞

′′ ′+ + − −

 
− − 

+ 

∑

∑ ∑
                                  

(3) 

Здесь = /eµ ε  -- сингулярный параметр. Уравнение (3) и (4) содержит его 
как величину нулевого порядка, поскольку сумма показателей e  и ε  равна нулю. 

Такое определение порядка малости µ  является формальным, не учитывающим 

его сингулярный характер: числовое значение µ  неопределено при , 0e ε → . 

Порядок малости µ  зависит от характера стремления малых параметров к нулю, в 
частности, определяется асимптотическим поведением кривых редукции в 
окрестности нуля. Следовательно, он зависит от вида редукции. 

Удерживая члены до третьего порядка малости включительно по e  и ε , 

будем иметь:  
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2

2 2 2 3

2 2 2 2

2

3 2 2 32 3 3

= 4 sin 2 sin cos 2 sin 2
6

sin 2 4 sincos cos

2 sin 4 sin coscos cos cos
6

e

e

e e

ε
δ ω δ µ ν δ ν ω δ ν µ ν ω δ

δ ν ω δ ν µ ν ν

ω
δ ν ν ω δ ν µ ν ν ε δ ν

′′ ′ + + + − + − 

′ − + − + 

′ + + − − 
      

(4) 

Для приведения уравнения (4) к регулярному случаю необходимо 
исключить (в плоскости малых параметров) особую прямую = 0ε  вместе с малой 

окрестностью. Для этого достаточно потребовать, чтобы при определенных 
значениях α  кривые редукции  плотно прилегали к этой прямой, формируя 
означенную окрестность при условии отсутствия касания их с прямой = 0ε  в нуле. 
В случае касания имеем = ( )o eε , поэтому µ → ∞  при 0e →  вдоль кривой 

редукции, следовательно µ  сохраняет сингулярность и за пределами указанной 

окрестности. 

Отметим, что параметр ε  играет существенную роль при исследовании 

малых колебаний спутника, несмотря на то, что исходное уравнение (1) не 
содержит его явно. Дело в том, что для большинства редукций задачи укороченные 
уравнения, содержащие первые главные члены разложений в ряд, имеют разный 

вид в зависимости от величины ε . Увеличивая ε  непрерывным образом, получим 

переход от одного вида уравнений к другому. В дополнении к этому, при любом ε  

из достаточно малой окрестности, примыкающей к прямой = 0ε , уравнение (1) 

является сингулярно возмущенным, если 0e ≠ . 

Исследуем подробно различные виды редукции. Для начала рассмотрим 

простейший ее тип. 

3. ЛИНЕЙНАЯ РЕДУКЦИЯ   

Положим  
= ,eε α  

где α  - постоянная положительная величина, меняющаяся в пределах от нуля до 
бесконечности (напомним, что e  и ε  -- положительные величины). Пусть α ∗

 - 

достаточная малая константа. Тогда параметр =1/µ α  всюду в плоскости малых 

параметров, за исключением узкой конической окрестности 0 < eε α ∗
„  

сингулярной прямой = 0ε , имеет порядок малости, равный единицы, так как 
удовлетворяет условию полосы 

*
0 1/µ α„ „ . 

Здесь следует отметить, что понятие малости µ  как функции двух 

аргументов ,e ε  мы определяем через условие полосы, так, как это сделано в 
работах [15, 16]. 
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Определение. Функцию ( , )eµ ε  будем называть функцией k  -- го 
порядка малости по ,eε , если для любых малых положительных 

1 2
,δ δ  существуют 

постоянные ( )1 1 2
, > 0A δ δ , ( )2 1 2

, > 0A δ δ  и две скалярные формы k  -го порядка  

1 2 1 2
1 2

1 2 1 2

1 2 1 2

( , ) = , ( , ) =, ,
= =

s s s s

s s

s s

F e e F e es s
s k s k

ε α ε ε β ε
+ +
∑ ∑  

положительно определенные в положительном конусе { }, : > 0, > 0e eε ε , такие, что 

выполняется условие полосы  

1 1 2 1 2 1 2 2
( , ) ( , ) | ( , ) | ( , ) ( , ),A F e e A F eδ δ ε µ ε δ δ ε„ „

                                       
(5) 

когда 
1 2

0 < ,0 < eε δ δ„ „  

Итак, считаем, что *
eε α… . Подставим в уравнение (4) выражение eα  

вместо ε , получим:  

2 2

2

2 2 2 32 2

2

3 2 2 32 3 3

4 2
= sin 2 sin cos sin 2

4
sin 2 sincos cos

6

4
2 sin sin coscos cos cos

6

e

e

e

δ ω δ ν δ ν ω δ ν ν
α α

α
δ ν ω δ ν ν ν ω δ

α

α
δ ν ν ω δ ν ν ν ω δ ν

α

 
′′ ′+ + + − −  

 
′− + − − + 

 
 

′+ + − − 
        

(6) 

Здесь *α α… . Редуцированное уравнение (6) зависит от параметра α , 

однако порядок малости отдельных его членов от α  не зависит, следовательно, вид 

уравнения не меняется при изменении α . Варьируя α  непрерывным образом 

можно исследовать влияние малых параметров ,eε  на характер плоских колебаний 

спутника, но с ограничениями. Дело в том, что линейная связь между , eε  делает 
невозможным исследование колебаний вдоль нелинейных кривых ( , , ) = 0f eε α , с 
которыми часто связаны наиболее интересные нелинейные эффекты. 

Предельное уравнение имеет вид линейного неоднородного уравнения 
второго порядка:  

2 4
= sinδ ω δ ν

α
′′ +  

4. НЕЛИНЕЙНАЯ РЕДУКЦИЯ В ЯВНОМ ВИДЕ  

Рассмотрим зависимость между малыми параметрами в виде 
показательной функции  

= eαε  

При >1α  уравнение (2) является сингулярно возмущенным (так как µ  

сингулярно), неравенство 0 < 1α „  отвечает регулярному случаю. 
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Несложно видеть, что, если в правой части удержать первый главный член 

разложения, то редуцированное уравнение имеет, в зависимости от области 

изменения α , следующие формы представления. 
Pегулярный случай 

 

2 3

2 2 2

2

1
0 < < =

3 3!

d
e

d

αδ δ
α ω δ ω

ν
+

                                         

(7) 

2 3

2 2/3 2

2

1
= = 4sin

3 3!

d
e

d

δ δ
α ω δ ω ν

ν

 
+ + 

                          

(8) 

2

2 1

2

1
< < 1 = 4 sin

3

d
e

d

αδ
α ω δ ν

ν
−+

                                        

(9) 

( ) ( )
2

2

2
= 1 2 sin 1 cos = 4 1 cos sin

d d
e e e

d d

δ δ
α ν ω δ ν ν ν

ν ν
− + − − (10) 

Сингулярный случай 
2 1

2 1

2

cos
> 1, [ , 1) = ( 1) 4sin ( = 1,2,3 )

k
k

k

d
k k k

d e
α

δ ν
α α ω δ ν

ν

−
−

−
∈ + + − 

   

(11) 

В вырожденном случае, когда = 0e , а параметр α  удовлетворяет строгим 

неравенствам 0 < < 1α  (первые три уравнения), имеем  

2

2

2
= 0

d

d

δ
ω δ

ν
+                                                                                      (12) 

Это уравнение описывает малые порождающие колебания спутника на 
круговой орбите в окрестности положения равновесия = 0δ . Его легко получить 
из (1) с помощью предельного перехода 0e →  и последующего разложения 
оставшихся функций в ряд по δ . 

Случай = 1α  стоит особняком. Его предельное уравнение ( = 0)e  имеет 
вид  

2

2

2
= 4sin ,

d

d

δ
ω δ ν

ν
+                                                                                  (13) 

отличный от  (12). Уравнение (13) нельзя получить из (1) с помощью предельного 
перехода 0e →  и последующего удержания членов порядка δ , поскольку 
указанная последовательность действий предполагает выполнения условия < 1α , 

так как члены уравнения (1), содержащие эксцентриситет e  сомножителем, 

должны стремиться к нулю быстрее, чем δ . Уравнение (13) можно получить из (1), 

выделяя главные члены порядка эксцентриситета -- 2
,νδ ω δ′′  и 4 sine ν  (напомним, 

что = eδ δ ). 

Заметим, что уравнение (13), в отличие от (12), нельзя рассматривать как 
уравнение малых колебаний спутника на круговой орбите. Это уравнение 
описывает (в первом приближении по малому параметру e ) некоторые малые 
колебания спутника на слабо-эллиптической орбите, причем эти колебания никак 
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не связаны с его относительным равновесием, так как ни уравнение (10), ни его 
предельный случай (13) не имеют решения = constδ . 

Исследуем области фазового пространства, отвечающие уравнениям 

регулярного случая. С этой целью рассмотрим отображение фазового пространства 
на себя:  

= , = , <<1e e eα αδ δ δ δ′ ′                                                                        (14) 

варьируя параметр α  в пределах от нуля до бесконечности. 

Пусть  
{ }2 2 2 2

[ , ] = , :K a b a bδ δ δ δ′ ′+„ „
 

есть кольцо, принадлежащее фазовому пространству. Здесь a  - его внутренний 

радиус, b  - внешний радиус. Полагаем, что , 1a b : . В этом случае, кольцо [ , ]K a b  

будет представлять собой множество точек фазового пространства переменных 

,δ δ ′ , отстоящих от начала координат на расстояниях порядка единицы. 

Очевидно, что при каждом фиксированном α  отображение  (14) 

порождает преобразование кольца в кольцо:  
[ , ] [ , ]K a b K e a e b

α α→  

Кольцу [ , ]K e a e bα α
 соответствует область в фазовом пространстве исходных 

переменных ,δ δ′ , удаленная от начала координат на величину порядка e
α

. 

Открытому интервалу 1 < <α +∞  соответствует отображение кольца во 
внутренность круга радиуса eb ( 0eα →  при α → ∞ , если <1)e :  

[ , ] [0, ]K a b K eb→  

Интервалу 1/ 3 < < 1α  отвечает отображение 1/3
[ , ] [ , ]K a b K ea e b→ , а интервалу 

0 < < 1/ 3α  -- отображение 1/3
[ , ] [ , ]K a b K e a b→  

Если нанести все эти образы кольца [ , ]K a b  на фазовую плоскость, то 
получим некоторое семейство G  колец, которое схематически можно представить 
набором соответствующих отрезков оси δ  (см. рис. 1 ).   

 

 
Рис.1 Семейство G  

 

Кольцо [ , ]K m n  представлено здесь отрезком [ , ]m n . Из рисунка следует, что  

 
1/3 1/3 1/3 1/3 1/3

[ , ] = [0, ] [ , ], [ , ] = [ , ] [ , ]K ea eb K eb K ea e b K e a e b K ea e b K e a b∩ ∩  

Это значит, что "пограничное"  множество [ , ]K ea eb , отвечающее случаю = 1α , 

принадлежит также областям фазового пространства, для которых 1 < <α ∞  и 

1/ 3 < < 1α . Аналогично, "пограничное"  множество 1/3 1/3
[ , ]K e a e b , отвечающее 

случаю =1/ 3α , принадлежит областям фазового пространства, для которых 
1/ 3 < < 1α  и 0 < < 1/ 3α . 
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Из этих рассуждений следует, что окрестность начала координат фазовых 
переменных ,δ δ ′  (точнее b  - окрестность) разбивается на пять кольцевых 
областей в зависимости от значений параметра α . Кольцу [0, ]K ea  отвечает 

укороченное уравнение (11) сингулярного случая. Кольцам 
1/3 1/3

[ , ], [ , ]K ea e b K e a b  

отвечают укороченные уравнения (9), (7) соответственно. "Пограничным"  кольцам 

отвечают несколько уравнений одновременно. Так кольцо [ , ]K ea eb  связано с 
уравнениями (9),(10), (11), а кольцо 1/3 1/3

[ , ]K e a e b  - с уравнениями (7), (8), (9). 

Последнее означает, что исследование решений из области [ , ]K ea eb , либо 
1/3 1/3

[ , ]K e a e b  можно проводить с помощью любого из трех уравнений, отвечающих 
выбранному кольцу, только надо следить за тем, чтобы параметр α  был близок к 

= 1α  в первом случае, и к = 1/ 3α  - во втором. 

Заметим, что решая задачу Коши для уравнения (2), необходимо следить за 
моментом перехода из одной кольцевой области в другую, поскольку этот переход 
сопровождается сменой типа укороченного уравнения. 

Продолжим анализ уравнений регулярного случая, удерживая в 
редуцированных уравнениях члены более высокого порядка малости по e . Для 
этого подставим eα

 вместо ε  в уравнение (4), получим  

         

2 1 2 2

2 3

2 2 2 32 2

2

3 2 4 1 2 32 3 3

= 4 sin 2 sin cos 2 sin 2

sin 2 4 sincos cos
6

2 sin 4 sin coscos cos cos
6

e e e

e e e

e e e

α α

α α

α α

δ ω δ ν δ ν ω δ ν ν

ω δ
δ ν ω δ ν ν ν

ω
δ ν ν ω δ ν ν ν δ ν

− −

−

− +

′′ ′ + + + − + 

′ + − + + + 

′ + + − − 

(15) 

Рассмотрим случай0 <1/ 3α„ . Тогда соотношения между малыми 

параметрами правой части уравнения (15) задаются неравенствами  
2 1 2 1 2 2 3 3 4

> > > > > > > >e e e e e e e e eα α α α α α− + − − −
 

Если ограничиться первыми тремя последовательными членами правой части, то, с 
учетом этих неравенств, получим  

2 3

2 2 1 2
= 4 sin 2 sin cos

6
e e e

α αω δ
δ ω δ ν δ ν ω δ ν−′′ ′ + + + + 

                  

(16) 

Дальнейший анализ показывает, что удержание в уравнении (4) всех 
членов до 4-го порядка малости включительно вносит существенные коррективы в 
уравнение (16). К примеру, член 4-го порядка 2 5 4

/120ω δ ε  приводится, с 
помощью редукции, к виду, содержащему малый параметр 4e α

 сомножителем. 

Этот сомножитель удовлетворяет неравенствам  

2 4 1 1 4

4 2

1 1 1
> > при 0 < < , > > при

5 5 4

1 1
> > при < < ,

4 3

e e e e e e

e e e

α α α α α

α α

α α

α

− −

−

„ „
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поэтому соответствующий ему член необходимо удержать в правой части 

уравнения (16). Остальные члены уравнения имеют более высокий порядок 
малости. Тогда укороченное уравнение запишется в виде совокупности уравнений  

         
( )

2 3 2

2 2 4 5 1

2 3 2

2 2 1 4 5

2 3

2 2 1 2

1
0 < = 4 sin

5 6 120

1 1
< = 4 sin

5 4 6 120

1 1
< < = 4 sin 2 sin cos

4 3 6

e e e

e e e

e e e

α α α

α α α

α α

ω δ ω
α δ ω δ δ ν

ω δ ω
α δ ω δ ν δ

ω δ
α δ ω δ ν δ ν ω δ ν

−

−

−

′′ + + +

′′ + + +

′′ ′+ + + +

„

„

 

Член шестого порядка 2 7 6
/ 7!ω δ ε  также оказывает влияние на уравнение (16), 

когда 0 < 1/ 7α „ , увеличивая число укорочений. Окончательно, уточненное 
уравнение (16) предстанет в виде системы уравнений  

( )

2 3 2 2

2 2 4 5 6 7

2 3 2

2 2 4 5 1

2 3 2

2 2 1 4 5

2 3

2 2 1 2

1
0 < =

7 6 120 7!

1 1
< = 4 sin

7 5 6 120

1 1
< = 4 sin

5 4 6 120

1 1
< < = 4 sin 2 sin cos

4 3 6

e e e

e e e

e e e

e e e

α α α

α α α

α α α

α α

ω δ ω ω
α δ ω δ δ δ

ω δ ω
α δ ω δ δ ν

ω δ ω
α δ ω δ ν δ

ω δ
α δ ω δ ν δ ν ω δ ν

−

−

−

′′ + + +

′′ + + +

′′ + + +

′′ ′+ + + +

„

„

„

 

На этом закончим работу с уравнением (16). Если в укороченном 

уравнении удержать большее число членов (четыре, пять членов и так далее), то 
потребуется последующая его корректировка с учетом членов четвертого, пятого, 
шестого порядков по ,e ε  и выше. Основная причина такого эффекта состоит в том, 

что правая часть уравнения (3) содержит ряд  

2 2 2 1

=1

( 1)
,

(2 1)!

k
k k

k k
ω ε δ

∞
+−

+
∑  

каждый член которого влияет на укороченное уравнение, разбивая фиксированный 

интервал (0, 1/3)  изменения α  на все более мелкие части и увеличивая число 

укороченных уравнений. Вызвано это тем, что 2 2
=

k ke αε  стремится к единице при 

0α → , поэтому каждый член этого ряда проявляет себя как один из главных 
членов разложения. 

Итак, число укороченных уравнений резко возрастает с ростом числа 
удерживаемых членов, что весьма затрудняет анализ системы. Сложность 
исследований связана также с нетейлоровским разложением правой части 

уравнения в ряд по малому параметру e  и c принципиальной невозможностью 

приведения такого ряда к стандартному виду теории возмущений. В самом деле, 
рассмотрим, к примеру, укороченное уравнение, отвечающее интервалу (1/4, 1/3)  

изменения α . Оно содержит малые параметры вида 2 1
, ,e e eα α−

. Стандартное 
представление правой части предполагает наличие малого параметра ∆ , 

удовлетворяющего условиям  
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2 1
= , = , =

n m pe e eα α−∆ ∆ ∆  

где , ,n m p  -- целые числа, подчиненные неравенствам < <n m p . Отсюда 
явствует, что  

= ,
3 2

p m

p n m
α

−

− −
 

поэтому α  -- рациональное число. Следовательно, при α  иррациональном 

приведение последовательности 
2 1

, ,e e eα α−
 к стандартному виду невозможно. 

Предельное уравнение имеет вид линейного осциллятора  
2

= 0δ ω δ′′+                                                                                     (17) 

Пусть =1/ 3α . Положим 
1/3

= e∆ , тогда укороченное уравнение, 
содержащее три главных члена разложения, имеет вид  

( )
2 2

2 2 3 3 2 4 5
= 4sin 2 sin cos

6 120

ω ω
δ ω δ ν δ δ ν ω δ ν δ

 
′′ ′+ ∆ + + ∆ + − ∆ 

 
 

Правая часть этого уравнения приведена к стандартному виду теории возмущений, 
предельное уравнение имеет вид (17). 

Рассмотрим случай1/ 3 < < 1α . Элементарный анализ показывает, что 
вид укороченных уравнений зависит от области изменения α :  

( )

( )

( )

2 3

2 1 2 2

2 3

2 1 2 2

2 1 2 2

1 1
< = 4 sin 2 sin cos

3 2 6

1 2
< = 4 sin 2 sin cos

2 3 6

2
< 1 = 4 sin 2 sin cos 2 sin 2

3

e e e

e e e

e e e

α α

α α

α α

ω δ
α δ ω δ ν δ ν ω δ ν

ω δ
α δ ω δ ν δ ν ω δ ν

α δ ω δ ν δ ν ω δ ν ν

−

−

− −

′′ ′+ + + +

′′ ′+ + + +

′′ ′+ + + −

„

„

„

 

Так же как и в предыдущем случае представление правой части рядом по e  имеет 
нетейлоровский вид при иррациональном α , предельное уравнение описывается 
формулой (17). 

Случай = 1α . Подставим в уравнение (15) = 1α , получим, удерживая 
первые три главных члена разложения,  

( )2 2

2

2 3 22 2

= 4sin 2 sin cos 2sin 2

sin 2 4 sincos cos
6

e

e

δ ω δ ν δ ν ω δ ν ν

ω
δ δ ν ν ν ω δ ν

′′ ′+ + + − +

 
′+ − + − 

 

 

Заметим, что редуцированные уравнения можно раскладывать также в ряд 
по ε . Для этого достаточно выразить малый параметр e  через ε , использую 

равенство, определяющее редукцию, и подставить это выражение в укороченные 
уравнения. Удерживая первые два главных члена разложения, будем иметь, при 

1/
=e αε  
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( ) ( )

2 3

2 2 2

2

2 3

2 2 2

2

2

2 (1 )/

2

2

2

2

1
0 < < =

3 3!

1
= = 4sin

3 3!

1
< < 1 = 4 sin

3

= 1 2 sin 1 cos = 4 1 cos sin

d

d

d

d

d

d

d d

d d

α α

δ δ
α ω δ ω ε

ν

δ δ
α ω δ ε ω ν

ν

δ
α ω δ ε ν

ν

δ δ
α ε ν ω δ ε ν ε ν ν

ν ν

−

+

 
+ + 

 

+

− + − −

 

Аналогично получаются укороченные уравнения более высоких приближений. 
Отношение порядка между малыми параметрами в разложение по e  сохраняется и 

в разложение по ε , так как из неравенства  
( ) ( )

>
f g

e e
α α

 

следует, при > 0α ,  
( )/ ( )/

>
f gα α α αε ε  

Укажем также на одну характерную особенность редукции: эффект  
двойственности. Суть его состоит в том, что вдоль каждой кривой = eαε  редукции 

сингулярный параметр µ  допускает два разных значения порядка малости: 
1

γ  по 

e  и 
2

γ  по ε , т.е.  
1 2

1 2
= , = ,e

γ γ
µ µ ε γ γ≠  

Действительно, имеем  
1/

1 (1 )/
= = = , = = =

e e e
e

e

α
α α α

α

ε
µ µ ε

ε ε ε
− −  

Отсюда следует, что  

1 2

1
=1 , =

α
γ α γ

α

−
−  

С другой стороны, существуют различные кривые, вдоль которых µ  имеет 
одинаковый порядок малости (1 )α− . В самом деле, положим  

1/(2 )
= , =e eα αε ε−

 

Вдоль первой кривой имеем  
2

1
= = = ,

e
α

αε
µ ε

ε ε

−
−  

вторая кривая дает значение µ  в виде 1
= e αµ −

. 

5.  НЕЯВНЫЙ ВИД НЕЛИНЕЙНОЙ РЕДУКЦИИ  (α )     

Исследуем редукции, представленные в неявном виде. Для того, чтобы 

получить уравнение относительно кривых редукции, наложим дополнительное 
требование на параметр µ : порядок его малости должен быть постоянной 
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величиной во всей области изменения величин ,e ε  за исключением малой 

окрестности прямой = 0ε . Положим, к примеру, этот порядок, равным 2 / 3 . Тогда 
µ  должен удовлетворять условию полосы  

2/3 2/3
0

e
Ae Dε

ε
+„ „                                                                               (18) 

при условии, что форма, стоящая в правой части неравенства, положительно 
знакоопределена в положительном конусе > 0, > 0eε . 

Кривые редукции определим равенством  

( )2/3 2/3
( , ) = 0,f e e Ae Dε ε ε≡ − +                                                            (19) 

описывающим одну из границ области (18) (другая граница -- ось = 0e ). 

На рис. 2 изображено семейство кривых, описываемых уравнением (19), 

когда = 1A , а D  меняется в пределах от 100 безразмерных единиц до малых 
отрицательных значений. Кривые покрывают всю плоскость малых параметров, 
при этом форма  

( )2/3 2/3e Dε+  

будет положительно определенной при > 0D  и знакопеременной, если < 0D . При 

> 0D  кривые редукции заметают область, ограниченную сверху кривой 1/3
= eε , 

отвечающей нулевому значению параметра D . В этой области вдоль каждой 

кривой семейства порядок малости параметра µ  равен 2/3. Более того, всюду выше 
любой из этих кривых µ  имеет тот же порядок малости, так как выполняется 
условие полосы (18). 

Семейство кривых, отвечающее отрицательным значениям D , 

принадлежит области, расположенной выше кривой 
1/3

= eε . Вдоль любой из этих 
кривых условие полосы (18) при =1, < 0A D  теряет силу как определение порядка 
малости µ . Этот же вывод следует из поведения кривых: они не проходят через 
ноль и поэтому не могут задавать порядок малости µ  в окрестности нуля. 

 
Рис.2  Кривые редукции при = 1A  
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Получим явную зависимость ε  от e , ограничиваясь положительными 

значениями параметра D . Разрешим уравнение (19) относительно ε , 

рассматривая ,A D  как произвольные параметры. Легко видеть, что '
( , ) = 0f eε ε  в 

точке = = 0e ε , поэтому теорема о неявной функции неприменима. 
Воспользуемся методом многоугольника Ньютона. Положим 

1/3 1/3
= , = eε λù . Тогда уравнение (19) примет вид  

3 2 5 3
( , ) = 0g A Dλ λ λ≡ + −ù ù ù                                                             (20) 

Будем искать решение = ( )λù ù  в виде  
1 2

1 2 2 1
= , >c c

α α
λ λ α α+ +ù  

Определим 
1

α , исходя из условия тождественного обращения уравнения 
(20) в ноль при подстановки в него искомого решения:  

( ) ( )
3 5

2 31 2 1 2
1 2 1 2

0A c c D c c
α α α α

λ λ λ λ λ λ+ + + + + − ≡   

Раскрывая скобки, видим, что наименьшую степень имеет один или несколько 
членов, входящих в сумму  

5 35 2 3 31 1
1 1

Dc A c
α α

λ λ λ λ+ −  

Чтобы уравнение (20) было тождественно равно нулю, необходимо, чтобы 

член с наименьшим показателем степени не был единственным, так как иначе 
этому члену не с чем сократиться. Поэтому 

1
α  следует выбирать так, чтобы среди 

показателей  

1 1
5 , 2 3 , 3α α+                                                                                  (21) 

параметра λ  по крайней мере два имели одно и то же значение, остальные 
показатели должны иметь большие значения. Приравнивая между собой пары 

показателей, получим следующее множество возможных значений 
1

α :  

1

3 1
= 1, ,

5 3
α  

Легко видеть, что только параметр 
1

= 3 / 5α  удовлетворяет 
дополнительному условию минимальности значений соответствующей пары 

{ }1
5 , 3α  на множестве показателей (21). Очевидно, что уравнение относительно 

1
c  

имеет вид  
5 3 3

1
= 0Dc λ λ−  

Отсюда следует, что 1/5

1
=c D

− , поэтому  
3/5

= ,
e

D
ε

 
+ 

 
  

если 0D ≠ . Для случая = 0D  имеем 
1/3

= eε . 

Построим следующее приближение для кривой = ( )eε ε , когда 0D ≠ . Для 
этого положим  
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1/5 3/5
= D zλ− +ù  

и введем дополнительное обозначение 1/5
=θ λ . В новых переменных уравнение 

(20) примет вид  

( ) ( )

( )

5 4/5 3 4 3/5 6 10 3 2/5 9 1/5 13 2

1/5 12 2/5 16 3/5 19

5 10 10 3

5 3 = 0

Dz D z D A z D AD z

D AD z D A

θ θ θ θ θ

θ θ θ

−

− −

+ + + + + +

+ + +
 

Ищем решение z  в виде  
=z c γθ  

Если теперь подставить это выражение в последнее уравнение и выделить в каждом 

из шести его мономов главные слагаемые, получим совокупность членов вида  
 

5 5 4/5 4 3 4 3/5 3 6 3 2/5 2 9 2 1/5 12 3/5 19
, 5 , 10 , 10 , 5 ,Dc D c D c D c D c D Aγ γ γ γ γθ θ θ θ θ θ+ + + + −

 

Несложно видеть, что при = 7γ  последние два слагаемых имеют одинаковый 

показатель степени величины θ , минимальный на множестве всех показателей θ  

для выписаных членов. Следовательно, чтобы удовлетворить алгебраическому 
уравнению относительно z  необходимо сумму последних двух членов положить 
равной нулю. В результате имеем уравнение относительно c :  

1/5 12 3/5 19
5 = 0, = 7D c D Aγθ θ γ+ −+  

Отсюда следует, что  
4/5 1/5 3/5 4/5 7 /5

= , = ,
5 5

A A
c D D Dλ λ− − −− −ù  

поэтому  
3/5 3/5 6/5 13/153

=
5

A
D e D eε − −− +                                                                (22) 

Получим уравнения колебаний спутника вдоль кривых редукции. Для этого 
подставим найденное значение ε  в правую часть уравнения (3) и разложим ее в 
ряд по e . Будем иметь  

( )

2

2 3/5 2/5 2/3 14/15

3/5

3 2 3

2 6/5

6/5 6/5

12 36
= 4 sin sin sin

5 25

108
2 sin cos sin

125 6

A
D e A e e

D

A
e e

D D

δ ω δ ν ν ν

ω δ
δ ν ω δ ν ν

′′ + + + +

 
′+ + + + + 

 


        

(23) 

Здесь следует положить A  равным единице, если рассматривать кривые, 
изображенные на рис. 2, тогда D  -- параметр редукции. Заметим, что он входит в 
знаменатель многих выражений правой части, при этом показатель его степени 

непрерывно растет. Следовательно, его влияние сингулярно в окрестности точки 

= 0D : c уменьшением этого параметра необходимо удерживать члены все более 
высокого порядка малости по e . Предельная кривая 1/3

= eε , отвечающая значению 

= 0D , является особой для уравнения Белецкого: вид уравнения вдоль этой кривой 

резко меняется и принимает форму  
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( )
2 2

2 2/3 3 2 4/3 5
= 4sin 2 sin cos

6 120
e e e

ω ω
δ ω δ ν δ δ ν ω δ ν δ

 
′′ ′+ + + + − + 

 
  (24) 

Кроме того, если ограничить уравнение на кривые, расположенные в области 

< 0D , то уравнение теряет силу асимптотического описания движений при 

0, 0e ε→ → , так как кривые редукции не проходят через тривиальную точку 
= = 0e ε . 

Заметим, что первые члены правой части уравнений (23), (24) образованны 

из выражения 4 sin( )µ ν , поэтому они должны иметь порядок малости, равный 

2 / 3 . Справедливость этого замечания очевидна для уравнения (24), однако 
уравнение (23) указывает на то, что порядок малости по e  равен 2 / 5 . В этом нет 
противоречия, так как вдоль кривой (22), отвечающей параметру = 3 / 5α , 

параметр µ  имеет, в силу эффекта  двойственности, два порядка малости: 

1
= 1 = 2 / 5γ α−  по e  и 

2
= (1 ) / = 2 / 3γ α α−  по ε . Это значит также, что кривые 

1/3
= eε  и (22) находятся в  двойственном отношении: вдоль них µ  имеет один и 

тот же порядок малости, равный 2/3. 

6. НЕЯВНЫЙ ВИД НЕЛИНЕЙНОЙ РЕДУКЦИИ ( β ). 

Рассмотрим теперь однопараметрическое семейство кривых, обобщающее 
нелинейную редукцию = eαε , исследованную выше. Для этого положим  

( )1 1

( , ) = 0, 0
(1 )

e A
F e e A

A

α αε ε
ε

− −+
≡ −

+
…                                               (25) 

Здесь A  считаем заданной величиной, α  -- параметр редукции. 
Из определения порядка малости функции двух переменных следует, что 

порядок величины = /eµ ε  равен (1 )α−  в замкнутой области  

( )1 1

0 / ,
(1 )

e A
e

A

α αε
ε

− −+

+
„ „                                                                          (26) 

ограниченной кривой = 0e  и кривой (25). 

Случай >1α  отвечает сингулярным значениям µ , поэтому полагаем 

( ,1]α ∈ −∞ . При = 0A  из представления (25) следует классическая редукция 

= eαε  с ограничениями в виде 0 < 1α „ . Таким образом, обобщенная редукция 
снимает ограничения на область изменения α , считая нижний предел изменения 
α  равным бесконечности. 

На рис. 3 изображено семейство кривых редукции (25) при фиксированном 

значении параметра А, когда величина α  меняется в пределах от −∞ до единицы. 

При фиксированном α  область (26) расположена выше кривой (25). 
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Получим явное представление кривой ( , ) = 0F e ε  при ( ,1)α ∈ −∞  (случай 

= 1α  тривиален, так как имеем =e ε ). Очевидно, что 
1 1

1 1
= (1 ) , =1

1 1 1

F e A A F

A A e A e

α α
α

α

ε α ε
α ε

ε

− −
−∂ + ∂ − 

− − − −  
∂ + + ∂ + 

 

Отсюда следует, что производная от F  по ε  равна нулю при = = 0e ε , в 
то время как производная от F  по e  неопределена при = = 0e ε , когда 0 < < 1α . 

Таким образом, функция ( , )F e ε  неаналитична в нуле, поэтому классическая 
теорема о неявной функции не применима. 

Заметим, что производная от F  по e , вычисленная вдоль кривой (25), 

принимает конечное значение в нуле:  
1

1

1 1

1 1
= 1 = 1 1 при , 0

1 1
1

F
e e

e e A A
A

e A

α

α

α α

ε α α
ε

ε

−

−

− −

∂ − −
− − → →

∂ + + 
+  +   

 
Рис.3  Кривые редукции при = 0.1A  и 1α „  

 

Это обстоятельство наводит на мысль, что возможно представление e  от ε  в виде 
ряда по ε Итак, будем искать ( )e ε  в виде формального решения уравнения (25), 

которое мы запишем в виде  
1 2

= , > 0
(1 ) 1

A
e e A

A A

α αε
ε− −−

+ +
                                                         (27) 

Заметим, что если из левой части уравнения отбросить второй член, то 
решение уравнения находится сразу:  

2
=

1

A
e

A

αε −

+
 

При подстановки этой формулы в уравнение (27) члены порядка 
2 3 3α αε − +

 

останутся некомпенсированными. Учитывая, что при < 1α  
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( )
2

3 3 2
= o

α α αε ε− + −  

приходим к выводу, что полученная формула для e  является первым членом 

формального ряда решения исследуемого уравнения. Если взять выражение  
1

2
3 3

2
(1 )

A

A

α
α α

α
ε

−
− +

−+
 

в качестве второго члена ряда получим, что некомпенсированные члены имеют 
порядок малости 

2 2
3 3 ( 1)α α α− + + − , более высокий, чем ( )2

3 3α α− + . 

Следовательно, приближение искомого решения указанными двумя членами ряда 
имеет асимптотический характер. 

Продолжая этот процесс далее, получим следующий вид формального 
решения (разложение не тейлоровское):  

2 2
2

=0

3 3 ( 1)
=

1
n

n

A n
e a

A

αα α α
ε ε

∞
− − + + −

+
+

∑                                                 (28) 

Здесь  
1 1 2 1 3

0 1 22 3 2 4 3

(1 )(2 3 )
= , = (1 ) , = ,

(1 ) (1 ) 2 (1 )

A A A
a a a

A A A

α α α

α α α

α α
α

− − −

− − −

− −
−

+ + +
  

Ограничим уравнение Белецкого на кривые редукции (28), удерживая 
первые два члена ряда (28) и первые пять главных членов правой части уравнения:  

 

( )

( )

1
2

2 1 2 2

2

2 1
2

2 3 2

2

1
2

2 1 2

2

3 5
< <

2

3 2
= 4 sin 2 sin cos

1 (1 ) 1

3 3
2 sin cos

6 (1 )

3 5 1
<

2 2

3 2
= 4 sin 2 sin

1 (1 ) 1

A A A

A A A

A

A

A A A

A A A

α
α α α

α

α
α

α

α
α α α

α

α

αδ ω δ ε ε ν ε δ ν ω δ ν

ε αω δ ε δ ν ω δ ν

α

αδ ω δ ε ε ν ε δ ν ω

−
− −

−

−

−

−
− −

−

−
−∞

 − +′′ ′+ + + + 
+ + + 

− + ′+ + +
+

−

 − +′′ ′+ + + + 
+ + + 

„

( )

( )

( )

( )

2

1 2
2

2 2 3

2

1
2

2 1 2 2

2

21
2

2 3 2

2

cos

3 3
2 sin cos

(1 ) 6

1
< 1

2

3 2
= 4 sin 2 sin cos

1 (1 ) 1

3 3
2 sin cos 2 sin 2

(1 ) 1

A

A

A A A

A A A

A A

A A

α
α

α

α
α α α

α

α
α α

α

δ ν

εαε δ ν ω δ ν ω δ

α

αδ ω δ ε ε ν ε δ ν ω δ ν

αε δ ν ω δ ν ε ν

−

−

−
− −

−

−
−

−

− + ′+ + +
+

 − +′′ ′+ + + + + + + 

 − + ′+ + −  
+ + 

„
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Итак, исследуемое уравнение распадается на совокупность укороченных 
уравнений, в зависимости от области изменения α . Правые части уравнений 

представлены нетейлоровским рядом по ε . 

7. ЗАКЛЮЧЕНИЕ 

Анализ редукций уравнения плоских колебаний спутника на слабо-
эллиптической орбите приводит к следующим выводам. 

1
o
. Редуцированное уравнение не эквивалентно исходному. Поэтому, 

любое приведение исследуемого уравнения к случаю одного малого параметра не 
дает полной картины малых колебаний спутника, в частности, исключает всякую 

возможность исследовать движений вдоль кривых, не включенных в семейство 
редукций 

2
o

. Редуцированное уравнение колебаний распадается, как правило, на 
семейство укороченных уравнений в зависимости от области изменения параметра 
редукции; число таких уравнений резко возрастает с увеличением числа 
удерживаемых главных членов разложения 

3
o

. Представление укороченных уравнений в виде ряда по малому 
параметру часто имеет нетейлоровский вид, что весьма затрудняет применение 
методов теории возмущений в приближениях высокого порядка 

4
o

. Редуцированные укороченные уравнения малых колебаний отвечают 
разным кольцевым областям фазового пространства. Поэтому необходимо следить 
за моментом перехода из одной кольцевой области в другую, поскольку этот 
переход сопровождается сменой типа укороченного уравнения, и сшивать решения 
в момент перехода. 

5
o

. При редукции невозможно исследовать бифуркации решений 

модельных уравнений теории возмущений, за исключением вырожденного случая, 
когда семейство кривых редукции покрывает бифуркационную поверхность (см. 

[16]) 

8. РЕЗОНАНСНЫЕ КОЛЕБАНИЯ СПУТНИКА ПРИ НЕЗАВИСИМЫХ МАЛЫХ ПАРАМЕТРАХ. 

1. Колебания при резонансе 1 = 0ω − . Исследуем малые резонансные 
колебания спутника, описываемые уравнением (2), когда частота ω  равна частоте 
вынуждающей силы 4 sinµ ν , т.е. =1ω . 

Если = /eµ ε  имеет порядок малости равный единице, т.е. удовлетворяет 
условию полосы  

0 ,Kµ„ „  

где K  - любое конечное число, сколь угодно большое, то, проводя усреднение по 
быстрой переменной ν  с учетом медленного изменения резонансной фазы, 

получим уравнение с неопределенным временным средним. Дело в том, что 
интеграл, описывающий временное среднее, содержит члены вида 



25

                   СРАВНИТЕЛЬИЙ АНАЛИЗ АСИМПТОТИЧЕСКИХ МЕТОДОВ ИНТЕГРИРОВАНИЯ НА ПРИМЕРЕ УРАВНЕНИЯ БЕЛЕЦКОГО   

cos( ),cos( 3 )T Tθ θ± + , предел которых не существует при T → ∞  (параметр K  

на этот результат не влияет). 
Для того, чтобы обойти эти сложности, изменим условие полосы, 

рассматривая µ  как малый параметр порядка (1 )γ− , где γ  -- любое число, 
меньшее единицы. Это значит, что µ  удовлетворяет неравенству  

( )1 1

0 ,
(1 )

e A
K

A

γ γε
µ

− −+

+
„ „                                                                          (29) 

задающему некоторую замкнутую область в плоскости малых параметров ,e ε . Эта 
область лежит выше кривой  

( )1 1

= ,
(1 )

e Ae
K

A

γ γε

ε

− −+

+
                                                                              (30) 

которая похожа на кривую (25). Область сингулярного изменения µ  расположена 
ниже этой кривой. Уменьшая γ  при фиксированном K , имеем увеличение этой 

области вследствие возрастающего порядка касания кривой (30) с осью ε  в нуле и 

увеличения максимума кривой. Однако при больших K  кривая (30) сильно 
прижимается к оси e . Таким образом, при 1K ?  всюду в любой области, 
расположенной выше кривой (30), параметр µ  будет иметь порядок малости 

(1 )γ− , за исключением очень узкой окрестности оси = 0ε , лежащей ниже кривой 

(30). 

Будем считать µ  и ε  независимыми малыми величинами, 
принадлежащими замкнутой области в пространстве параметров ,µ ε , 

описываемой неравенством (29). Тогда e , как зависимый параметр, вычисляется по 
формуле =e µε . Очевидно, что e  -- величина второго порядка малости. 
Уравнение плоских колебаний спутника, с точностью до членов третьего порядка 
малости, примет вид  

2

3
= 4 sin 2 sin cos

6

ε
δ δ µ ν µε δ ν δ ν δ′′ ′ + + + + 

                                

(31) 

Порождающее уравнение имеет вид уравнения гармонических колебаний:  
= 0δ δ′′+  

Введем новые координаты ,α θ  по формулам  

= cos( ), = sin( )δ α θ ν δ α θ ν′+ − +  

Тогда уравнения движения примут вид  
1

= ( , )sin( ), = ( , )cos( )f fα θ ν θ ν θ θ ν θ ν
α

′ ′− + − +  

Здесь  

    
[ ]

2

3 3
( , ) = 4 sin 2sin sin( ) cos cos( ) cos( )

6
f

ε
θ ν µ ν µεα ν θ ν ν θ ν α θ ν− + − + + +  
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Усредненные уравнения первого приближения приводить не будем, так как 
они описывают хорошо известные колебания при линейном резонансе  

= 4 sin ,δ δ µ ν′′+                                                                                  (32) 

для которого характерно неограниченное линейное нарастание амплитуды 

колебаний по углу δ . 

Рассмотрим второе приближение метода усреднения. Используя символику 
усреднения стандартной по Боголюбову системы со многими малыми параметрами, 
считая = ( , )x α θ , = ( , )y α θ , получим  

2

01 20 11
= ( , ) ( , ) ( , )

dx
X x X x X x

d
µ ν ε ν µε ν

ν
+ +  

Здесь  

        

( )

( )

( ) ( )

( )

( ) ( )( ) ( )

( ) ( )( ) ( )

3

3

01 20 2

4

11

cos sin4sin sin
6

( ) = , ( ) =4
sin cos

cos
6

2sin sin cos cos sin
( ) =

2sin sin cos cos cos

X x X x

X x

α
θ ν θ νν θ ν

ν θ ν α
θ να

α ν θ ν ν θ ν θ ν

ν θ ν ν θ ν θ ν

− + +− +

− +
− +

+ − + +

+ − + +

 

Проводя усреднение по схеме, описанной в работе [16], получим 

усредненные уравнения второго приближения в переменных ,α θ  в виде  

2

2

= 2 cos

sin
= 2

16

α µ θ

θ α
θ µ ε

α

′ −



′ −

                                                                        (33) 

Система уравнений (33) имеет первый интеграл  
2 4

128 sin = Cε α αµ θ−                                                                              (34) 

Фазовый портрет системы в переменных ,α θ  для значений параметров 
= 0.004µ , = 0.01ε  изображен на рис. 4. Жирным цветом выделена сеператриса, 

отвечающая значению константы = 0C . 

Стационарным решениям 
* *

= , =α α θ θ  отвечают уравнения  
2

2* *

*

*

sin
2 cos = 0, 2 = 0

16

θ α
µ θ µ ε

α
− −  

Отсюда следует, что  

3
* * 2

4
= , = 2

2
k

π µ
θ π α

ε
+ ±                                                                    (35) 

Константа 
*

C , отвечающая положению равновесия 
* *

= , =α α θ θ , равна  
4 2/33

*
= 192 4C µ ε −−  

Кривая сеператрисы имеет две ветви:  
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3
2

2
= 0; = 4 sin

µ
α α θ

ε
±  

Отсюда следует, что максимальное значение *α  амплитуды колебаний в зоне  
 

 
Рис.4 Фазовый портрет при резонансе =1ω  

 

либрации описывается равенством  

3
*

3
2

2 2
| |= 4 = 4

eµ
α

ε ε
                                                                             (36) 

Теперь можем сделать выводы. Малые резонансные колебания спутника в 
окрестности особой точки = = 0δ δ ′  имеют неограниченный характер, если 

колебания исследовать в линейном приближении (первое приближение метода 
усреднения). Нелинейные члены, входящие во второе приближение метода 
усреднения, меняют характер колебаний: появляются зоны либрации, в которых 
амплитуда колебаний α  и резонансная фаза θ  меняется со временем 

периодические в окрестности стационарной точки (35), достигая максимальных 
значений по амплитуде (36) при 

*
=θ θ , и ротационные (вращательные) движения, 

отвечающие непрерывному росту резонансной фазы при ограниченных 
периодических колебаниях амплитуды α . 

Как следует из формулы (36), амплитуда колебаний имеет по µ  и ε  

порядок малости равный ( 1/ 3)− . Это значит, что переменная =δ εδ  достигает 
величин порядка 1/ 3  по e , или 2 / 3  по µ  и ε . 

В то же время, вдоль кривой 
2

=µ ε  (
3

=e ε ), принадлежащей области (29)

, максимальная амплитуда *α  либрационных колебаний и значение 
*

α  

стационарной точки (35) не зависят от ε  и, следовательно, размах колебаний по 
углу δ  будет гораздо меньше -- порядка ε . Более того, вдоль кривой 

2
= ,( > 0)

γµ ε γ+
 из области (29) амплитуда колебаний α  стремится к нулю, когда 
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0ε → ! Такое  аномальное поведение системы в окрестности сингулярной точки 

= = 0δ δ ′  объясняется преобладанием (вдоль указанной кривой) нелинейного 
члена 2 3

/ 6ε δ  над слагаемыми 4 sin , 2 sin cosµ ν µε δ ν δ ν′ +  , поэтому 

уравнение колебаний (31) принимает вид возмущенного уравнения Дюффинга. 
Все это означает, что размах колебаний при резонансе =1ω  существенно 

зависит от соотношений между малыми параметрами ,µ ε , несмотря на то, что 
колебания по углу δ  зависят только от параметра e . 

Результаты по исследованию резонанса =1ω  методами усреднения с 
одним малым параметром e  описаны в работе [17]. Сравнительный анализ 
результатов исследования приводит к следующим выводам. 

1. Исследования В.В. Белецкого относятся к случаю = 1ε  (уравнения (31)

,(33)совпадают с соответствующими уравнениями из [17] при = 1ε ) 

2. Как следствие, уравнения (33), описывающие колебания во втором 

приближении метода усреднения с двумя малыми параметрами ,µ ε , совпадают с 
усредненными уравнениями первого приближения цитируемой работы 

3. Исследование колебаний с двумя независимыми малыми параметрами 

содержат описание новых эффектов, обусловленных влиянием ε : увеличение 
максимальной амплитуды колебаний *α  в зоне либрации с уменьшением ε  ( µ  

считаем фиксированным), что непосредственно связано с явлением внешнего 
резонанса (см. уравнение (32)) в малой окрестности точки = 0ε ; наличие 
``аномальных'' кривых в плоскости параметров ,µ ε . 

Отметим также, что более подробное исследование влияния параметра ε  

на резонансные колебания спутника описано в работе [14], когда малые параметры 

связаны равенством 
1/3

= eε . 

 

2. Колебания при резонансе 2 1 = 0ω −  

Исследуем колебания спутника в первом и во-втором приближениях 

метода усреднения, когда частота ω  его собственных колебаний равна половине 
частоты вынуждающей силы 4 sinµ ν , т.е. =1/ 2ω . С этой целью представим 

уравнение (4) в упрощенном виде, предполагая параметр µ  величиной нулевого 
порядка малости: 0 Kµ„ „ , где K  -- постоянная, достаточно большая величина. 
Удерживая члены до второго порядка малости включительно, получим:  

              

2

2 2 2 3

2 2 2 2

= 4 sin 2 sin cos 2 sin 2
6

sin 2 4 sincos cos

e

e

ε
δ ω δ µ ν δ ν ω δ ν µ ν ω δ

δ ν ω δ ν µ ν ν

′′ ′ + + + − + − 

′ − + − 

 (37) 

Здесь, в отличие от резонанса =1ω , возмущающий член 4 sinµ ν  не 
является резонансным, поэтому порождающее уравнение берем в виде  

2
= 4 sinδ ω δ µ ν′′ +  

Его решение описывает периодические колебания вида  
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2 2

4 4
= cos sin , = sin cos ,

1 1

µ µ
δ α ϕ ν δ αω ϕ ν

ω ω
′+ − +

− −
 

где 
0

=ϕ ων ϕ+ . 

Используя эти равенства как замену переменных , ,δ δ α ϕ′ → , приведем 

уравнения колебаний (37) к следующей форме:  
1 1

= ( , , )sin , = ( , , ) cos
d d

f f
d d

α ϕ
α ϕ ν ϕ ω α ϕ ν ϕ

ν ω ν αω
− −  (38) 

Здесь  

 

2 2

2

32

2 22 2

2 2

6
( , , ) = 2 sin sin sin 2 cos cos [ sin 2 sin

1

4 (1 2 ) 4
sin cos cos sincos cos

1 6 1

f e e
µ

α ϕ ν αω ν ϕ ν ω α ν ϕ αω ν ϕ
ω

µ µ ω µ
ν ν ω να ϕ ε α ϕ ν

ω ω

 
− + + + − − 

+   
− − + +  − −  

 

Вводим в рассмотрение резонансную расстройку 
( )= 2 = ,0 1eω ν γ γ∆ − ∆ „ „  и резонансную фазу = 2θ ϕ ν− , медленно 

меняющуюся со временем. В новых переменных ,α θ  уравнения колебаний будут 
иметь вид (38) при условии замены ϕ  на ( ) / 2θ ν+ , замене первого слагаемого в 
уравнении по ϕ  на ∆  с удвоением второго слагаемого. 

Первое приближение метода усреднения 

Для того, чтобы получить усредненные уравнения первого приближения, 
удержим в функции (38) члены первого порядка малости. После усреднения правых 
частей по ν , получим систему уравнений, не содержащую ε :  

2
= sin

4

2
= sin ,

2

d
e

d

d
e

d

α ω
α θ

ν
θ ω

θ
ν

−
−

−
∆ −  

Учитывая, что = ( 1) / 2ω ∆ + , первый интеграл усредненных уравнений примет 
вид  

[ ]2
4 cos ( 3) =e Cα θ− ∆ + ∆ −                                                                    (39) 

Сначала рассмотрим случай строгого резонанса, когда резонансная 
расстройка ∆  равна нулю. Тогда амплитуда колебаний будет зависеть от θ  

следующим образом:  

=
3 cos

C

e
α

θ
−  

Отсюда следует, что при = / 2 kθ π π+  амплитуда α  принимает бесконечные 
значения, что приводит к недопустимой раскачке колебаний спутника. Можно 
показать, что амплитуда колебаний растет со временем по экспоненте при любом 

малом e , поэтому колебания являются параметрическими. 
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Если изменить частоту ω  таким образом, что резонансная расстройка 
станет отличной от нуля, зона экспоненциального роста колебаний сохранится, 
вместе с тем, появится зона ограниченного изменения α . Действительно, из 
интеграла (39) явствует, что в случае  

( )
4

1
3 e

∆

− ∆
„                                                                                     (40) 

амплитуда α  стремится к бесконечности при θ θ→ å
, при условии, что значение 

θ å
 вычисляется по формуле  

4
cos =

( 3)e
θ

∆

∆ −

å  

Еcли неравенство (40) выполняется с противоположным знаком, колебания 
имеют ограниченный характер, так как коэффициент, стоящий при 

2α  в левой 

части интеграла (39), отличен от нуля при любых значениях θ  и e . 

Элементарный анализ показывает, что неравенство (40) эквивалентно 
неравенству  

(1 ) (1 )
2 < < 2 ,

4 4

e e

e e
ω

− +

− +
 

определяющему область параметрического резонанса. 
Второе приближение метода усреднения 

Исследуем колебания спутника во втором приближение метода усреднения. 
Чтобы привести уравнения (38) к стандартному по Боголюбову виду, введем 

дополнительные переменные ,z ψ  по формуле  
= , =z θ ψ ψ ν− ∆  

Тогда уравнения (38) примут вид      

     

1 2
= ( , , , )sin , = ( , , , ) cos , =

2 2

d z dz z d
F z F z e

d d d

α ψ ν ψ ν ψ
α ψ ν α ψ ν β

ν ω ν αω ν

+ + + +
− −  

где  

( , , , ) = ( , , )
2

z
F z f

ψ ν
α ψ ν α ν

+ +
 

Полагая вектор столбец x  равным ( , , )z τα ψ , преобразуем эти уравнения к 
следующему виду:  

2 2

01 20 02
=

dx
eX X e X

d
ε

ν
+ +  

Здесь приняты следующие обозначения (угол = ( ) / 2zϕ ψ ν+ +  

использован для сокращения записи):  
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2

01 2

6
2 sin sin sin 2 cos cos sin 5

( 1)

12
= 4sin sin sin 2 2 cos cos cos 5 ,

( 1)

pt

X pt

µ
α ν ϕ ν ωα ν ϕ ϕ

ω ω

µ
ν ϕ ν ω ν ϕ ϕ

αω ω

β

 
− − − 

 
− − 

− 
 

3

2

3

20 2

4 sin
cos sin 5

6 1

4 sin
= cos cos 5 ,

3 1

0

pt

X pt

ω µ ν
α ϕ ϕ

ω

ω µ ν
α ϕ ϕ

α ω

 
− + − 

 
− + − 

 

2

2

2

02 2

4 (1 2 )
sin cos sin 2 sin sin 5cos

( 1)

8 (1 2 )
= sin 2 cos 2sin 2 sin cos 5cos

( 1)

0

pt

X pt

µ µ
ν ν ωα ϕ α ν ϕ ϕ

ω ω

µ µ
ν ν ω ϕ ν ϕ ϕ

αω ω

  +
+ −  

−  
  +

+ −  
−  

 

Проведя усреднение этих уравнений ([16]), содержащих два независимых 
малых параметра ,e ε , получим усредненные уравнения второго приближения, 
зависящие только от одного малого параметра e :  

2 2 2 2

2 2

= ( 2) sin ,
4

4 ( 2)
= ( 2)cos

2 8 ( 1) 2 8

d e

d

d e e e

d

β
ω β θ

ν

θ β ω
ω θ ω ω

ν ω

− −

   +
∆ − − − + − −   

−   

         

(41) 

Здесь = , = zβ εα θ ψ+  -- резонансная фаза. 
Уравнения (41) допускают интеграл  

( )2 2 2
( , ) 1967 18 144 cos 432 cos 576 =F e e e Cβ θ β β θ θ≡ + + ∆ − − ∆

    
(42) 

Рассмотрим случай строгого резонанса: = 0∆ . Тогда интеграл (42) 

упростится:  
( )2 2 2

( , ) 1967 18 432 cos =G e e Cβ θ β β θ≡ + −  



32

 ПАВЕЛ КРАСИЛЬНИКОВ  

Следует различать два принципиально разных случая колебаний. В первом 

случае выражение, стоящее в скобках, больше нуля при любых значениях θ  и, 
следовательно, θ  может меняться непрерывным образом от −∞ до +∞ , при этом 

амплитуда β  будет ограниченной функцией резонансной фазы, фазовые кривые 
незамкнуты. Такое поведение решений усредненной системы возможно только 
тогда, когда  

2
1967 432 > 0e e−  

т.е. при  

* *

432
> , =

1967
e e e  

Во-втором случае выражение, стоящее в скобках, может обращаться в ноль 
при некоторых значениях θ , что отвечает нулевому значению постоянной C . 

Появляются области на фазовой плоскости, содержащие положения равновесия и 

замкнутые траектории. Таким образом, характер колебаний усложняется, так как 
наряду с чисто вращательными движениями предыдущего случая появляются 
периодические колебания. 

Для построения фазового портрета необходимо найти все положения 
равновесия уравнений (41). Проше всего это сделать, если воспользоваться 
теоремой Рауса, которая утверждает, что если первый интеграл уравнений 

движения принимает невырожденное стационарное значение в некоторой точке (на 
некотором многообразии), то это точка представляет собой положение равновесия 
системы (интегральное многообразие). 

Условия стационарности функции ( , )G β θ  имеют вид  

( )2 2

2

72 864 cos 3934 = 0

432 sin = 0

G
e e

G
e

β β θ
β

β θ
θ

∂
≡ − +

∂

∂
≡

∂

                                            (43) 

Отсюда следует, что  

* * 21967
= 2 , = 12

36
k e eθ π β −  

Значения *
= (2 1)kθ π+  мы отбрасываем, поскольку им отвечает комплексное 

значение амплитуды. Очевидно, условие существование *β  задается неравенством 

*
<e e . 

Из уравнений (43) также следует, что условию стационарности функции 

( , )G β θ  удовлетворяет нулевое значение амплитуды β . Это значит, что 
многообразие = 0β  является интегральным. 

На рисунке 5 изображен фазовый портрет колебаний в переменных ,β θ . 

Жирным 
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Рис. 5 Фазовый портрет при резонансе 2 =1ω  для случаев 
*

<e e  и 
*

e e…
 

 

 

черным цветом выделена сеператриса, отвечающая значению = 0C . Ее 
параметрическое представление следует из интеграла ( , ) = 0G β θ : 

21967
( ) = 24 cos

18
e eβ θ θ± −  

Отсюда вытекает, что максимальная амплитуда колебаний в зоне либрации 

вычисляется по формуле  
2

max

432 1967
( ) =

18

e e
eβ

−
 

Несложно найти стационарную точку этой функции и значение максимума в ней:  

*

max max *

36 3934
= ( / 2) = = 1.14793

1967
eβ β  

Интеграл ( , ) =G Cβ θ  позволяет исследовать эволюцию колебаний при 

изменении параметра e . Расчеты показывают, что при малом значении 

эксцентриситета появляется зона периодических движений вблизи оси = 0β  с 
максимальной амплитудой колебаний 

max
β . Фазовый портрет колебаний имеет вид, 

изображенный на левой части рис. 5. При увеличении e  высота зоны колебаний 

возрастает, достигая максимума *

max
β  при 

*
= / 2e e . Последующее возрастание 

эксцентриситета ведет к ее уменьшению вплоть до нулевых значений при 
*

=e e . 

Зона либрации исчезает и при 
*

e e…  портрет колебаний представлен на правой 

половине рис. 5. 

Фазовые кривые уравнений (41) описываются равенством  
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( )
2

2 2
432 cos 1967 432 cos 1967 72

( ) = ,
6

e e e e Cθ θ
β θ

− + − +
±

            

(44) 

следующим из интеграла ( , ) =G Cβ θ . Отсюда явствует, что изменение θ  на 2kπ  

радиан сохраняет значение амплитуды β , поэтому случай монотонного изменения 
θ  (см. незамкнутые кривые на рис. 5) будем рассматривать как периодический, так 
как указанные приращения по θ  сохраняют значения правых частей уравнений 

(41) и мы оказываемся в тех же условиях, что и в начальный момент = 0ν  (на 
цилиндрической фазовой поверхности с локальными координатами 

, (0 < 2 )β θ θ π„  кривые = ( )β β θ  будут замкнутыми). 

Вернемся к переменным ,δ δ ′ , зависящих от ,β θ :  

2 2

4 4
= cos sin , = sin cos

2 1 2 1

e eθ ν θ ν
δ β ν δ βω ν

ω ω

+ +
′+ − +

− −            

(45) 

Очевидно, что интегральному многообразию = 0β  отвечает 2π --периодическое 
решение  

2 2

4 4
= sin , = cos ,

1 1

e e
δ ν δ ν

ω ω
′

− −
                                                         (46) 

стационарным точкам 
*

= 2 , =kθ π β β  -- 4π  -- периодические решения  

* 1 *

2 2

4 4
= ( 1) cos sin , = ( 1) sin cos ,

2 1 2 1

k ke eν ν
δ β ν δ β ω ν

ω ω
+′− + − +

− −
 

движению вдоль сеператрисы = 0C  -- двояко асимптотическая к (46) траектория. 
Однопараметрическому семейству = ( , ), = (0)c cβ β θ β  периодических 

решений из области либрации отвечают квазипериодические функции ( ), ( )δ ν δ ν′ , 

за исключением случая существования рациональных соотношений между 
периодом ( )T c  указанного семейства и периодом изменения функций (45) по явно 
входящему аргументу ν . Это соотношение имеет вид  

( ) = 4 ,
p

T c
q

π                                                                                    (47) 

где ,p q  -- взаимно простые числа. 
При выполнении этого равенства переменные ,δ δ ′  будут 4 pπ  -- 

периодическими функциями ν . Учитывая, что семейство = ( , )cβ β θ  является 
ляпуновским (интеграл ( , )G β θ  положительно определен в окрестности 

*
= 2 , =kθ π β β  при 

*
<e e ), можно воспользоваться известной формулой для 

вычисления периода ( )T c . Тогда из равенства (47) находим (0) = cβ , интегрируем 

уравнения (41) с начальными условиями (0) = cβ , (0) = 0θ , подставляя найденные 
решений ( ), ( )β ν θ ν  в формулы (45), получим 4pπ  -- периодические функции 

( ), ( )δ ν δ ν′ . 
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Случай монотонного убывания θ  исследуется похожим образом. Пусть 
( )CT  -- промежуток изменения ν  (C  -- постоянное значение первого интеграла 
( , ))G β θ , по истечении которого угол ( )θ ν  получит приращение, равное ( 4 )π− . 

Тогда, если ( )CT  кратен 4π , то ( ), ( )δ ν δ ν′  -- 4π --периодические функции ν . 

Таким образом, условие периодичности решений есть  
( ) = 4C kπT  

при условии, что ( )CT  вычисляется по формуле  
4

2 2 2 2

0

2 2

= ,
( ) 4 ( 2)

( 2)cos
2 8 ( 1) 2 8

d

e e e

π
θ

β θ ω
ω θ ω ω

ω

−

   +
∆ − − − + − −   −   

∫T  

вытекающей из уравнений (41) после разделения переменных. Здесь ( )β θ  

вычисляется по формуле (44). 

Поскольку в областях монотонного изменения θ  характерный размер угла 
β  составляет величины порядка единицы, из равенства (45) следует, что замкнутая 
фазовая кривая = ( )δ δ δ′ ′ , удовлетворяющая условию периодичности, близка по 
форме к эллипсу  

2 2

2 2
=1

( )

δ δ

β βω

′
+  

Теперь можем сделать выводы. Исследование малых колебаний на основе 
обобщенного метода усреднения с независимыми параметрами дает полную 

информацию о колебаниях спутника в первом и втором приближении метода 
усреднения. Точность приближения есть величина второго порядка малости по 
малым параметрам на асимптотически большем промежутке времени порядка 
1/ ( , )µ εP P в случае резонанса =1ω  и на промежутке времени порядка 1/ ( , )e εP P 

при резонансе =1 / 2ω . Результаты исследований свободны от редукции, содержат 
дополнительную информацию (в сравнении с классической схемой усреднения) о 
влиянии малого параметра ε  на характер колебаний при резонансе =1ω .  
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Abstract. Starting from the idea of classical Lagrange method of variation 

constants for solving non autonomous linear differential equations describing 

forced vibrations of linear oscillators, in this paper a generalization of 

Lagrange method of variation constants in combinations with averaging 

method for solving nonlinear differential equations describing free and forced 

vibrations of fractional order nonlinear oscillators, with small nonlinearity is 

presented. 

Key words: generalization of Lagrange method of variation constants;  

fractional order derivative, nonlinear terms; particular solutions; fractional 

order nonlinear oscillator; fractional order  like cosines mode; fractional order 

like sinus mode; average values; slow changing; fast changing; full phase.  

1. INTRODUCTION 

The main idea is to develop a generalization of the method of variation 

constants that is inspired by classical Lagrange method of variation constants for solving 

non autonomous linear differential equations describing forced vibrations of linear 

oscillators for the case of arbitrary external excitation force. A classical Lagrange 

method of variation constants is presented in classical monograph university book [1] 

Theory of Ooscillations written by Rašković. Also, the same mwthod is presented in 

References [2] and [3]. In these cited references Lagrange method of variation constant 

is presented for solving the following linear non autonomous differential equation: 

( ) ( ) ( )thftxtx =+ 2

0
ω                (1) 

describing linear forced oscillations under an arbitrary external excitation depending 

only on time in the form ( ) ( ) ( )tmhftfFtF == 0
.Particular integrals of 

homogeneous linear differential equation ( ) ( ) 0
2

0
=+ txtx ω  are ( ) ttT

01
cosω=  and 
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( ) ttT
02

sinω= , where 
0ω  is eigen circular frequency of free harmonic oscillations.  

Solution of the linear non homogeneous differential equation (1) is proposed in the form 

of sum of products between particular solutions, ( ) ttT
01

cosω=  and ( ) ttT
02

sinω= , of 

linear autonomous differential equation and amplitudes: 

( ) ( ) ( ) ttDttCtx
00

sincos ωω +=                                        (2) 

where  amplitudes ( )tC  and ( )tD are functions on the time, under the condition that 

first derivative of this solution is the same as in the case that  amplitudes ( )tC  and 

( )tD  are constants. In reference [1] solution of linear no autonomous differential 

equation (1) is presented in the form: 

 ( ) ( ) ( ) ττωτ
ω

ωω dtf
h

tDtCtx

t

−++= ∫ 0

00

0000
sinsincos           (3) 

For initial conditions: at 0=t , initial elongation ( )
0

0 xx =  and initial velocity 

( )
00 xx  = , previous solution is in the form: 

( ) ( ) ( ) ττωτ
ω

ω
ω

ω dtf
h

t
x

txtx

t

−++= ∫ 0

00

0

0

0

00
sinsincos


           (4) 

 In the same Reference [1]  for the case that linear no homogeneous differential 

equation is in the form: 

( ) ( ) ( ) ( )thftxtxtx =++ 2

0
2 ωδ              (5) 

describing linear forced oscillations with energy system linear  dissipation under 

arbitrary external excitation depending only of time in the form 

( ) ( ) ( )tmhftfFtF == 0 . Particular integrals of homogeneous linear differential 

equation ( ) ( ) ( ) 02
2

0
=++ txtxtx ωδ  are ( ) t

etT 1

1

λ=  and ( ) t
etT 2

2

λ= , where 2,1. =iiλ  

are eigen characteristic number of free damped  oscillations and roots of system 

characteristic equation 02
2

0

2 =++ ωδγλ .  Roots of system characteristic equation 

depending on the relation between δ  and 
0

ω  are 
2

0

2

2,1
ωδδλ −−=  , for 

0ωδ >  or 1,
22

02,1 −=−−= ii δωδλ  ,for 
0ωδ < .  Solution of the linear no 

homogeneous differential equation (5) is proposed in the form of sum of products 

between particular solutions, ( ) t
etT 1

1

λ=  and ( ) t
etT 2

2

λ=  of linear autonomous 

differential equation and amplitudes: 

( ) ( ) ( ) tt
etDetCtx 21 λλ +=                            (6) 

where amplitudes ( )tC  and ( )tD are functions of the time, under a condition that first 

derivative of this solution is same as in the case that  amplitudes ( )tC  and ( )tD  are 

constants. In reference [1] solution of linear non autonomous differential equation (5) is 

presented in the form: 
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( ) ( ) ( ) ( ) ( )








−

−
++= −− ∫∫ ττττ

λλ
τλτλλλ

defdef
h

eDeCtx
t

t

t

t

tt 2221

0012

00
        (7) 

For the case that 
0

ωδ < when eigen characteristic numbers are conjugate complex  

1,
22

02,1 −=−−= ii δωδλ  , previous solution take the following form:  

 

( ) ( ) ( ) ( ) ( ) τττ τδδ
dtpef

p

h
tpDtpCetx

t

t

t −++= −−− ∫ 0

00

0000
sinsincos         (8) 

where 
22

00
δω −=p . 

2. EXTENSION OF THE LAGRANGE METHOD OF VARIATION CONSTANTS FOR SOLVING 

NON  HOMOGENEOUS FRACTIONAL ORDER DIFFERENTIAL EQUATION DESCRIBING 

FORCED OSCILLATIONS OF THE FRACTIONAL ORDER OSCILLATOR  

First, we should point out very comprehensive review papers [4-6] written by 

Rosikin and Shitikova, containing review and results achieved in the field of 

supplementing fractional order derivative in mechanics. From these papers and personal 

literature search, we can conclude that the results presented here are original and new.  

Let’s extend the Lagrange method of variation constants for solving non 

homogeneous fractional order differential equation describing forced oscillations of the 

fractional order oscillator. Then, we start from non homogeneous fractional order 

differential equation in the following form: 

( ) ( ) ( )[ ] ( )thftxtxtx t =++ α
αωω 22

0
   for 10 ≤< α  and 0≠α         (9) 

describing fractional order forced oscillations with energy system fractional order 

dissipation energy and under the arbitrary external excitation depending only of time in 

the form ( ) ( ) ( )tmhftfFtF ==
0

.  Previous fractional order differential equation 

contain term with fractional order derivative, where α  is fractional order number 

between zero and unit, 10 << α , and [ ]•α
t  is a differential fractional order operator 

defined by expression: 

 ( )[ ]
( )

( )
( )

( )
τ

τ

τ

α αα

α
α

d
t

x

dt

d

dt

txd
tx

t

t ∫
−−Γ

==
0

1

1
                                                         (10) 

where 10 << α  is defined by material fractional order properties  as a constant, and 

m

c
02

0
=ω , 

m

cα
αω =2

  , 
0c  and αc  are material rigidity constants and m .is mass of 

the oscillator. 

Solution of homogeneous ordinary fractional order differential equation: 

 ( ) ( ) ( )[ ] 0
22

0
=++ txtxtx t

α
αωω  , for 10 ≤< α  and 0≠α       (11) 

is in the following form (see References  [7-13]): 
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( ) ( )

( )

( )
( )∑ ∑

∑ ∑
∞

= =

−−
+

∞

= =

−−

−+Γ







−+

+
−+Γ








−=

0 0

2

2

122

0

0 0

2

2

22

0

22
1

12
1,

k

k

j
j

o

jj

kkk

k

k

j
j

o

jj

kkk

jk

t

j

k
tx

jk

t

j

k
txtx

αω

ω
ω

αω

ω
ωα

α
α

α

α
α

α



 

for 10 ≤< α  and 0≠α                       (12) 

or in the form: 

 ( ) ( ) ( )ααα ,,,
sin0cos0

tTxtTxtx +== , for 10 ≤< α  and 0≠α                  (13) 

where ( )α,
cos

tT  and ( )α,
sin

tT particular solutions of fractional order differential 

equation and fractional order modes cosines like and sinus like modes of corresponding 

fractional order oscillator with one degree of freedom, in the form: 

( ) ( )
( )∑ ∑

∞

= =

−−

−+Γ







−=

0 0

2

2

22

cos
12

1,
k

k

j
j

o

jj
kkk

jk

t

j

k
ttT

αω

ω
ωα

α
α

α       (14) 

( ) ( )
( )∑ ∑

∞

= =

−−
+

−+Γ







−=

0 0

2

2

122

sin
22

1,
k

k

j
j

o

jj
kkk

jk

t

j

k
ttT

αω

ω
ωα

α
α

α        (15) 

and ( )00 xx =  and ( )00 xx  =  integral constant  determined by initial conditions. 

These modes are quasiperiodic cosines like and sinus like modes with equal half period 

of oscillations for for 10 ≤≤ α  (approximately equal from approximation of solution) 

and degreasing amplitudes with time for 10 ≤< α  and 0≠α . 

 For solving non homogeneous fractional order differential equation (9) solution 

is proposed in the form (13) where ( )α,
cos

tT  and ( )α,
sin

tT are particular solutions of 

homogeneous fractional order differential equation (11)  and fractional order modes 

cosines like and sinus like modes of corresponding fractional order oscillator with one 

degree of freedom, in the form (14) and (15) , but  integral constants  ( )α,0 tCx ⇒  

and ( )α,
0

tDx ⇒  are function of time: 

 ( ) ( ) ( ) ( ) ( )ααααα ,,,,,
sincos

tTtDtTtCtx +=         (16) 

First derivative ( )tx and fractional order derivative ( )[ ]txt

α  for 10 ≤< α  and 

0≠α are proposed same as in the case that constants, now function time are 

( )α,
0

tCx ⇒  and ( )α,
0

tDx ⇒  are constant, and on the that basis we can write: 

 ( ) ( ) ( ) ( ) ( )ααααα ,,,,,
sincos

tTtDtTtCtx  +=           (17) 

 ( )[ ] ( ) ( )[ ] ( ) ( )[ ]ααααα ααα
,,,,,

sincos
tTtDtTtCtx

ttt
 +=         (18) 

under the following conditions: 

 ( ) ( ) ( ) ( ) 0,,,,
sincos

=+ αααα tTtDtTtC           (19) 

( )[ ] ( ) ( )[ ] ( ) 0,,,,
sincos

=+ αααα αα
tTtDtTtC tt          (20) 

Previous condition (20) must to be satisfied, and in boundary condition for 

1=α  and 0≠α ,  is same as (19). 
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After introducing proposed solution ( )α,tx , by (16) and corresponding 

derivatives, first derivative ( )α,tx , by (17) and fractional order derivative 

( )[ ]αα
,txt  for 10 ≤< α  and 0≠α , by (18),  and second derivative  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ααααααααα ,,,,,,,,,
sincossincos

tTtDtTtCtTtDtTtCtx  +++=         (21) 

 into non homogeneous fractional order differential equation (9), and taking into account 

that particular solutions  ( )α,cos tT  and ( )α,sin tT ,  identically satisfy the following 

conditions: 

( ) ( ) ( ) ( )[ ] 0,,,,
cos

2

cos

2

0cos
≡++ αωαωαα α

α tTtTtTtC t  

( ) ( ) ( ) ( )[ ] 0,,,,
sin

2

sin

2

0sin
≡++ αωαωαα α

α tTtTtTtD t  

third condition is obtained in the following form: 

( ) ( ) ( ) ( ) ( )thftTtDtTtC =+ αααα ,,,,
sincos
           (22) 

Then determination of unknown functions:  ( )tC  and ( )tD  is defined by three 

conditions: (19), (20) and (22). This system is along first derivative of the unknown 

functions:  ( )tC  and ( )tD . Determinant of this system is: 

( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt                         (23) 

And solutions of the unknown functions  - amplitudes  ( )tC  and ( )tD  are in the 

following forms: 

( ) ( ) ( )
( )∫ ∆

−=
t

d
Tf

hCtC
0

sin

0
,

,
, τ

ατ

αττ
α

 

( )
( ) ( )

( )∫ ∆
+=

t

d
Tf

hDtD
0

cos

0
,

,
, τ

ατ

αττ
α

                                     (24) 

Solution of the ordinary fractional order differential equation (9)  is in the 

following form:  

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )∫ −

−
++=

t

d
TTTT

tTTtTTf
htTDtTCtx

0 cossinsincos

cossinsincos

sin0cos0
,,,,

,,,,
,,, τ

ατατατατ

αατααττ
ααα


      (25) 

 Taking into account that ( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt   is 

slochanging function approximate calculation is possible to take for determinant of the 

system the following  form:  

( ) ( ) ( ) ( ) ( ) 0
4

1
1

2

1
1,0,1

2

1
,

42

0

22

0

2

≠−++−==∆+=∆−≈∆ −
α

ω
α ωωαωωαααααα α t

ettt . 

3. EXTENSION OF THE LAGRANGE METHOD OF VARIATION CONSTANTS FOR SOLVING 

FRACTIONAL ORDER DIFFERENTIAL EQUATION WITH NONLINEAR TERM DESCRIBING 

NONLINEAR OSCILLATIONS OF THE FRACTIONAL ORDER OSCILLATOR  

3.1. For approximately solving nonlinear fractional order differential equation 

as it is: 

 ( ) ( ) ( )[ ] 322

0
xtxtxtx t εωω α

α ±=++            (26) 
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and 

( ) ( ) ( )[ ] [ ]
( )t

ttt tt 3

4

02

00

2

0

2

0

22

0

~

ρ

ρ
ϕρωρωρωρωρ α

α
α

α
 ++=++          (27) 

or in the form: 

( ) ( ) ( )[ ] ( )xftxtxtx t εωω α
α ±=++ 22

0
   for 10 ≤< α  and 0≠α         (28) 

containing term with fractional order derivative, where α  is fractional order number 

between zero and unit, 10 << α , and [ ]•α
t

  is a differential fractional order operator 

defined by expression (10) and ( ) ( )[ ]txxxf t

αε ,, ±  is nonlinear function and ε small 

parameter, it is possible to use combination of the Lagrange’s method of  variation 

constants and averaging method.  For beginning, as in the previous part we use 

particular solutions ( )α,cos tT  and ( )α,sin tT  of the homogeneous fractional order 

differential equation (11) defined by  (12) and approximate solution is supposed in the 

form(13) in which constants  ( )α,tC  and ( )α,tD   are time functions. Using same 

approach ad in the previous part first derivative ( )tx and fractional order derivative 

( )[ ]txt

α  for 10 ≤< α  and 0≠α are proposed same as in the case that function of 

time, ( )α,tC  and ( )α,tD , are constants, and on the that basis we can write first 

derivative in the form (17) and fractional order derivative in the form (18) under the 

following conditions  (19) and (20) as in the previous part. After introducing proposed 

solution ( )α,tx , by (16) and corresponding derivatives, first derivative ( )α,tx , by 

(17) and fractional order derivative ( )[ ]αα
,txt  for 10 ≤< α  and 0≠α , by (18),  

and second derivative  in the form (21) into non homogeneous fractional order 

differential equation with nonlinear term, presented by (28), and taking into account that 

particular solutions  ( )α,cos tT  and ( )α,sin tT ,  identically satisfy the homogeneous 

fractional order differential equation, as in the previous part, the following three  

conditions : 

( )[ ] ( ) ( )[ ] ( ) 0,,,,
sincos

=+ αααα αα
tTtDtTtC tt    for 10 ≤< α  and 0≠α  

( ) ( ) ( ) ( ) 0,,,,
sincos

=+ αααα tTtDtTtC                          (29) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ααααεαααα ,,,,,,,,,,,
sincossincos

tTtTtDtCftTtDtTtC ±=+   

are obtained  for determination of the unknown functions: ( )α,tC  and ( )α,tD . First 

derivative of the time functions ( )α,tC  and ( )α,tD  amplitudes of the  

( )
( )

( ) ( ) ( ) ( )( ) ( )ααααα
α

εα ,,,,,,,,
,

1
,

sinsincos
tTtTtTtDtCf

t
tC

∆
=   

( )
( )

( ) ( ) ( ) ( )( ) ( )ααααα
α

εα ,,,,,,,,
,

1
,

cossincos
tTtTtTtDtCf

t
tD

∆
±=       (30) 

where determinant ( )α,t∆  is in same form as in previous part defined by (23). 



43

 A generalization of Lagrange method of variation constants  

In obtained previous system of nonlinear differential equations along first 

derivatives of ( )α,tC  and ( )α,tD , we separate slowchanging functions and fast 

changing function along one half period 
222
αωω

π

+
=

o

harmT
 of corresponding  

harmonic oscillations for 0=α  or for one half  period 

42

4

12
αωω

ππ

−

==

o

amort

p

T
of 

damped linear oscillations. Slowchanging functions are ( )α,tC  and ( )α,tD ,and 

determinant ( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt  . Fast changing functions as 

oscillatory functions are: ( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,, sinsincos tTtTtTtDtCf  and   

( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,,
sincos

tTtTtTtDtCf cor  . It is visible  from numerical 

analysis and graphical presentation ( see graphical presentations in Appendix) as well as 

from supposition that function ( ) ( ) ( ) ( )( )αααα ,,,,,,, sincos tTtTtDtCf  is also an 

oscillatory function. 

As period of harmonic oscillations is shorter, then for one period of harmonic 

linear oscillations, 
ω

π

ωω

π

α

~
22

22
=

+
=

o

harmT , for 0=α , we can take averaging of 

functions at right sides in system (30)  along a period of harmonic oscillations, taking 

full phase ( ) tt ω~=Φ , where 
22~
αωωω += o , circular frequency, and in interval 

( ) [ ]π2,0∈Φ t  which correspond to period of harmT . But, also, it is possible to take for 

averaging integration a period of basic harmonic oscillations: 

0

,0

2

ω

π
=harmT  , when full 

phase is ( ) tt
0

ω=Φ , in interval ( ) [ ]π2,0∈Φ t ,  and also it is possible to take for 

averaging, integration a period  of damped oscillations: 

42

4

1

22

αωω

ππ

−

==

o

amort
p

T  , 

when full phase is ( ) ptt =Φ , where 42

4

1
αωω −=

o
p , in interval ( ) [ ]π2,0∈Φ t  . 
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Fractional order modes  ( )α,cos tT  and ( )α,sin tT , are particular solutions of 

fractional order differential equation (11),  and quasi periodic with half period 
2

ααT
, for 

10 ≤≤ α , in interval: 
222

1,0, == ≤< αααα amprtharm
TTT

, or 

42
22

4

12
α

αα

α ωω

π

ωω

π

−

≤≤
+

o
o

T . 

Then for one of the possible averaged approximation of the solutions for 

integral constant – time functions ( )α,tC  and ( )α,tD , for the case of fractional order 

differential equation with nonlinear term (28), we can made averaged values of 

functions ( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,, sinsincos tTtTtTtDtCf  and   

( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,,
sincos

tTtTtTtDtCf cor   in the right side in the system of 

differential equations (30) for one of the period αT  , for 10 ≤≤ α , of the fractional 

order differential equations depending of  α  and in interval ( ) [ ]π2,0∈Φ t . Averaged 

values of functions ( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,,
sinsincos

tTtTtTtDtCf  and   

( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,, sincos tTtTtTtDtCf cor   in the right side in the system of 

differential equations (30) along  full phases ( ) tt αω=Φ , in interval from zero to 

πω 2~ =harmT , or πω 2.00 =harmT or πω αααα 2=T  or π2=amorpT , depend of 

value  10 ≤≤ α . Then, taking into account that functions  ( )α,tC  and ( )α,tD  are 

slowchanging, as well as determinant ( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt  , 

and that functions ( )α,cos tT  and ( )α,sin tT  are fast changeable  the action of averaging 

in corresponding interval  ( ) [ ]π2,0∈Φ t ,  along full phase ( ) tt αω=Φ , we take that 

functions  ( )α,tC  and ( )α,tD  as slowchanging are constant in relation to the action 

of averaging, and integrating, along corresponding full phase ( ) tt ααω=Φ , system of 

averaged differential equations is possible to write in the following form: 

( )
( )

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )tdtTtTtTtDtCf
t

tC ΦΦΦΦ
∆

≈ ∫
π

ααααα
απ

ε
α

2

0

sinsincos
,,,,,,,,

,

1

2
,   

( )
( )

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )tdtTtTtTtDtCf
t

tD ΦΦΦΦ
∆

±≈ ∫ ααααα
απ

ε
α

π

,,,,,,,,
,

1

2
,

cos

2

0

sincos
       (31) 

where 

 ( ) tt ααω=Φ  for 10 ≤≤ α  

( )( ) ( ) ( )[ ] ( )[ ]
( )∑ ∑

∞

= =

−−

−+Γ

Φ








Φ−=Φ

0 0

2

2
2

2

2

cos
12

1,
k

k

j
j

o

jjj
k

k

k
k

jk

t

j

k
ttT

αω

ωω

ω

ω
α

α
αα

α

α

αα

α       (32) 
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( )( ) ( ) ( )[ ] ( )[ ]
( )∑ ∑

∞

= =

−−
+

+ −+Γ

Φ








Φ−=Φ

0 0

2

2
12

12

2

sin
22

1,
k

k

j
j

o

jjj
k

k

k
k

jk

t

j

k
ttT

αω

ωω

ω

ω
α

α
αα

α

α

αα

α     (33) 

( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt   Slowchanging function      (34) 

Taking into account that determinant (34) is slowchanging function, the 

corresponding approximate system of averaged differential equations is possible to write 

in the following form: 

( )
( )

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )tdtTtTtTtDtCf
t

tC ΦΦΦΦ
∆

≈ ∫
π

ααααα
απ

ε
α

2

0

sinsincos
,,,,,,,,

,

1

2
,   

( )
( )

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )tdtTtTtTtDtCf
t

tD ΦΦΦΦ
∆

±≈ ∫ ααααα
απ

ε
α

π

,,,,,,,,
,

1

2
,

cos

2

0

sincos
       (35) 

 3.2. Using the same approach as in the previous part, applying generalized 

Lagrange method of variation constant and method of averaging along full phase to the 

following fractional order differential equation with a nonlinear term depending of 

coordinate and first derivative of coordinate, in the following form:  

( ) ( ) ( )[ ] ( )xxftxtxtx t
 ,

22

0
εωω α

α ±=++    for 10 ≤< α  and 0≠α       (36) 

it is possible to obtain approximation of the solution in the form (16) in which 

amplitudes ( )α,tC  and ( )α,tD as time functions are determined by the corresponding 

approximate system of averaged differential equations, which is possible to write in the 

following form: 

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )tdtTtTtTtTtTtDtCf
t

tC ΦΦΦΦΦΦ
∆

≈ ∫
π

ααααααα
απ

ε
α

2

0

sinsincossincos
,,,,,,,,,,,,

,

1

2
, 

 

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )tdtTtTtTtTtTtDtCf
t

tD ΦΦΦΦΦΦ
∆

±≈ ∫ ααααααα
απ

ε
α

π

,,,,,,,,,,,,
,

1

2
,

cos

2

0

sincossincos


                     (37) 

where 

( )( ) ( ) ( )[ ] ( ) ( )[ ]
( )∑ ∑

∞

= =
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−

− −+Γ

Φ−








Φ−=Φ

0 0

2

2
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2

cos
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1,

k
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j

o

jjj
k

k

k
k

jk

tjk

j

k
ttT

αω

ωωα

ω

ω
α

α
αα

α

α

αα

α   (38) 

( )( ) ( ) ( )[ ] ( ) ( )[ ]
( )∑ ∑

∞

= =

−−

−+Γ

Φ−+








Φ−=Φ

0 0

2

2
2

2

2

sin
22

12
1,

k

k

j
j

o

jjj
k

k

k
k

jk

tjk

j

k
ttT

αω

ωωα

ω

ω
α

α
αα

α

α

αα

α     (39) 

Ordinary fractional order differential equations with nonlinear term ( )xfε±  

(28) and  ( )xxf ,ε±  (36) present nonlinear, fractional order oscillator in state of free 

fractional order oscillations, containing a mass particle with one degree of freedom 

coupled by a standard light fractional order element and a parallel nonlinear elastic 

spring in first case (28) and with one additional parallel nonlinear dissipative element in 

second case (36). Both cases are very important for engineering practice and 

investigation od engineering system dynamics. 
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4. EXAMPLES  

Example 1.  

For first example, we can take fractional order differential equation with 

nonlinear cubic term: 

( ) ( ) ( )[ ] 3222

0
xtxtxtx Nt εωωω α

α ±=++    for 10 ≤< α  and 0≠α       (40) 

Previous fractional order differential equation (40) described a fractional order 

oscillator with small cubic nonlinearity. Physically this oscillator contain a mass particle 

mass m  moving along ideal horizontal line  and with one degree of freedom  defined by 

coordinate x  and coupled for fixed point by standard light nonlinear elastic and 

fractional order element with constitutive force-dilatation relation in the form:  

( ) ( )[ ]( ) ( ) ( )[ ]

( ) ( )[ ]( ) ( ) ( )[ ]txxtxmtxtxF

txcxctxctxtxF

tNt

tNt

α
α

α
α

α
α

α
α

ωεωω

ε




2322

0

3

0

,

,

+=

+=




,                    (41) 

where , 
m

c
02

0
=ω ,  

m

cα
αω =2

 and 
m

cN
N =2ω , and 

0
c  coefficient linear elasticity, 

Nc coefficient of nonlinear elasticity and αc and α  coefficients of fractional order 

properties. 

Then, taking into account previous presentation of the combination of 

generalized Lagrange’s method of variation constants and averaging method along full 

phase for one period, we propose approximation of the solution in the form (16) in 

which amplitudes ( )α,tC  and ( )α,tD , as time functions are determined by the 

corresponding approximate system of averaged differential equations, which is possible, 

according with (35) to write in the following form: 

( )
( )

( ) ( )( ) ( ) ( )( )( ) ( )( ) ( )tdtTtTtDtTtC
t

tC N ΦΦΦ+Φ
∆

≈ ∫
π

ααααα
α

ω

π

ε
α

2

0

sin

3

sincos

2

,,,,,
,2

,   

( )
( )

( ) ( )( ) ( ) ( )( )( ) ( )( ) ( )tdtTtTtDtTtC
t

tD N ΦΦΦ+Φ
∆

±≈ ∫
π

ααααα
α

ω

π

ε
α

2

0

cos

3

sincos

2

,,,,,
,2

,  (42) 

 

Sub-example 1.1. 

For determinant ( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt  , we can take that 

for 0=α  determinant of the system is in the following form: ( ) ωα ~0, ==∆ t , 

22

0

~
αωωω += , because for 0=α , particular solutions are: 

( ) ttT ωα ~cos0,cos ==  and ( ) tttT ωα ~sin0,sin == . We see that determinant 

( ) ωα ~0, ==∆ t  is constant, and amplitudes ( )tC  and ( )tD  are, also, slowchanging 

function of time determined by system of averaged differential equations first order in 

the form (42) where full phase is taken in the form ( ) tt ω~=Φ , 
22

0

~
αωωω += : 
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( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )tdttDttDttCttDttCttCtC N ΦΦ+ΦΦ+ΦΦ+Φ±≈ ∫ cossinsincos3sincos3cos~
2

2

0

33222233
2 π

ωπ

εω
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )tdttDttDttCttDttCttCtD N ΦΦ+ΦΦ+ΦΦ+Φ±≈ ∫ sinsinsincos3sincos3cos~
2

2

0

33222233
2 π

ωπ

εω
 

Taking into account that is: 

( ) ( ) 0coscos

2

0

3 =ΦΦ∫
π

tdt
,                          ( ) ( ) ( )

8

2
cossincos

2

0

2 π
π

−ΦΦΦ∫ tdtt
 

( ) ( ) ( ) 0cossincos

2

0

2 =ΦΦΦ∫
π

tdtt ,           ( ) ( )
4

3
cossin

2

0

3 π
π

−=ΦΦ∫ tdt
 

( ) ( )
4

3
sincos

2

0

3 ππ

=ΦΦ∫ tdt ,                   ( ) ( ) ( ) 0sinsincos

2

0

2 =ΦΦΦ∫
π

tdtt  

( ) ( ) ( )
4

sinsincos

2

0

2 π
π

=ΦΦΦ∫ tdtt
,            ( ) ( ) 0sinsin

2

0

3 =ΦΦ∫
π

tdt
 

approximate system of averaged differential equations along unknown amplitudes  

( )0, =αtC  and ( )0, =αtD , which are function of time, are determined by following 

system of averaged nonlinear differential equations first order in the form : 

( ) ( )[ ] ( )[ ] ( )[ ]0,0,0,~
8

3
0,

22
2

==+=≈= ααα
ω

εω
α tDtDtCtC N  

( ) ( )[ ] ( )[ ] ( )[ ]0,0,0,~
8

3
0,

22
2

==+=±≈= ααα
ω

εω
α tCtDtCtD N                      (43) 

After transformation previous system of averaged nonlinear differential 

equations first order (43) into: 

( )
( )[ ]

( )
( )[ ]

( )[ ] ( )[ ]22
2

0,0,~8

3

0,

0,

0,

0,
=+=±=

=

=
≈

=

=
αα

ω

εω

α

α

α

α
tDtC

tC

tD

tD

tC N


                   (44) 

it is visible that is valid the following relation  

( )[ ] ( )[ ] ( )[ ] ( )[ ] constatDtCtDtC =≈==+==≈=+= 2

0

2222
0,00,00,0, αααα      (45) 

From previous relation (45), we conclude that amplitude of nonlinear vibrations 

in approximations is consta =2

0
 constant , and equal to amplitude at initial moment. 

( )[ ] ( )[ ] ( )[ ] ( )[ ] consttDtCtDtCa ≈==+==≈=+=≈
2222

0
0,00,00,0, αααα   (46) 

Full phase of nonlinear vibrations in first averaged approximation is: 

( )
( )

( )
( )0,

0,~

0,

0,~

=

=
+=

=

=
+Φ≈Φ

α

α
ω

α

α

tC

tD
arctgt

tC

tD
arctg                   (47) 

Circular frequency 
0,

~
=αωnonlin  of nonlinear vibrations in first averaged 

approximation is in the form 

( )
( )0,

0,~~~
0,

=

=
+=Φ≈=

α

α
ωω α

tC

tD
arctg

dt

d
nonlin


                   (48) 

or  
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( ) ( ) ( ) ( )
( ) ( ) 220,

0,0,

0,0,0,0,~~~

=+=

==−==
+≈Φ==

αα

αααα
ωω α

tDtC

tCtDtCtD
nonlin


   

and taking into account obtained relations  (44) –(45)-(46), frequency of nonlinear 

vibrations finally is nonlinear function of amplitude as well as of initial amplitude 
0a  in 

the quadratic form: 

2

0

2

0, ~
8

3~~~ aN
nonlin

ω

εω
ωω α ±≈Φ==


          (49) 

Previous result is known in numerous References in nonlinear mechanics as 

well as in nonlinear oscillations, and obtained by different methods. One of source 

method is  asymptotic method of nonlinear mechanics, known as asymptotic method 

Krilov- Bogolyibov-Mitropolsky (see References [14-23]). 

Approximation of solution of nonlinear fractional order differential equation in 

degeneration case to the conservative nonlinear differential equation,  for  0=α , is in 

the form: 

( ) ( ) ( ) ( ) ( )
0

2

0

2

0sincos

~
~

8

3~cos0,0,0,0, Φ+







±≈==+==≈ taatTtDtTtCtx N

ω

εω
ωαααα

   

for 0=α                     (50) 

 

Sub-example 1.2. 

 

For 1=α , determinant ( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt   of the 

system is in the following expression: ( ) 0
4

1
1,

42

0

2
2

≠−===∆ −−
α

ωδ ωωα α tt
epet  

42

0
4

1
αωω −=p  and,

2
2 αωδ = , because for 1=α , particular solutions are: 

( ) ptetT
t
cos1,

cos

δα −==   and ( ) ptetT
t
sin1,

sin

δα −== . We see that determinant 

( ) 0
4

1
1,

42

0

2
2

≠−===∆ −−
α

ωδ ωωα αtt
epet  is slowchanging function of time, and 

amplitudes ( )1, =αtC  and ( )1, =αtD , also, are slowchanging functions of time 

determined by system of averaged differential equations first order in the form (42), 

where full phase is taken in the form ( ) ptt =Φ , 42

0
4

1
αωω −=p : 

( ) ( ) ( ) ( ) ( )( ) ( )tdetetDtetC
pe

tC
ttt

t

N ΦΦΦ=+Φ=≈ ∫ −−−

−

π
δδδ

δ
αα

ω

π

ε 2

0

3

2

2

sinsin1,cos1,
2

  

( ) ( ) ( ) ( ) ( )( ) ( )tdcodetetDtetC
pe

tD
ttt

t

N ΦΦΦ=+Φ=±≈ ∫ −−−

−

π
δδδ

δ
αα

ω

π

ε 2

0

3

2

2

sin1,cos1,
2

   

or in the form: 

( ) ( )[ ] ( )[ ] ( )[ ]1,1,1,
8

3
1,

22
22

==+=≈=
−

ααα
εω

α
δ

tDtDtC
p

e
tC

t

N  
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( ) ( )[ ] ( )[ ] ( )[ ]1,1,1,
8

3 22
22

==+=±≈
−

ααα
εω δ

tCtDtC
p

e
tD

t

N         (51) 

After transformation previous system of averaged nonlinear differential 

equations first order (51) into: 

( )
( )[ ]

( )
( )[ ]

( )[ ] ( )[ ]22
22

1,1,
8

3

1,

1,

1,

1,
=+=±≈

=

=
≈

=

= −

αα
εω

α

α

α

α δ

tDtC
p

e

tC

tD

tD

tC
t

N



   

                  (52) 

it is visible that is valid the following relation  

( )[ ] ( )[ ] ( )[ ] ( )[ ] consttatDtCtDtC =≈==+==≈=+= 2

0

2222
1,01,01,1, αααα  (53) 

From previous relation (53), we conclude that amplitude of nonlinear vibrations 

in approximations is consta =2

0
 constant , and equal to amplitude at initial moment. 

( )[ ] ( )[ ] ( )[ ] ( )[ ] consttDtCtDtCa ≈==+==≈=+=≈
2222

0
1,01,01,1, αααα     

(54) 

Full phase of nonlinear vibrations in first averaged approximation is: 

( )
( )

( )
( )1,

1,

1,

1,~

=

=
+=

=

=
+Φ≈Φ

α

α

α

α

tC

tD
arctgpt

tC

tD
arctg                   (55) 

Circular frequency 1,

~
=αωnonlin of nonlinear vibrations in first averaged 

approximation, for 1=α , is in the form: 

( )
( )1,

1,~~
1,

=

=
+=Φ≈=

α

α
ω α

tC

tD
arctg

dt

d
p

nonlin

  for 1=α ,                  (56) 

or  

( ) ( ) ( ) ( )
( ) ( ) 22

1,1,

1,1,1,1,~~

=+=

==−==
+≈Φ=

αα

αααα
ω

tDtC

tCtDtCtD
pnonlin

     

and taking into account obtained relations  (52)–(53)-(46), circular frequency 

1,

~
=αωnonlin of nonlinear vibrations, finally, is nonlinear function of amplitude as well as 

of initial amplitude 
0

a  in the quadratic form, and elso og time: 

2

0

2

42

0

2

0

22

1,
8

3

4

1

8

3~~
2

a
p

e
a

p

e
p

t

N

t

N
nonlin

αω

α

δ

α

εω
ωω

εω
ω

−−

= ±−=±≈Φ=


      (57) 

Previous result is new, and is not known from literature, only from Reference 

[24] as a result in solving nonlinear differential equation of dynamics of coupled two 

oscillators, and also in Reference [25-26] as two pages extended abstract in ICTAM 

2012.  

Approximation of solution of nonlinear fractional order differential equation in 

degeneration case to the conservative nonlinear differential equation,  for  1=α , is in 

the form: 

( ) ( ) ( ) ( ) ( )
0

2

0

22

0sincos

~

16

3
cos1,1,1,1, Φ+








≈==+==≈

−
−

a
p

e
pteatTtDtTtCtx

t

Nt

δ

εω
αααα

δ
δ 

    

for 1=α              (58) 
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or finally  

( )
0

2

0

42

0

2

2

42

0
2

1

0

~

4

1
8

3

4

1
cos

2
2

Φ+



















−

−≈
−

−

a
e

teatx
t

N
t

αα

ω

α

ω

ωωω

εω
ωω

α
α


 for 1=α         (59) 

 Some comments and comparison of the approximation of solutions. Some 

comments are necessary. Previous obtained approximation (59) is approximation of 

solution of the following nonlinear differential equation: 

( ) ( ) ( ) 3222

0
xtxtxtx Nεωωω α ±=++    for 1=α         (60) 

obtained from fractional order differential equation (40)  for 1=α .  One of possible 

first approximation of this nonlinear equation (60) is known from numerous classical 

books in nonlinear oscillations and nonlinear mechanics in the form: 

( )
0

2

0

22

00

~

16

3
cos Φ+








≈

−
−

a
p

e
teatx

t

Nt

δ

εω
ω

δ
δ 

         (61) 

where circular frequency nonlinω~ of free nonlinear damped oscillations is: 

 
2

0

22

0
16

3~ a
p

e
t

N
nonlin

δ

εω
ωω

δ−

±≈           (62) 

and amplitude  

 ( ) t
eata

δ−≈ 0                                      (63) 

but different them obtained heir. Then it is necessary to compare these two obtained 

approximations of the same nonlinear differential equation and which two 

approximations of same solution.  

By using two asymptotic methods from References [14] and [19], and also their 

proposed combination of the generalized Lagrange’s method of variation constants with 

method of averaging and used in particular in References [24-27] starting from known 

analytical solutions ( ) ( ) ( )( )tptetRtx
t φδ += −
cos ,

2

0
δω −= 2

p  and 

( ) ( )[ ]tttatx φω += 0cos)( , two same first approximations of the solution of 

nonlinear differential equation (60)  are obtained in the following forms: 

( ) 







Φ+−= −−

o

t

oN

t
ea

p
pteRtx 1

16

3
cos)(

222

10

δδ ω
δ

 ,for 0≠δ , 0≠ε , 

         
22

0 δω > ,   
2

0
δω −= 2

p         (64)    

( ) .1
16

3
cos)(

222

1

0

0 







Φ+−= −−

o

t

oN

t

o eateatx
δδ ω

δω
ω   for 0≠δ ,  

0≠ε , 
2

0 δω >2
      (65) 

for corresponding initial conditions. For the case that damping coefficient tends to zero, 

from both first approximations (64) and (65), same analytical approximation of the 

solution for conservative nonlinear system dynamics are obtained. For the case that 
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coefficient of the cubic nonlinearity tends to zero, from first approximation of the 

solution in the form (64) give known analytical solution of the linear no conservative 

system dynamics in the following form: ( ) ( )
00

cos αδ += − pteRtx t
, 

for 0≠δ , 0=ε ,
22

0 δω > ,
2

0
δω −= 2

p , oN =2
1

~ω , but from the second 

approximation of same solution form (65) obtained solution 

( ) ( )
000

cos αωδ += − teatx t
 is not correct. This is visible that this expression is not 

solution of the differential equation: ( ) ( ) ( ) 02
2

0 =++ txtxtx ωδ . Then we can 

conclude that, starting different known analytical solutions, for obtaining first 

approximations are acceptable, but limited by corresponding conditions.  Approximation 

of the solution of nonlinear George Duffing differential equation (60) in the form (64) is 

better them (65) known from numerous literatures.  

Comparison 1. Taking into account results presented for sub-examples 1 and 2 

, and also form graphical presentation of the particular solution for 10 << α  (see 

Figures 1  and 2 in Appendix), it is possible both particular solutions ( )α,cos tT  and 

( )α,
sin

tT  defined by (14) and (15), of homogeneous fractional order differential 

equation (11) take in the form as in the case for 1=α , ( ) tpetT
t

α
δαα cos1,cos

−==  

and ( ) tpetT
t

α
δαα sin1,sin

−== , making the following comparisons: 

( ) ( )
( )

tpe
jk

t

j

k
ttT

t

k

k

j
j

o

jj
kkk

α
δ

α
α

α
α

αω

ω
ωα cos

12
1,

0 0

2

2
22

cos

−
∞

= =

−−

≈
−+Γ








−=∑ ∑       (66) 

( ) ( )
( )

tpe
jk

t

j

k
ttT

t

k

k

j
j

o

jj
kkk

α
δ

α
α

α
α

αω

ω
ωα sin

22
1,

0 0

2

2

122

sin

−
∞

= =

−−
+ ≈

−+Γ







−=∑ ∑       (67) 

where 
α

δ is coefficient of energy dissipation and αp  circular frequency for the case of 

fractional order system energy dissipation depending of α  in interval ( )1,0∈α  and 

time, and we can write the following relations: 

( )[ ] ( )
( )

tpe
jk

t

j

k
ttT

t

k

k

j
j

o

jj
kkk

α
δ

α
α

α
α

αω

ω
ωα 22

2

0 0

2

2

222

cos
cos

12
1,

−
∞

= =

−−

≈







−+Γ








−= ∑ ∑     (68) 

( )[ ] ( )
( )

tpe
jk

t

j

k
ttT

t

k

k

j
j

o

jj
kkk

α
δ

α
α

α
α

αω

ω
ωα 22

2

0 0

2

2

1222

sin
sin

22
1,

−
∞

= =

−−
+ ≈








−+Γ








−= ∑ ∑   (69) 

Then the following relations are valid: 

( )[ ] ( )[ ]2

sin

2

cos

2
,, αααδ

tTtTe
t +=−

         (70) 

( )
( )

( )
( )

2

0 0

2

2

122

2

0 0

2

2

222

22
1

12
1 








−+Γ








−+








−+Γ








−= ∑ ∑∑ ∑

∞

= =

−−
+

∞

= =

−−
−

k

k

j
j

o

jj
kkk

k

k

j
j

o

jj
kkkt

jk

t

j

k
t

jk

t

j

k
te

αω

ω
ω

αω

ω
ω

α
α

α

α
α

α
δα

and 
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      ( )[ ]
( )[ ]

( )
( )

( )
( )






−+Γ








−









−+Γ








−

==

∑ ∑

∑ ∑
∞

= =

−−

∞

= =

−−
+

0 0

2

2
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Comparison 2. As it is  ( ) 22

0

~0, αωωωα +===∆ t  for 0=α  or 

( ) 0
4

1
1,

42

0

2
2

≠−===∆ −−

α
ωδ ωωα αtt

epet  for 1=α , then determinant ( )α,t∆  for 

arbitrary α  in interval  10 ≤< α  is slowchanging time function and it is possible to 

take that this function is not under the action of averaged process along full phase in 

interval [ ]π2,0∈Φ . Then, for solving averaged values of the functions 

( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,, sinsincos tTtTtTtDtCf  and   

( ) ( ) ( ) ( )( ) ( )ααααα ,,,,,,,,
sincos

tTtTtTtDtCf cor   in the right side in the system of 

differential equations (30), for arbitrary α  in interval  10 ≤< α  , and for 

simplification if the, we take approximated  value of that determinant ( )α,t∆  

     ( ) ( ) ( ) ( ) ( ) 0
4

1
1

2

1
1,0,1

2

1
,

42

0

22

0

2

≠−++−==∆+=∆−≈∆ −
α

ω
α ωωαωωαααααα αt

ettt
  (72) 

and as a slowchanging time function no depending of phase angle, for simplification of 

averaging integral we can take into account the following differential equations in 

averaged approximation: 

 

( )
( )

( ) ( ) ( ) ( )( ) ( )( ) ( )tdtTtTtTtDtCf

e

tC
t

ΦΦ

−++−

≈ ∫
−

π

α
ω

α

ααααα

ωωαωωα
π

ε
α

α

2

0

sinsincos

42

0

22

0

,,,,,,,,

4

1
1

1

2
,

2


 

( )
( )

( ) ( ) ( ) ( )( ) ( )( ) ( )tdtTtTtTtDtCf

e

tD
t

ΦΦ

−++−

±≈ ∫
−

π

α
ω

α

ααααα
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π

ε
α

α

2

0
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42

0

22

0

,,,,,,,,

4

1
1

1

2
,

2


(73) 

  

 

Comparison 3. Also, it is good to make a comparison  between  particular 

solution like cos mode ( ) ( ) ( )
( )

( )∑ ∑
∞

= =

−−

−+Γ







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0 0

2

2
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k

k

m
m

s
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s

k

s
mk

t

m

k
ttT

αω

ω
ωα

α
α

α
 and its derivative 

in the form minus like sin mode ( ) ( ) ( )
( )∑ ∑

∞

= =

−−
−

−+Γ

−








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1 0

2

2
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2
1,

k

k

m

m

o
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kkk

mk

tmk

m

k
ttT

αω

ωα
ωα

α
α

α
 .  

Comparison is visible in Figure 1 and 2 in Appendix. Also, it is good to made a 

comparison between particular solution like sin mode 

( ) ( ) ( )
( )

( )∑ ∑
∞

= =

−−

+

−+Γ



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
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2
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k
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k

s
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k
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αω

ω
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α
α

α

 and its derivative in the form like cos 
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mode
( ) ( ) ( )

( )∑ ∑
∞

= =

−−

−+Γ

−+








−=

0 0

2

2

22
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1,

k

k

m
m

o

mm
kkk

mk

tmk

m

k
ttT

αω

ωα
ωα

α
α

α
 . Comparison is visible in Figure 1 and 2 

in Apendix. 

Then from these comparisons it is visible that determinant ( )α,t∆ is slow 

changeable as we conclude in start. 

 

Sub-example 1.3. 

 

A conclusion on the basis of the previous comparisons and analysis for 

considered example with cubic nonlinear term and for 10 << α   naturally appears. 

Approximation of the fractional order differential equation with nonlinear term in the 

form (16) in which amplitudes ( )α,tC  and ( )α,tD  are determined by system of 

averaged differential equations along these unknown amplitudes ( )α,tC  and ( )α,tD  

- functions of time is possible to rewrite in the following form: 

( )
( )

( ) ( )( ) ( ) ( )( )( ) ( )( ) ( )tdtTtTtDtTtC
e

tC
t

ΦΦΦ+Φ
−++−

≈ ∫−

π

α
ω

α

ααααα
ωωαωωαπ

ε
α

α

2

0
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3
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4

4
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0
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0

,,,,,

1

1

2
,

2


 

( )
( )

( ) ( )( ) ( ) ( )( )( ) ( )( ) ( )tdtTtTttTtC
e

tD
t

ΦΦΦ+Φ
−++−
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π

α
ω

α
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ε
α
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2

0
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3
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4

4
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1
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2
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
           

      (74) 

For obtaining corresponding values of terms in sum of integrals, we need the 

following integrals: 

( ) ( )( )[ ] ( )( ) ( )tdtTtTk ΦΦΦ= ∫
π

ααα
2

0

sin

3

cossin1cos,3
,, ,  ( ) ( )( )[ ] ( )( )[ ] ( )tdtTtTk ΦΦΦ= ∫

π

ααα
2

0

2

sin

2

cossin2cos,2
,,

 

( ) ( )( )[ ] ( )( )[ ] ( )tdtTtTk ΦΦΦ= ∫
π

ααα
2

0

3

sincossin3cos,1
,, , ( ) ( )( )[ ] ( )tdtTk ΦΦ= ∫

π

αα
2

0

4

sinsin4cos,0
,  

( ) ( )( )[ ] ( )tdtTk ΦΦ= ∫
π

αα
2

0

4

cossin0cos,4
, ,     ( ) ( )( )[ ] ( )( )[ ] ( )tdtTtTk ΦΦΦ= ∫

π

ααα
2

0

sin

3

cossin1cos,3
,,  

( ) ( )( )[ ] ( )( )[ ] ( )tdtTtTk ΦΦΦ= ∫
π

ααα
2

0

2

sin

2

cossin2cos,2
,,

, ( ) ( )( )[ ] ( )( )[ ] ( )tdtTtTk ΦΦΦ= ∫
π

ααα
2

0

3

sincossin3cos,1
,,

 

( ) ( )( )[ ] ( )tdtTk ΦΦ= ∫
π

αα
2

0

4

sinsin4cos,0 , ,        ( ) ( )( )[ ] ( )tdtTk ΦΦ= ∫
π
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2

0

4
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,  

( ) ( )( )[ ] ( )( )[ ] ( )tdtTtTk ΦΦΦ= ∫
π
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2

0

2

sin

2

cossin2cos,2
,,                     (75) 

Averaged differential equations along corresponding full phase s are: 

( )
( )

( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )[ ]{ }3
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( )
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Example 2.  

Let consider the following fractional order differential equations with nonlinear 

term: 

( ) ( ) ( )[ ] [ ]
( )t

ttt tt 3

4

02

00

2

0

2

0

22

0

~

ρ

ρ
ϕρωρωρωρωρ α

α
α

α  ++=++          (77) 

describing distance between two mass particles coupled by standard light fractional 

order element, when system is moving in a plane, where 
0

ρ length of standard light 

fractional order element in no stressed state, and 
0

~ρ  distance between mass particles at 

initial moment of two mass particle motion and  
0

ϕ  relative angular velocity of relative 

rotation one mass particle around other in plane at initial moment of motion. 

For beginning, the nonlinear term 
( )t3

4

02

0

~

ρ

ρ
ϕ   developed in the following 

approximate Taylor’s series around distance 
0ρ : 
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Then ordinary, fractional order differential equation with nonlinear terms is possible to 

express in the following form: 
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If we introduce the following denotation  

 ( ) ρρρ ⇒− 0    and    
3

0

4

02

0

2

00

~

ρ

ρ
ϕωε =  

Then previous ordinary, fractional order differential equation with nonlinear terms is in 

the following form: 
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5
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3
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For obtaining approximate solution of the fractional order differential equation 

without nonlinear terms (80, we start from corresponding homogeneous fractional order 

differential equation in the form  
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( ) ( ) ( )[ ] 2
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with solution in the following series time form: 
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 (82) 

where  

0

02

0

2

0 31
ρ

ε
ωω ε +=                   (83) 

or in the form: 

 ( ) ( ) ( )ααεαρ ,,,
sin0cos00

tTxtTxt ++=         (84) 

For obtaining approximate solution of the ordinary, fractional order differential equation 

with nonlinear terms (80), we use generalized Lagrange method of variation constants 

in the form: 

( ) ( ) ( ) ( ) ( )ααααεαρ ,,,,,
sincos0

tTtDtTtCt ++=                        (85) 

where unknown amplitudes ( )α,tC  and ( )α,tD  - functions of time, are approximate 

determined by following system of differential equations:  
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where 

( )( ) ( ) ( )( ) ( ) ( )( )ααααεαρ ,,,,,
sincos0

tTtDtTtCt Φ+Φ+=Φ                    (87) 
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ααααε
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ρ

ωε
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    (88) 

5. CONCLUDING REMARKS 

In the paper a generalization of Lagrange variation method of 

constant and in combination with method of averaging for nonlinear cased, 

is presented by use series of the examples, and especially for fractional 

order differential equations.  



56

 KATICA R. (STEVANOVIĆ) HEDRIH 

Then in general, it is possible, to extend generalization of the 

Lagrange variation constant to the series of differential equations in the 

following forms: 

  

 ( ){ } ( )thftxL =  

( ){ } ( )thftxN =         (81) 

( ){ } ( )[ ] ( )thftxtxL t =+ α
αω 2  

 

( ){ } ( )xxfhtxL ,
0

ε=  

( ){ } ( )xxfhtxN ,
0

ε=        (82) 

( ){ } ( )[ ] ( )xxfhtxtxL t
,

0

2 εω α
α =+   

 

( ){ } ( )txxfhtxL ,,
0

ε=  

( ){ } ( )txxfhtxN ,,
0

ε=        (83) 

( ){ } ( )[ ] ( )txxfhtxtxL t ,,
0

2 εω α
α =+   

where { }∗L  linear differential operator, { }∗N  nonlinear differential 

operator, [ ]∗α
t  fractional order differential operator. 

 For applying generalized Lagrange method of variation constants,  

it is necessary to known two particular solutions ( )tT1
 and ( )tT2

 (or ( )α,1 tT  and 

( )α,2 tT ) of the corresponding homogeneous  linear or nonlinear or fractional 

order differential equation defined by:  

( ){ } 0=txL  

( ){ } 0=txN                      (84) 

( ){ } ( )[ ] 0
2 =+ txtxL t

α
αω   

Then, proposed solution in the form of combinations of known particular 

solutions and amplitudes ( )tC  and ( )tD  as functions of time, satisfying 

condition that first derivative of generalized coordinate is same as that 

amplitudes ( )tC  and ( )tD  are constants.  Results of the applications of 

generalized Lagrange method of variation constants to the different non 

homogeneous linear or nonlinear or fractional order differential equations 

are listed in the following form: 

 1* Non homogeneous non autonomous linear differential equation:  

( ){ } ( )thftxL =  
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with known particular solutions ( )tT1
 and ( )tT2

  of the homogeneous linear 

differential equation. 

Solution is in the form 

( ) ( ) ( ) ( ) ( )tTtDtTtCtx 21 , += α  

and amplitudes are:  

( ) ( ) ( )
( )∫ ∆

−=
t

d
Tf

hCtC
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1

0 τ
τ

ττ  

( ) ( ) ( )
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+=
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hDtD
0

2

0, τ
τ

ττ
α

 

where system determinant is defined by: 

( ) ( ) ( ) ( ) ( ) 01221 ≠−=∆ tTtTtTtTt   

 

2* Non homogeneous non autonomous nonlinear differential 

equation  

( ){ } ( )thftxN =  

with known particular solutions ( )tT1
 and ( )tT2

  of the homogeneous non 

linear differential equation. 

Solution is in the form  

( ) ( ) ( ) ( ) ( )tTtDtTtCtx 21 , += α  

and amplitudes are:  
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d
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where system determinant 

( ) ( ) ( ) ( ) ( ) 01221 ≠−=∆ tTtTtTtTt   

 

3* Non homogeneous non autonomous linear fractional order 

differential equation 

( ){ } ( )[ ] ( )thftxtxL t =+ α
αω 2  

with known particular solutions ( )α,1 tT  and ( )α,2 tT  of the homogeneous linear 

fractional order differential equation. 

Solution is in the form  

( ) ( ) ( ) ( ) ( )ααααα ,,,,,
sincos

tTtDtTtCtx +=  

and amplitudes are:  
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( )
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,
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where system determinant is slowchanging function  

( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt   

 

4* Non homogeneous autonomous non linear differential equation 

with small nonlinearity: 

( ){ } ( )xxfhtxL ,
0

ε=  

with known particular solutions ( )tT
1

 and ( )tT
2

  of the homogeneous linear 

differential equation. 

Approximation of the solution is in the form: 

( ) ( ) ( ) ( ) ( )tTtDtTtCtx
21

, += α  

and approximation of the amplitudes can be determined from the 

following system along unknown amplitudes ( )tC  and ( )tD :  

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )tTtTtTtTtTtDtCf
t
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where system determinant is slowchanging function 
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5* Non homogeneous autonomous non linear differential equation 

with additional small nonlinearity: 

( ){ } ( )xxfhtxN ,
0

ε=  

with known particular solutions ( )tT
1

 and ( )tT
2

  of the homogeneous non 

linear differential equation. 

Approximation of the solution is in the form: 

( ) ( ) ( ) ( ) ( )tTtDtTtCtx
21

+=  

and approximation of the amplitudes can be determined from the 

following system along unknown amplitudes ( )tC  and ( )tD :  

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )tTtTtTtTtTtDtCf
t

tC ΦΦΦΦΦ
∆

=
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,,,,,
1  ε  
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t

tD ΦΦΦΦΦ
∆
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,,,,,
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where system determinant is slowchanging function 

( ) ( ) ( ) ( ) ( ) 0
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6* Non homogeneous autonomous non linear fractional order 

differential equation with small nonlinearity: 

( ){ } ( )[ ] ( )xxfhtxtxL t
,

0

2 εω α
α =+   

with known particular solutions ( )α,
1

tT  and ( )α,
2

tT  of the homogeneous linear 

fractional order differential equation. 

Approximation of the solution is in the form: 

( ) ( ) ( ) ( ) ( )ααααα ,,,,,
sincos

tTtDtTtCtx +=  

and approximation of the amplitudes can be determined from the 

following system along unknown amplitudes ( )α,tC  and ( )α,tD :  
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εα ,,,,,,,,,,,,
,

1
,

sinsincossincos
tTtTtTtTtTtDtCf

t
tC ΦΦΦΦΦ

∆
=   

        ( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )ααααααα
α

εα ,,,,,,,,,,,,
,

1
,

cossincossincos
tTtTtTtTtTtDtCf

t
tD ΦΦΦΦΦ

∆
±=    

where system determinant is slowchanging function 

( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt   

 

7* Non homogeneous non autonomous nonlinear differential 

equation with small nonlinearity: 

( ){ } ( )txxfhtxL ,,
0

ε=  

with known particular solutions ( )tT
1

 and ( )tT
2

  of the homogeneous linear 

differential equation. 

Approximation of the solution is in the form: 

( ) ( ) ( ) ( ) ( )tTtDtTtCtx
21

, += α  

and approximation of the amplitudes is possible  to determine from the 

following system along unknown amplitudes ( )tC  and ( )tD :  

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )tTtttTtTtTtTtDtCf
t

tC Φ+ΦΦΦΦΦ
∆

=
22121

,,,,,,
1

φε   

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )tTtttTtTtTtTtDtCf
t

tD Φ+ΦΦΦΦΦ
∆

±=
22121

,,,,,
1

φε    

where system determinant is slowchanging function 

( ) ( ) ( ) ( ) ( ) 01221 ≠−=∆ tTtTtTtTt   

 

8* Non homogeneous non autonomous non linear differential 

equation with additional small nonlinearity: 

( ){ } ( )txxfhtxN ,,
0

ε=  

with known particular solutions ( )tT
1

 and ( )tT
2

  of the homogeneous non 

linear differential equation. 

Approximation of the solution is in the form: 
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( ) ( ) ( ) ( ) ( )tTtDtTtCtx
21

, += α  

and approximation of the amplitudes is possible to determine from the 

following system along unknown amplitudes ( )tC  and ( )tD :  

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )tTtttTtTtTtTtDtCf
t

tC Φ+ΦΦΦΦΦ
∆

=
22121

,,,,,,
1

, φεα   

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )tTtttTtTtTtTtDtCf
t

tD Φ+ΦΦΦΦΦ
∆

±=
22121

,,,,,
1

, φεα    

where system determinant is slowchanging function 

( ) ( ) ( ) ( ) ( ) 0
1221

≠−=∆ tTtTtTtTt   

 

9* Non homogeneous non autonomous non linear fractional order 

differential equation with small nonlinearity: 

( ){ } ( )[ ] ( )txxfhtxtxL t ,,
0

2 εω α
α =+   

with known particular solutions ( )α,
1

tT  and ( )α,
2

tT  of the homogeneous linear 

fractional order differential equation. 

Approximation of the solution is in the form: 

( ) ( ) ( ) ( ) ( )ααααα ,,,,,
sincos

tTtDtTtCtx +=  

and approximation of the amplitudes is possible  to determine from the 

following system along unknown amplitudes ( )α,tC  and ( )α,tD :  

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )αφαααααα
α

εα ,,,,,,,,,,,,,,
,

1
,

sinsincossincos
tTtttTtTtTtTtDtCf

t
tC Φ+ΦΦΦΦΦ

∆
=   

( )
( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )αφαααααα
α

εα ,,,,,,,,,,,,,,
,

1
, cossincossincos tTtttTtTtTtTtDtCf

t
tD Φ+ΦΦΦΦΦ

∆
±=    

where system determinant is slowchanging function 

( ) ( ) ( ) ( ) ( ) 0,,,,,
cossinsincos

≠−=∆ ααααα tTtTtTtTt   

In the cases 7*, 8* and 9* external excitation function is periodic 

functions with full phase  ( ) ( ) ( )tttt φϑϑ +Φ=+Ω=
0

 , where Ω  is  

external excitation circular frequency in resonant range of eigen circular 

frequency 
0

~ω of corresponding linear or nonlinear free vibrations described 

by corresponding homogeneous differential equation, and ( ) tt 0

~ω=Φ  full 

phase along which it is necessary to followed averaging procedure, taking 

into account only fast change function under integral, as it is take in the 

examples 1 and 2. Slowching functions under the integrals as it is ( )t∆  or 

( )α,t∆  are no under the averaged procedure for nonlinear systems.   
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APENDIX - ADDITION TO THE PAPER.   

          The time functions – solution of a fractional order differential equation 

The fractional  order differential equation in the form: 

( ) ( ) ( )[ ] 0
22

0
=++ ttt t ρωρωρ α

α                                                              (A.1) 

is linear part with a fractional order term (in left hand side) of the fractional differential 

equations (9) and (26)-(27) and (77) along independent coordinate ( )tρ , distance 

between mass particles,  in both considered case of the two  mass particle fractional 

order system dynamics in plane. 

  As the obtained fractional differential equations (26) , (27) and (28) are 

nonlinear, and that for small oscillations around equilibrium configurations is possible 

to considerate approximation of their solution  around known analytical solution of 

linearized nonlinear fractional order differential equation as well as around other known 

analytical particular solutions it is possible to start with analytical solution  of fractional 

order differential equation (A.1)  and by using generalized approach of the variation 

constant. Then it is important to present analytical solution of the fractional order 

differential equation (A.1)  or in the form (se References [4-13]): 

  ( ) ( )( ) ( ) 0
2

0

2 =++ tTtTtT ωω α
α

                                                                      (A.2) 

This fractional-differential equation (A.1) or (A.2) on unknown time-function ( )tT ,  can 

be solved applying Laplace transforms (se References [7-10]).  Upon that fact Laplace 

transform of solution is in form:  

 
( ) ( )[ ] ( ) ( )

( )







++

+
==

pp

TpT
tTp

R
2

0

2

2

0

2
1

00

ω

ω
ω α




                                                                (A.3) 

where ( )[ ][ ] ( ) ( )[ ]tT ptTt R=α  is Laplace transform of a fractional derivative 
( )

α

α

dt

tTd
for 

10 ≤≤ α . For creep rheological material those Laplace transforms the form: 

   ( )[ ][ ] ( ) ( )[ ] ( ) ( )[ ] ( )00
1

1

1

1

T
dt

d
tTpT

dt

d
tTptTt −

−

−

−

−=−=
α

α
α

α

α
α  R                 (A.4) 

where the initial value are: 
( )

0

0

1

1

=
=

−

−

t
dt

tTd
α

α

, so, in that case Laplace transform of time-

function is given by following expression:  

 ( ){ } [ ]2

0

22

00

ωω α
α ++

+
=

pp

TpT
tT


                                                                        (A.5) 

For boundary cases, when material parameters α  take following values: 

0=α  and 1=α  we have the two special simple cases, whose corresponding 
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fractional-differential equations and solutions are known. In these cases fractional-

differential equations are:  

The solutions to equations (A.2) and (A.1) are:               

        1* ( ) 2

0

2

0
2

0

2

0

02

0

2

00

~sin
~

~cos ωω
ωω

ωω +
+

++= t
T

tTtT
 , for 0=α ;                        (A.6) 

 2* a.
( )



















−

−

+−=
−

4
sin

4

4
cos

4

12

0
4

12

0

0

4

12

00
2

2
1 ω

ω
ω

ω

ω
ω

ω

t
T

tTetT
t                         (A.7) 

for  1=α  and for  2

10
2

1
ωω > . (for  soft creep) or for strong creep: 

     2* b.  

( )



















−

−

+−=
−

2

0

4

1

2

0

4

1

02

0

4

1

0
2

4

4

4

2

1

ω
ω

ω
ω

ω
ω

ω

tSh
T

tChTetT
t 

                                        (A.8) 

for  1=α  and for 2

10
2

1
ωω < . 

For critical case: 

2* c. ( )








+=
−

t
T

TetT
t

2

1

0

0
2

2
2
1

ω

ω 
za 1=α    and  za 2

10
2

1
ωω = .                       (A.9) 

Fractional-differential equation (A.2) for the general case, when α  is real 

number from interval 10 << α   can be solved by using Laplace's transformation. By 

introducing for initial conditions of fractional derivatives in the form (A.4), and after 

taking Laplace's transform of the equation, we obtain the following solution: 

      ( ) ( ){ } ( )
( )

( )
( )∑ ∑

∑ ∑
∞

= =

−−
+

∞

= =

−−
−

−+Γ







−+

+
−+Γ








−==

0 0

2

2

122

0

0 0

2

2

22

0

1

22
1

12
1

k

k

j
j

o

jj
kkk

k

k

j
j

o

jj

kkk

jk

t

j

k
tT

jk

t

j

k
tTtTtT

αω

ω
ω

αω

ω
ω

α
α

α

α
α

α



                                         (A.10) 

or  

( ) ( ){ } ( )
( ) ( )∑ ∑

∞

= =

−−
−









−+Γ

+
−+Γ








−==

0 0

00

2

2

221

2212
1

k

k

j
j

o

jj
kkk

jk

tT

jk

Tt

j

k
ttTtT

ααω

ω
ω

α
α

α


    (A.11) 

 

Graphical presentation of the modes of fractional order  oscillator with one degree 

of freedom 

1.a* Mode like cosines is defined by expression 

( ) ( ) ( )
( )

( )∑ ∑
∞

= =

−−

−+Γ







−=

0 0

2

2

22

,cos
12

1,
k

k

m
m

s

mm

skk

s

k

s
mk

t

m

k
ttT

αω

ω
ωα

α
α

α
 and for 0=α  vibration is linear 

and periodic  and mode is ( ) ( )( )2

1

2

0,cos
cos,

sss
ttT ==

+= αα
ωωα   and for 1=α  vibrations 

are damped and in the form: for 1=α , particular solutions are: 

( ) 42

0
2

1

1,cos
4

1
cos,

2

α

ω

α
ωωα

α

−=
−

=
tetT

t

s
. 
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M    M  
Figure 1.a* Mode like cosines is defined by expression 
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periodic  and mode is ( ) ( )( )2
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2

0,cos
cos, sss ttT ==

+= αα
ωωα   and for 1=α  vibrations are 

damped and in the form: for 1=α , particular solutions are: 
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1.b* Derivative of the mods of like cosines 
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Figure 1.b* Derivative of the mode of like cosines 
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M   M  

M   M  

Figure 1.c* Comparison: Like cos mode 
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Figure 2.a* Comparisson  
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Abstract. The difference between linear and nonlinear reaction systems was 

explained on two simple examples and elaborated on autocatalator as 

minimal model of the reaction system as well as on the model of the real 

complex process: the Bray-Liebhafsky oscillatory reaction.  

 

1. Introduction 

 

The nonlinear reaction systems with feedback being far from thermodynamic 

equilibrium can be in different self organized states. This is of crucial importance for the 

living systems, although this phenomenon can be found everywhere. What is the 

nonlinear reaction system with feedback? The difference between linear and nonlinear 

reaction systems will be explained on two simple examples (Sections 2, 3 and 4) and 

elaborated on autocatalator as minimal model of the reaction system (Section 5) as well 

as on the model of the real complex process: the Bray-Liebhafsky oscillatory reaction 

(Section 6). 

 

2. Linear reaction system  

 

One typical example of linear process is the following homogeneous chemical reaction 

realized in isothermal closed reactor: 

 
1

1

k

k
A X

−

→←                                                                                (R1.1) 

 
2

2

k

k
X B

−

→← .                                                                              (R1.2) 



68

 LJILJANA  KOLAR-ANIĆ AND ŽELJKO ČUPIĆ 

In this reaction scheme that we call model, reactant A transform to product B via 

intermediate X. The rate constants of forward reactions are denoted by k1 and k2, 

whereas the ones for reverse reactions are denoted by k-1 and k-2. The reaction rates are 

the product of corresponding rate constants and concentrations of all species that take 

place in considered reaction ( 1 1= kv a , 1 1kv x− −= , 2 2= kv x , and 2 2= kv b− −  where a, x 

and b stand for concentrations of A, X and B at any time t). [1-9] 

 Since both reactions are reversible, the overall process can be described by the 

summarized stoichiometric relation A → B if initial concentration of B is relatively 

small, or B → A if the concentration of species B is high enough at the initial moment. 

Hence, depending on initial conditions species A and B can be either reactants or 

products. As such these species are external ones and their concentrations a and b 

determine the dynamic state of the system and can be considered as one kind of the 

control parameter. On the other side, the intermediate X as the internal species does not 

appear in the stoichiometric relations A → B or B → A. Therefore it reflects the state of 

the system in any arbitrary moment t. 

 

2.1. Equilibrium stationary state 

 

In the equilibrium stationary state, the detailed balance of the reactions must be attained. 

In other words, all particular reactions (reaction steps) must be in equilibrium, that is, 

for every reaction in the reaction model, the rate of reactions in both directions would be 

equal. Such state may be attained when time tends to infinity. In the considered case, the 

equilibrium stationary state is reached when both relationships between reaction rates 

1 1v v−=  and 2 2v v−=  are simultaneously satisfied. Thus we can write:  

 1 eq 1 eqk ka x−=  (1.1) 

 2 eq 2 eqk kx b−= . (1.2) 

Here, by eqa , eqx  and eqb , the equilibrium concentrations of mentioned species are 

denoted. The above relations give us the equilibrium concentration of intermediate 

species X ( eqx )  

 1 2
eq eq eq

1 2

k k

k k
x a b−

−

= =                                                                      (2) 

as well as the ratio between the equilibrium concentrations of reactants eqa  and eqb   

 
eq1 2

1 2 eq

k k

k k

b

a− −

= .                                                                                  (3) 

 It means that the equilibrium stationary state is defined by the ratio of rate 

constants of particular reaction steps or by the ratio of the concentrations of the external 

species. 
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2.2. Nonequilibrium stationary state 

 

Beside the equilibrium stationary state, in the above reaction system we can also analyze 

the nonequilibrium stationary states in which system can be during the course of 

reaction, that is, between t = 0 and t → ∞. They are realized when the intermediate 

species X is in the stationary state. The time evolution of the concentration of this 

species is defined by the above model. Following the law of mass action, it is described 

by the following differential equation  

 1 1 2 2 1 2 1 2

d
  = k k (k k )

d

x
v v v v a b x

t
− − − −= − − + + − +                            (4) 

which can be written in the form  

 
d

k
d

x
x

t
= λ − .                                                                                    (5) 

Here 1 2k k k−= +  is a constant and 1 2k ka b−λ = +  is the parameter that changes 

during the course of reaction since it depends on the concentrations of external species A 

and B, and hence, depends on time. 

 In the nonequilibrium stationary state d / d 0x t =  whereas d / d 0r t ≠  and 

d / d 0b t ≠ . The stationary concentration of the intermediate species X ( ssx ) is given by 

the expression  

 ss
k

x
λ

= .                                                                                          (6) 

 Dependence of the stationary concentration of the intermediate X ( ssx ) on the 

parameter λ, which is a measure of distance from equilibrium of the above considered 

reaction system, is given schematically in Fig 1.(a). There is a range of ssx  values, that 

is, there are a number of non-equilibrium steady states of the one system for different 

values of λ. As λ is a function of the reactant concentrations, there are a number of non-

equilibrium steady states for different values of them. In linear reaction systems, for 

selected value of control parameter λ, there is only one ssx . Consequently, we are 

dealing with monostability. 

 In the closed reactor (batch conditions) the stationary concentration of 

intermediate changes in time since the concentrations of A and B evolve during the 

course of reaction until their constant values at equilibrium, such that a = a(t) and b = 

b(t)). Therefore, in this case, the concentrations of intermediates are only quasi- or 

pseudo- stationary. 

 In open reaction systems as it is the CSTR (Continuously fed well Stirred Tank 

Reactor), where concentrations of reaction species can be controlled from outside in 

desirable period, the nonequilibrium stationary states are really stationary and parameter 

λ, which is function of selected initial concentrations of species, does not change in 
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time. In this case we are also dealing with linear dependence between ssx  and λ with 

slope 1/k. Therefore, such reaction systems are linear. 

 Nevertheless, the considered example (R1) that can be written in the form  

A X B� �  is also linear. Its dynamic states are described by the equation (4) which 

is first order linear differential equation. From kinetic point of view, the reaction where 

one molecule transforms to the other ones is the first order reaction. Besides considered 

example the first order reactions are also A B→ , A B� , A X B→ →  and all others 

similar reactions but under the condition that they are all isothermal. As all other 

reactions are nonlinear, we can see that the number of nonlinear reaction is 

incomparable larger than linear ones and that we need to analyzed them with particular 

attention. In general, for such systems, the stationary concentration of the intermediate 

X ( ssx ) is nonlinear function of the parameter λ, Figs 1.(b) and (c). However, in 

nonlinear reaction systems, for selected value of control parameter λ, can be one 

(Fig.1(b)) or more (fig1(c)) values of ssx . In last case we are dealing with multistability. 

 

 

 

 

 
Figure 1. Steady-state 

concentrations of the intermediate, 

xss, as a function of the parameter λ, 

which denotes the distance of the 

considered dynamic state from the 

equilibrium. (a) Linear dependence; 

(b) nonlinear dependence of the 

monotonous form (monostability); 

(c) nonlinear dependence of the 

nonmonotonous form 

(multistability); dashed line denotes 

the region of instable steady states, 

that is, the instable nonequilibrium 

stationary states. (The figure is 

taken from ref. [9]) 

 

3. Nonlinear reaction system  

 

The nonlinear dynamical system as close as possible to the previous linear one is the 

following model-reaction with one autocatalytic step (R2.1) [3-10]:  

 
1

1

k

k
A 2X 3X

−

→+ ←                                                                      (R2.1) 

          
2

2

k

k
X B

−

→← .                                                                     (R2.2) 
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 Here, as in the previous case (R1), reactant A transform to product B via 

intermediate X. The reaction rates are now little different: 
2

1 1=  kv ax , 
3

1 1kv x− −= , 

2 2= kv x  and 2 2kv b− −= . Once more, since both reactions are reversible, the overall 

process can be described by the summarized stoichiometric relation A → B or B → A.  

 

3.1. Equilibrium stationary state 

 

In the considered case, as well as in the previous one, the equilibrium stationary state is 

reached when both relationships between reaction rates 1 1v v−=  and 2 2v v−=  are  

simultaneously satisfied. However, the reaction rates are different such that:  

 
2 3

1 eq eq 1 eqk ka x x−=  (7.1) 

 2 eq 2 eqk kx b−= . (7.2) 

 The above relations, although different of equations (1) gives us the same 

relations for intermediate concentration of species X ( ssx )  

 1 2
eq eq eq

1 2

k k

k k
x a b−

−

= =  (8) 

as well as the ratio between the equilibrium concentrations of reactants eqa  and eqp   

 
eq1 2

1 2 eq

k k

k k

b

a− −

=  (9) 

 Obviously in the equilibrium stationary state there is no difference between 

these two considered systems. Nevertheless, the nonequilibrium stationary states are very 

different. 

 

3.2. Nonequilibrium stationary state 

 

The nonequilibrium stationary states in which system can be during the course of 

reaction, that is, between t = 0 and t → ∞ can be obtained by analysis of the stationary 

state of the differential equation for the concentration evolution of the intermediate X: 

 
2 3

1 1 2 2

d
k k k k

d

x
ax x x p

t
− −= − − +  (10) 

 In the stationary state we obtain the following cubic equation  

 
3 2

1 ss 1 ss 2 ss 2k k k k 0x ax x p− −− + − =  (11) 

which has three stationary solutions. One is always real whereas other two can be either 

real or conjugate complex. Generally, cubic equation:  
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3 2

1 2 3a a a 0x x x+ + + =  (12) 

may always be transformed to the form without quadratic term by the substitution 

1a / 3y x= + , which gives   

 
3 2 3

2 1 1 1 2 3

1 2 1
(a a ) a a a a 0

3 27 3
y y+ − + − + =  (13) 

 In the considered case by the following substitution 

 1
ss ss

1

k

3k

a
y x

−

= −  (14) 

we obtain  

 

2 2 3 3
3 2 1 1 1 2 2
ss ss2 3 2

1 11 1 1

k 1 k 2 k 1 k k k
( ) 0
k 3 27 3 kk k k

a a a b
y y −

− −− − −

+ − − + − =  (15) 

 Because of this, the possible stationary states that appear in such nonlinear 

systems are often discussed in the literature by means of the abstract mathematical 

model which is also the basis of the considered case (R2):  

 
3d

d

x
x x

t
= − + µ + λ  (16) 

where both µ and λ are the control parameters of the system. The cubic equation for 

evaluation of the stationary concentrations of intermediate X, ssx  written in the form:  

 
3
ss ss 0x x− µ − λ =  (17) 

has either one real and two conjugate complex solutions or three real ones. The mutual 

relation between ssx , µ and λ is presented in Fig. 2.(a).  

Obviously, if we analyze the relation between ssx , as a function that 

characterize steady state of the system in a function of µ and λ as a parameters 

representing the distance of particular steady state from equilibrium, the region with 

multistability can be found. It appears in the region of ssx , µ and λ phase space where 

all three solutions of the cubic equation (17) are real. Two of them are stable, whereas 

the one in the middle is unstable. Therefore, we are dealing with bistability. However, is 

it possible that a real system is in two stable steady states simultaneously? What will be 

if we push the system from thermodynamic equilibrium by variation of one parameter, 

for example λ (Fig. 2.(b), which formally corresponds to Fig. 1. (c))? In that case, with 

increasing the parameter λ, ssx  take first the values characteristic for thermodynamic 

branch until λ = λ2, where it suddenly shift to the other (kinetic) branch. With 

decreasing λ, system follows kinetic branch until λ = λ1, where it shift to 

thermodynamic branch. Thus, in the system with bistability, hysteresis is present and 

system will be in one of two stable steady states depending on its history. 
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Figure 2. (a) The influence of the values of parameters µ and λ on the steady states of the 

intermediate xss , eq. (17); (b) Section in xss-λ plane when µ = const. > 0. (c) Section in xss-µ 

plane when λ = const. < 0. (d) Section in xss -µ plane when  λ = 0. (The figure is taken from 

ref. [9]) 

  

The existence of region of multistability depends also on the parameter µ. If 

only one solution of equation (17) is real, ssx  is monotonous function of λ (Fig. 1 (b) 

and Figs. 2 (a), (c) and (d)) and system is always monostable. Thus, by the mathematical 

analysis of the considered mathematical model, as well as the corresponding model of 

nonlinear reaction, we can easily see that multistability is the phenomenon characteristic 

for some nonlinear dynamic systems in the states far from thermodynamic equilibrium. 

 Two examined dynamical systems selected to be as close as possible to one another 

but enough different to be either linear or nonlinear are compared in Table 1. 
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Table 1.  

Linear and nonlinear reaction system

Linear Nonlinear

1

1

k

k
A 2X 3X

−

→+ ←
1

1

k

k
A X

−

→←

2

2

k

k
X B

−

→←
2

2

k

k
X B

−

→←

eq1 2

1 2 eq

k k

k k

b

a− −

=
eq1 2

1 2 eq

k k

k k

b

a− −

=

Equilibrium stationary state:

Nonequilibrium stationary state:

( )1 2 1 2d / d k k k k

k

x t a b x

x

− −= + − +

= λ −

ss
k

x
λ

=

2 3

1 1 2 2

3

d / d k k k kx t ax x x b

x x

− −= − − +

= − + µ + λ

3
ss ss 0x x− µ − λ =

 
 Mathematically speaking, the linear reaction systems are those in which the 

sum of the exponents on the concentrations of each addend in expressions for the 

reaction rate is equal to one. All others are nonlinear. 

 

4. Nonlinear systems with feedback 

 

In the reaction systems the feedback is the phenomenon in which the product of a 

reaction affects the rate of its own formation in a positive or negative sense, the 

autocatalysis and autoinhibition, respectively. As such, it is a crucial part of complex 

selforganization phenomena that occurs in nonlinear systems when they are in a state far 

from equilibrium. [3-10] 
 The feedback in the reaction system can be of chemical and thermal origin. In 

the first case, during the isothermal reaction, appears the chemical species, crucial for 

the further developing of the overall process that controls the rate of its own formation 

or disappearance. In the second case, the formation of the considered chemical species 

significantly changes the temperature of the reaction system, which influence on the rate 

constant of the reaction and consequently the rate of formation of this species. In 

addition, the change in temperature of the reaction system usually has different effects 
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on the rate constants of the individual elementary reactions of the mechanism, as well as 

their relations, which further affects the selforganization phenomena. Only nonlinear 

reaction systems with feedback can have instability regions. Thus, only such kind of 

reaction systems can be in bistable or any oscillatory state including mixed-modes and 

chaos. [3-13] 

 From the beginning, we discuss here isothermal reaction systems, only. In the 

already considered cases (R1) and (R2), the bistability is found only in the model with 

autocatalytic step, that is, in the model with one form of a feedback. The corresponding 

model without autocatalytic step, was linear and did not exhibit bistability. 

 From mathematical point of view all is clear: differential equations (4) and (10) 

correspond to linear and nonlinear system, respectively. From chemical point of view 

there are problems. First we added 2X on both sides of the same equation and obtained 

nonlinear system with bistability! However, addition of the same substance to both sides 

of the chemical reaction should not change composition of the system. Nevertheless, 

without these terms, the system is linear. Second, without any amount of intermediate X 

at the beginning of reaction, this reaction cannot begin. These two problems will be 

discussed in the following sections. 

 

5. Model of minimal nonlinear reaction system with feedback: Autocatalator  

 

Thus, we need to have autocatalytic step or any other form of feedback if we want that 

our model can simulate oscillatory evolution of intermediate species. However, the 

reaction will not start without any initial amount of this intermediate. The problem can 

be solved in two manners. First, we can analyze the process described by the model of 

the form (R2) which performs in open reactor where there is a permanent flow of the 

considered species through it. The other possibility, more interesting for us, is to 

examine the process in the closed reactor where additional reactions control the 

evolution of intermediate from the beginning. One such model close to (R2) but more 

realistic, is the autocatalator. [3,11,14] It is well-known minimal model of the chemical 

reaction that takes place in a closed reactor at isothermal conditions, which exhibits all 

the characteristics of nonlinear nonequilibrium systems. It was created by combination 

of cubic autocatalytic reaction (R.2.1) and a series of successive reactions:   

 R A B P→ → →  (R3) 

In this case reactant R transform to a product P by both autocatalytic and noncatalytic 

pathways parallelly. It is described by the following model    

 0k
R A→ ,                         0 0( k )v r=  (R4.0) 

 1k
A B→ ,                         1 1( k )v a=  (R4.1) 

 2k
A 2B 3B+ → ,               

2
2 2( k )v ab=  (R4.2) 

 3k
B P→ ,                          3 3( k )v b=  (R4.3) 
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Here v0, v1, v2 and v3 denotes the reaction rates of the corresponding reaction steps, 

whereas k0, k1, k2 and k3 are their rate constants. The time dependent concentrations of 

the species R, A, B and P are denoted by r, a, b and p. 

 The kinetic equations for the time evolution of the concentration of r, a and b 

are given by the following system of differential equations of the first order:   

 0

d
k

d

r
r

t
= −  (18) 

 
2

0 1 2

d
k k k

d

a
r a ab

t
= − −  (19) 

 
2

1 2 3

d
k k k

d

b
a ab b

t
= + −  (20) 

 The concentration of the product P is defined by the law of conservation:  

 0 0 0 0( ) ( )p r a b p r a b= + + + − + +  (21) 

Where the index “0” denotes the initial concentrations of relevant species. 

 Since all reactions in the model are irreversible, the equilibrium stationary state 

denoted by „eq“, will be achieved when the concentrations of species R, A and B will be 

equal to zero. Then:  

 eq eq eg 0r a b= = = ,     eq 0 0 0 0p r a b p= + + + . (22) 

 It means that the equilibrim can be realized here only when all species are 

transformed to the product P. 

 Examination of the equilibrium stationary state is important to test the 

consistency of the model, only. However, we are focused on the nonequilibrium 

stationary states that can be realized in considered reaction system between t = 0 and the 

end of reaction when t → ∞. 

 In nonequilibrium stationary state (steady state) the rate of time evolution of 

intermediary concentrations is equal to zero, that is,  

 
2

0 1 ss 2 ss ssk k k 0r a a b− − =  (23) 

 
2

1 ss 2 ss ss 3 ssk k k 0a a b b+ − =  (24) 

 The steady state concentrations of intermediates A and B have the following 

values  

 0
ss

3

k

k

r
b =  (25) 

 

2
0 3

ss 2 2 2
0 2 1 3

k k

k k k k

r
a

r
=

+
 (26) 
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 As the concentration of intermediates in nonequilibrium stationary state are 

clearly the functions of concentration of the reactant R, they are not constant. There are 

a number of non-equilibrium stationary states in which the system can be during the 

reaction. The dependence of ass and bss on the concentration of reactant R is presented in 

Fig. 3. 

 

0.00 0.05 0.10
0.0000

0.0001

a
ss

b
ssa

ss
, b

ss

mol dm
-3

r / mol dm
-3

 
Slika 3. Steady-state concentrations of intermediates A and B, ass and bss , as a function 

of the concentration of reactant r. Here: r0 = 0.1 mol×dm
-3

, k0 = 1×10
-3

 s
-1

, k1 = 1×10
-2

 

s
-1

, k2 = 2.5×10
9
 dm

6
×mol

-2
 s

-1
, k3 = 1 s

-1
. (The figure is taken from ref. [9]) 

 

 At high values of the reactant concentration, the stationary concentration of 

intermediate bss is higher than the stationary concentration of intermediate ass, and vice 

versa (Fig. 3). The cross section is in the point:  

 3 1
ss ss

2

k k

k
a b

−
= =  (27) 

 3 3 1
ss ss

0 2

k k k
( = )=

k k
r a b

−
. (28) 

 The maximal value of steady-state concentration of ass  

 3
ss,max

1 2

k

2 k k
a =  (29) 
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is achieved when 

 

2
1 3

max 2
0 2

k k

k k
r = . (30) 

 Reactant concentration at time t can be easily calculated by integration of 

equation (18) and is given by the expression  

 0k
0e

t
r r

−= . (31) 

 Substituting the value of r into the eqs (25) and (26), the steady state 

concentrations of the intermediates are obtained as a function of time:   

 0k0
ss 0

3

k
e

k

t
b r

−=  (32) 

 
0

0

k2
0 3 0

ss 2k2 2 2
0 2 0 1 3

k k e

k k e k k

t

t

r
a

r

−

−
=

+
. (33) 

  

 

 

0 6000
0.0000

0.0001

t (a
ss, max

)t (a
ss

=b
ss

)

b
ss

a
ss

a
ss

, b
ss

mol dm
-3

t / s

 
Figure 4. Steady-state concentrations of intermediates A and B, ass and bss , as a function 

of time. The initial conditions are equal to the ones given in Fig. 3. (The figure is taken 

from ref. [9]) 

 

 The dependence of ass and bss on the concentration of reactant R is presented in 

Fig. 4. Obviously, the concentration of bss decreases exponentially during the reaction, 

whereas the concentration of ass changes along the curve with maximum. The moment 
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of intersection of the curves ss ss( )t a b=  corresponds to the point where r is given by 

(28). In this point the following equality is satisfied  

 0k0 3 1
0

3 2

k k k
e

k k

t
r

− −
= . (34) 

Consequently   

 0 0 2
ss ss

0 3 3 1

k1 k
( ) ln

k k k k

r
t a b


= =  − 

. (35) 

 The maximum of the curve ass = f(t) is at the time:  

 

2 2
0 0 0 2 02

max 2
0 3 1 0 1 3

k k k1 k 1
ln ln

k k k 2k k k

r r
t


= = 

 
. (36) 

 However, if the full integration of equations (18) - (20) is performed, we see that the 

evolution of the concentration may significantly deviate from the curves representing the 

evolution of the nonequilibrium stationary state, as illustrated in Figure 5. If the initial 

concentrations of intermediates A and B are zero, they first increase rapidly until reaching 

certain concentration values characteristic for nonequilibrium stationary states. Then they 

follow the course of the steady state concentration curves (Fig. 4, eqs. (32) and (33)). After 

some time, the concentration of intermediates begins to oscillate around the steady state. At 

the same point (the bifurcation point) the non-equilibrium steady state of the reaction system, 

which had previously been stable and attractive, becomes unstable and repulsive. Oscillations 

are strictly defined and have different forms depending on the given parameters. Sudden 

cessation of oscillations means that system crosses through the second bifurcation point, when 

nonequilibrium stationary state becomes stable again. Then the concentration of intermediates 

A and B again obey the laws (32) and (33), and continue to follow the monotonic changes as 

shown in Figures 4 and 5. 

 

6. Model with feedback loop instead feedback step 

 

The second important problem underlined at the end of Section 3 is the fact that we 

construct the nonlinear model by addition of 2X on both sides of equation (R2.1). 

Actually, this artificial chemical reaction is the summarized stoichiometric network of a 

small submodel where one or more additional intermediate species are present and 

interact one with the other. Hence the feedback loop that exists in this submodel is 

presented by feedback reaction (or step) where other intermediate species are invisible. 

To make a model more real we need to return the “invisible” intermediates what is often 

very complex procedure. The scientists needed about fifty years to transform the model 

with artificial step proposed by Lotka having idea to explain oscillatory evolution in 

population (15), to the model without this step but with feedback loop to explain an 

oscillatory reaction (16). Mentioned problem will be discussed on one such model 

proposed to explain dynamic states of the hydrogen peroxide decomposition in the 
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presence of iodate and hydrogen ions (the Bray-Liebhafskly (BL) oscillatory reaction) 

[17, 18] 

0 2 0 0 0 4 0 0 0 6 0 0 0
0 .0 0

0 .0 5

0 .1 0   

r

m o l  d m
- 3

t  /  s
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0 . 0 0 0 1
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m o l  d m
- 3

t  /  s

 

0 2 0 0 0 4 0 0 0 6 0 0 0
0 .0 0 0 0

0 .0 0 0 1

  
b

m o l  d m
- 3

t  /  s

 
Figure 5. Time evolution of the reactant R (a), intermediate A (b) and intermediate B (c) 

in the case of autocatalator (R4). The initial conditions are equal to the ones given in Fig. 

3. (The figure is taken from ref. [9]) 

 3IO , H

2 2 2 22H O 2H O O
− +

→ + . (D) 

The first attempt to elucidate the mechanism of this very complex process was 

unsuccessful, although the experimental investigations together with their explanations 
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were excellent. Namely, already in the first report about the BL reaction, [17] Bray 

noticed that mentioned reaction is the result of the reduction (R) of iodate to iodine and 

the oxidation (O) of iodine to iodate by the following complex reaction scheme satisfied 

 3 2 2 2 2 22IO 2H 5H O I 5O 6H O
− ++ + → + + . (R) 

 2 2 2 3 2I 5H O 2IO 2H 4H O
− ++ → + + . (O) 

Their rates tend to become equal and we usually observe only a smooth decomposition 

described by reaction (D) where iodine, as intermediate species, does not appear in this 

stoichiometric relation. (Summing reactions (R) and (O) we obtain 5(D).) However, in a 

narrow range of concentrations, the alternating domination of processes (R) and (O) is 

also possible resulting in periodic increase and decrease of the iodine concentration 

during stepwise decrease of the hydrogen peroxide and increase of the oxygen 

concentrations (Fig.6). This apparently simple oscillatory reaction, consists of a complex 

homogeneous catalytic oscillatory process involving numerous iodine intermediates such 

as I
-
, HIO, HIO2 and I2O beside already mentioned iodine (I2) that all oscillates. [9, 19]  

 

 
Figure 6. Time evolution of the BL oscillatory reaction in the closed reactor. In particular, time 

evolution of (a) the evaporated oxygen from the reaction solution, (b) iodine concentration, (c) 

logarithm of the iodide concentration presented by the potential of iodide-ion sensitive 

electrode and (d) the hydrogen peroxide concentration presented by means of absorbance of 

the complex between the hydrogen peroxide and titanil oxalate. Initial conditions in mol×dm
−3

 

in Fig. (a): [H2O2]0 = 1.90×10
−1

, [KIO3]0 = 9.40×10
−2

, [H2SO4]0 = 3.65×10
−2

, (T = 60.0 °C); 

in Fig. (b): [H2O2]0 = 3.27×10
−1

, [HIO3]0 = 9.00×10
−3 

 (T = 25.0 °C) in Figs. (c) and (d): 

[H2O2]0 = 1.98×10
−2

, [KIO3]0 = 6.62×10
−2

, [H2SO4]0 = 2.45×10
−2 

 (T = 60.0 °C). (Figures (a) 

and (b) are taken from ref. 17, and Figures (c) and (d) from ref. 20). 

 

 Consequently, the above reaction scheme had to be extended with new 

intermediate species and reactions between them. Among proposed models, one of the 

most successful in attempts to simulate numerous obtained experimental phenomena is 

the following one [21]:  
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3IO I 2H
− − ++ +  �  

2HIO HIO+  (R5.1),(R5.-1) 

2HIO I H
− ++ +  →  

2 2I O H O+  (R5.2) 

2 2I O H O+  �  2HIO  (R5.3),(R5.-3) 

HIO I H
− ++ +  �  

2 2I H O+  (R5.4),(R5.-4) 

2 2HIO H O+  →  
2 2I H O H O

− ++ + +  (R5.5) 

2 2 2I O H O+  →  
2HIO HIO+  (R5.6) 

2 2 2HIO H O+  →  
3 2IO H H O
− ++ +  (R5.7) 

3 2 2IO H H O
− ++ +  →  

2 2 2HIO O H O+ +  (R5.8) 

 

 The oscillatory evolution of intermediates can be obtained by the whole model 

as well as by the first six reactions [16] or some other combinations of them [21-23]. 

However, if we want to simulate all experimentally found dynamic states, at least the 

model having seven reactions (first six and eight one) is necessary. [24, 25] 

 The above model consisting of reactions (R5.1) to (R5.8), denoted as (R5), have 

all the necessary features to describe the BL reaction as a complex nonlinear process 

with the region of multistability where different oscillatory evolutions including mixed-

mode oscillations, deterministic chaos and other phenomena [9, 26-29] may be found. In 

fact, this model has 10 species and 11 reactions since three of them are reversible ones. 

Five of these ten species are independent intermediate ones such that we are dealing 

with the five dimensional system and need to solve simultaneously five differential 

equations of the first order.  

 With aim to present results in more mathematical language, we shall rewrite 

above presented model in function of independent variables only, taking into account 

following substitutions: I
–
 ≡ X, HIO ≡ Y, HIO2 ≡ Z, I2O ≡ W and I2 ≡ Q). Denoting the 

concentrations of the mentioned species by x, y, z, w and q, the time evolution of the 

system can be described by the following set of differential equations based on the 

proposed mechanism between the species included in the model and mass-action 

kinetics [1, 2]: 
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where concentrations of external species, taken as constant, are included in the rate 

constants. By solving these differential equations we can simulate different dynamic 

states of the considered system (Fig. 7 and Fig. 8) similar to the ones found 

experimentally.  

 

 
 

Figure 7. Time evolution of the BL oscillatory reaction in the closed reactor presented by 

evolution of concentrations of particular species obtained by the numerical simulations based 

on the model for the BL reaction (R5). (The figure is taken from ref. [9]) 
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(d) 

  

Figure 8. Numerical simulations of the oscillatory dynamics of the BL reaction realized in 

open reactor (segment from 1200 to 1500 min) presented by means of the iodide 

concentration (in mol×dm
-3

). (a) Regular oscillations, kf = 4.70×10
-3

 min
-1

; (b) and (d) 

mixed-mode oscillations, kf = 4.90×10
-3

 min
-1

 and kf = 5.10×10
-3

 min
-1

, respectively; (c) 

deterministic chaos with chaotically distributed number of the small-amplitude oscillations 

between the large-amplitude ones, kf = 5.00×10
-3

 min
-1

. (The figure is taken from ref. [9]) 
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 On the other side, the phase space portrait similar to the one obtained by 

mathematical model (R2) is generated by analyzing relations between hydrogen 

peroxide, iodine and iodide concentrations in the selected steady states (Fig.9). A more 

detailed analysis of this model and its sub-variants can be found in the references [16, 

21-25, 30-33]. 

 

 
 

Figure 9. The effect of the concentrations of hydrogen peroxide and iodine on the steady 

state concentration of iodide in the vicinity of bifurcation point F. The rate constants 

necessary for numerical calculations are taken from ref. [21]. (a) Folded surface F([I
−
]ss, 

[I2], [H2O2]) = 0; (b) section in the plane [H2O2] = const; (c) section in the plane [I2] = 

const = value of [I2] in bifurcation point F; (d) projection of the instability region on the 

[H2O2] - [I2] plane.[8] (The figure is taken from ref. [9]) 

 

 Thus, all main nonlinear phenomena found experimentally are simulated by the 

proposed model without any direct feedback step. However, in this model there are 

feedback loops. They can be obtained by different combinations of the reactions that 

exist in the model (R5). In particular, the autocatalysis is the overall stoichiometric 

relation obtained from the following subsystems 
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 (R5.1) + (R5.2) + (R5.3) + 2(R5.5) ⇒  

     3 2 2 2 2HIO 2H O 2HIO 3HIO 2O 2H O+ + → + +  

 

 (R5.-1) + (R5.2) + (R5.3) + 2(R5.8) ⇒  

     3 2 2 2 2HIO 2H O HIO 2HIO 2O 2H O+ + → + +  

 

 (R5.2) + (R5.3) + (R5.4) + (R5.5) ⇒  

     3 2 2 2 2HIO 2H O HIO 2HIO 2O 2H O+ + → + + , 

 

whereas the autoinhibition is the stoichiometric result of other subsystems 

 

 (R5.-3) + (R5.6) + (R5.7) ⇒  

     2 2 3 22H O 2HIO HIO HIO 2H O+ → + +  

 

 (R5.-1) + (R5.2) + (R5.-3) + 2(R5.6) ⇒  

     2 2 3 22H O 3HIO 2HIO HIO 2H O+ → + + . 

 

 Finally, we can conclude that in the model (R5) there are both the cubic and the 

quadratic autocatalysis and autoinhibition in a form of feedback loop. 

 

7. Conclusion  

 

The difference between linear and nonlinear reaction systems was underlined and 

discussed on several examples. The main notions together with corresponding 

definitions are given on two very simple models and later elaborated on autocatalator as 

known minimal model of the oscillatory reaction systems as well as on the model of the 

real complex process: the Bray-Liebhafsky oscillatory reaction. In this way, the possible 

solutions of the problems that arise in mathematical models are offered and applied on a 

real reaction system: the Bray-Liebhafsky oscillatory one. It was shown that only 

nonlinear processes with feedback can be in different oscillatory self organized states. 
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Abstract. The detailed mechanism of the Bray-Liebhafsky oscillatory reaction 

is not known until now, although modelling of this complex process has been 

one of important subjects of investigations in Nonlinear dynamics. Short 

overview of the main proposed models is presented here with aim to introduce 

readers with this subject and help in intention to find some improvements.  

 

 

1. Introduction 

 

A reaction is said to be oscillating if the concentration of one or more their intermediates 

does not vary monotonically, but periodically pass through maximum and minimum 

values [1]. 

The Bray-Liebhafsky reaction [2, 4], the hydrogen peroxide decomposition into 

the water and oxygen in the presence of hydrogen and iodate ions,  

 3
IO , H

2 2 2 2
2H O 2H O O

− +

+→ . (BL) 

is the first discovered and one of the most interesting complex nonlinear (oscillatory) 

chemical reaction [3, 5-82]. 

In 1921 Bray [2] noticed that (BL) reaction can be realized by two different 

manners that play a role of complex reaction routes. Thus, the global reaction, BL, is the 

result of the reduction, R, of iodate to iodine and the oxidation, O, of iodine to iodate by 

the following reaction scheme: 

3 2 2 2 2 2
2IO 2H 5H O I 5O 6H O

− +
+ + → + +                                     (R) 

2 2 2 3 2
I 5H O 2IO 2H 4H O

− +
+ → + +                                                (O) 
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It is significant to note that this is the first, though global, model of BL reaction 

without possibility to generate oscillatory evolution of the concentration of species.  

When the rates of processes (R) and (O) tend to become equal (or when the 

reaction (R) continuously dominate over reaction (O), and vice versa) we observe only a 

smooth decomposition described by reaction (BL). Then, iodine as intermediate species 

does not appear in this stoichiometric relation. However, in a narrow range of 

concentrations the alternating domination of processes (R) and (O) is also possible. The 

main reason for oscillating phenomena is the dual effects of hydrogen peroxide in the 

whole process. In the other words, hydrogen peroxide acts as the oxidant but also as the 

reductant in the reaction system. This can result in periodic increase and decrease of the 

iodine concentration as well as in periodic cascade decrease and increase of the 

hydrogen peroxide and oxygen concentrations, respectively, which is the typical 

behaviour of external species in homogeneous oscillatory reactions [27, 78]. 

Ten years after Bray wrote mentioned paper, Liebhafsky started to work with 

him [4] and because of their significant and extensive research the reaction of hydrogen 

peroxide decomposition was named the Bray-Liebhafsky reaction. 

Numerous dynamic states, such as periodic and aperiodic (chaotic) oscillatory 

evolution (including mixed-mode oscillations and other unusual kinetic phenomena) are 

experimentally obtained [54, 62, 69]. This apparently simple oscillatory reaction 

comprises a complex homogeneous catalytic oscillatory process involving numerous 

iodine intermediates such as I2, I
‒
, HIO and HIO2. Hence, the more detailed model 

involving numerous iodine intermediates necessary for explanation of the mechanism, had 

to be proposed. However, detailed mechanism which would simulate all found 

experimental phenomena have not been presented yet, due to existence of numerous 

intermediaries and difficulties in theirs monitoring. 

 Investigation of the Bray-Liebhafsky reaction is important since it can be 

considered as prototype of numerous biochemical processes and oscillatory catalytic 

reactions. Moreover, it can be used as a matrix for catalyst characterization [34, 35, 57, 

63] and quantitative analysis of numerous compounds [49, 59, 67, 73]. 

 Short review on the models of Bray-Liebhafsky oscillatory reaction is given in 

Section 2. The construction of the corresponding differential equations for time evolution 

of the overall process through the time evolution of concentrations of each species taking 

part in the model is presented in Section 3.  

 

2. The significant models of BL reaction  

 

The model of the mechanism of one chemical reaction is a set of stoichiometric reactions 

that are kinetically important for the considered process. Based on such proposed model, 

we create a system of differential equations that describe the time evolution of the 

concentrations of the species involved in it, which then can be solved using numerical 

methods (since it is impossible to do this by analytical ones). 

For an oscillatory reaction as typical nonlinear system, feedback is necessary. 

Feedback in reaction systems can be thermic and chemical, which is of interest in the 

case of Bray-Liebhafsky reaction. If the product of reaction increases its own production, 

we are dealing with autocatalysis and if it decreases its own production, we are dealing 
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with autoinhibition. Model of an oscillatory reaction may contain either direct 

autocatalytic step (such as A+nB (n+1)B→ ) or autoinhibition step (such as 

(n+1)B A nB+→ ), but these two steps can be also obtained by combination of several 

reactions, like it is in all models presented here. 

 Model of the Bray- Liebhafsky reaction should have to contain following 

reaction groups. 

 1) The reactions of iodine and constituents of Dushman reaction [84] 

- - +

3 2 2
IO +5I +6H 3I +3H O→                                                               (D) 

2) The reactions between hydrogen peroxide and iodine species such as I2, 

I
‒
, HIO, HIO2, I2O, I2O2 and IO3

‒ 
[14, 15, 28, 29]. Some of these are 

extremely important for global reaction process and therefore, can be found 

in all mechanism. 

Iodine and oxygen transition from solution to gas phase have been investigated 

for years as a significant process in the Bray-Liebhafsky reaction. Peard and Cullis [9] 

connected appearance of oscillations with iodine removing from the reaction system by 

gaseous oxygen produced in reaction. Shaw and Pritchard [13] concluded that two 

phases are necessary for existence of oscillations in such kind of reactions. Hence, the 

reaction must be treated as heterogeneous. However, even the Bray [2] showed that 

reaction can be carried out sufficiently slow such that gaseous oxygen can exit the 

system by diffusion. Laurenczy and Beck [33] investigated the effect of high pressure on 

the Bray-Liebhafsky reaction. They indicated that the escape of oxygen from liquid phase 

is not indispensable for the oscillations. Therefore, although oxygen removal may have 

an impact on whole reaction system, the reaction can be treated as homogeneous. 

Buchholtz and Broecker [44] concluded that oxygen transition to gas phase results only 

in changes in the location of bifurcation points and that the oscillations originate from 

chemical reactions. Also, by NMR spectra analysis chemical shifts were observed in the 

Bray-Liebhafsky reaction. Stanisavljev et al showed [45] that they depend on the 

complex combination of the effect on bubbles formation and increase in concentration of 

dissolved oxygen. 

 The difficulties in describing the reaction mechanism lie on the facts that there 

are only a few variables which can be varied independently in order to observe the 

effects and the kinetics of the overall process. Also, system is sensitive to light [19, 61],  

pressure [42, 46], stirring [42, 46], and microwaves [64, 65], ... 

 

2.1. Model proposed by Liebhafsky and Wu 

 

The first (nonradical) model is proposed by Liebhafsky and Wu [19] in 1974  

(Table 1). 

As it can be seen, this model of mechanism is consisting of: three reversible 

reactions, (LW 1)-(LW 3), reaction of I
+
 oxidation, (LW 4), HIO reduction, (LW 5), and 

reactions in which HIO2 is produced, (LW 6)-(LW 10). Ninth reaction is usually 

negligible [23].  
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Although Clarke claimed that the model proposed by Liebhafsky and Wu is of a 

form that can generate an unstable steady state, to the best of our knowledge no one 

conformed his assertion. Nevertheless, this model of the Bray-Liebhafsky reaction is 

important as it was a basis for developing of other ones. 

  

Table 1. Liebhafsky and Wu model [18]. 

+ -

2 2
I +H O HIO+H +I→←                                                        (LW1) 

+ -

2
I I +I→←                                                                              (LW2) 

+ - -

3 2
2H +IO +I HIO+HIO→←                                                      (LW3) 

- +

2 2 2
I +H O H +HIO  →                                                              (LW4) 

+ -

2 2 2 2
HIO+H O H +I +H O+O→                                                  (LW5) 

+ - - -

3
2H +IO +2I 2HIO+IO→                                                     (LW6) 

+ -

2
HIO +H +I 2HIO→                                                               (LW7) 

2 2 2 2 2
H O +HIO HIO+H O+O→                                                   (LW8) 

+ -

2
HIO +H +I 2HIO→                                                               (LW9) 

- +

2 2 3 2 2 2
H O +IO +H HIO +H O+O→                                          (LW10) 

 

2.2. Models proposed by Sharma and Noyes and Edelson and Noyes 

 

In 1976 Sharma and Noyes were proposed model [20] based on Deng’s observation [11] 

that radicals participate in processes (O) (which is said to be a branched chain reaction) 

and own research regarding on the influence of light upon BL reaction [19]. From 

systematic data set of possible processes they select fourteen important for the Bray-

Liebhafsky reaction (Table 2). 

In 1979 Edelson and Noyes [22] (Table 3) added four reactions, (EN 15)-(EN 

18), to the Sharma and Noyes model (Table 2). As can be seen by comparing these two 

models, in the Sharma and Noyes one, only first, seventh and last, fourteenth, processes 

are reversible, whereas Edelson and Noyes placed all of them to be reversible. 

First four reactions, (EN 1)-(EN 4), (as well as (SN 1)-(SN 4)) represent I
‒
 

oxidation. Nonradical hydrogen peroxide oxidation to oxygen is given by: (EN 5) (i.e. 

(SN 5)), (EN 15) and (EN 16), whereas step (EN 15) does not contribute significantly 

during the most time of interest. Hydrogen peroxide reduction by the radicals containing 

iodine takes place by sixth and seventh reaction in both models. Although, HOO
•
 and HO

• 
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radicals can react in many ways, reactions (EN 8) (i.e. (SN 8)) and (EN 9) (i.e. (SN 9)) 

are the most probable (the fastest), and the only involved in model. Two following process 

that include fast reactions and sequence of following five reactions (EN 6)-(EN 11) (i.e. 

(SN 6)-(EN 11)) without EN 7 (i.e. SN 7), represents a chain of propagation reactions in 

which the final step regenerates radical necessary for the first step. In twelfth reaction, the 

radical species form the nonradical ones, with seventh and ninth, this reaction is there to 

initiate the chain sequence mentioned above. The only included chain-terminated steps are 

(EN 13) (i.e. (SN 13)), (EN 17), and (EN 18), whereas the last one is the most important. 

In fourteenth reaction, oxygen is removed from solution to gas phase (in all other reactions 

in this and models that follow, O2 represents dissolved oxygen although it is not written 

as O2(aq).  

 

Table 2. Sharma and Noyes model [20].  

- +

2 2 2
HIO+I +H I +H O→←                                                            (SN1) 

+ -

2
HIO +H +I 2HIO→                                                                (SN2) 

+ - -

3 2
2H +IO +I HIO+HIO→←                                                        (SN3) 

- +

2 3
2HIO IO +HIO+H→                                                             (SN4) 

+ -

2 2 2 2
HIO+H O H +I +H O+O→                                                (SN5) 

• •

2 2 2
IO +H O HIO +HO→                                                            (SN6) 

• + - •

2 2 3
2

IO +H O H +IO +HO→←                                                    (SN7) 

• - + •

2 2
HOO +I I +O +H +I→                                                        (SN8) 

• •

2 2 2
HO +H O H O+HOO→                                                         (SN9) 

• •

2
I +O OOI→                                                                         (SN10) 

• - + •

OOI +I +H HIO+IO→                                                         (SN11) 

+ - •

3 2 2
2

H +IO +HIO 2IO +H O→                                                 (SN12) 

•

2 2 2
2 H O +OHOO →                                                                (SN13) 

2(aq) 2(g)
O O→←                                                                           (SN14) 
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Edelson and Noyes [22] claimed that rate constants of reactions (EN 2), (EN 4), 

(EN 11), (EN 12), and (SN 14) are the only disposable parameters to be assigned to 

generate behaviour observed in the experiments, since rate constants of reactions (EN 1), 

(EN 3), 

(SN 5), (SN 9), (SN 13), and (SN 16) are known with the moderate confidence from the 

experiment in [20] and the other reaction rate constants ((EN 6), (EN 7), (SN 8), (SN 

10), 

(SN 15), (SN 17), and (SN 18)) have no influence on the overall process. That is, only 

by changing them, one cannot obtain nonlinear phenomena. Further, they said that for 

oscillations existence the most important step is (EN 18). 

 

Table 3. Edelson and Noyes model [23].  

- +

2 2 2
HIO+I +H I +H O→←                                                            (EN1) 

+ -

2
HIO +H +I 2HIO→                                                               (EN2) 

+ - -

3 2
2H +IO +I HIO+HIO→←                                                      (EN3) 

- +

2 3
2HIO IO +HIO+H→                                                             (EN4) 

+ -

2 2 2 2
HIO+H O H +I +H O+O→                                                 (EN5) 

• •

2 2 2
IO +H O HIO +HO→                                                         (EN6) 

• + - •

2 2 3
2

IO +H O H +IO +HO→←                                                     (EN7) 

• - + •

2 2
HOO +I I +O +H +I→                                                         (EN8) 

• •

2 2 2
HO +H O H O+HOO→                                                        (EN9) 

• •

2
I +O OOI→                                                                         (EN10) 

• - + •

OOI +I +H HIO+IO→                                                         (EN11) 

+ - •

3 2 2
2

H +IO +HIO 2IO +H O→                                                   EN12) 

•

2 2 2
2 H O +OHOO →                                                                (EN13) 

2(aq) 2(g)
O O→←                                                                           (EN14) 
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2 2 2 2 2
HIO +H O HIO+O +H O→←                                             (EN15) 

- +

3 2 2 2 2 2
IO +H O +H HIO +O +H O→←                                       (EN16) 

• • -

2 2
I +HOO I +O +H O→←                                                         (EN17) 

•

2
2I I→←                                                                                 (EN18) 

 
 

Figure 1. Experimental results (on the left side, reprinted with permission from [20]. Copyright (1976) 

American Chemical Society.) and numerical simulation obtained by the model proposed by Edelson and 

Noyes (on the right side, reprinted with permission from [22]. Copyright (1979) American Chemical 

Society.). 

 

In the Bray-Liebhafsky reaction a continuous production of oxygen occurs. 

Hence, its concentration in solution can be much higher (than under the normal 

conditions) because of supersaturation [18, 19, 29, 36, 40]. Therefore, it can be written 

[O2(aq)]ss = m[O2(aq)]sat, where [O2(aq)]ss is the oxygen steady state concentration and m>1. 

Edelson and Noyes tried to explain this process by linear supersaturation kinetics: 
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2(aq)

EN14 2(aq) 2(aq) sat

[ ]
k ([ ]-[ ] )

d O
O O

dt
− =

                                                  (eq 1)

 

where 
2(aq)

[ ]O represents total concentration of dissolved oxygen and 
ES14

k  is the rate 

constant of reaction (EN 14). However, this required m to be order of 100, which is not 

realistic. 

Consequently, they tried with fourth root supersaturation kinetics: 

2(aq) 1/ 4

EN14 2(aq) 2(aq) sat

[ ]
k ([ ]-[ ] )

d O
O O

dt
− =

                                             (eq2) 

Oscillations were obtained for m=2, but their lasting were not satisfactory (Fig. 1), since 

hydrogen peroxide consumption was too rapid, due to the radical processes. If we take  

[H2O2] = const (CSTR conditions), still remains the problem that concentration of 

dissolved oxygen would be unrealistic. Edelson and Noyes believed problem was in 

release of supersaturation oxygen rather than in the model of chemical mechanism, so 

the kinetics of process (EN 14) cannot be described by (eq 1) neither (eq 2) because of 

the process complexity.  

 

 

2.3. Model proposed by Treindl and Noyes 

 

In 1993 Treindl and Noyes [32] composed the skeleton mechanism (Table 4), (TN 1)-

(TM 10), by analysis of the known experimental results. 

They claimed that only negative ions and radicals in small but non-negligible 

concentrations: OH
‒
, OOH

‒
, H

•
, HO

•
 and HOO

•
 are included in the model. Moreover, 

they said that I3
‒
 and IO2

•
 might be included and I

•
 must be invoked to explain the 

photochemical sensitivity of the reaction [19, 20]. Also, Treindl and Noyes have chosen 

hydrogen peroxide to react only with HIO, due to the fact that there was no evidence 

about reaction between hydrogen peroxide and HIO2. 

 

Table 4. Treindl and Noyes model [32]. 

-
- +

3 2
IO +I +2H HIO +HOI→                                                       (TN1) 

- +

2
HIO +I +H 2HIO →                                                               (TN2) 

- +

2 2
HOI+I +H I +H O→←                                                             (TN3) 

- +

2 2 2 2
HOI+H O I +H +O +H O→                                                  (TN4) 

-
+

2 2 2
I +H +H O HOI+H O→                                                       (TN5) 

•

2
I 2I→←                                                                                   (TN6) 
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• •

2
I +O IOO→←                                                                       (TN7) 

• •

2
IOO IO→                                                                            (TN8) 

• - +

2 2 3 2
2IO +H O IO +H +HIO→                                                   (TN9) 

2(aq) 2 (g)
O O→                                                                            (TN10) 

Although, Treindl and Noyes could not simulate reaction by proposed model, 

they had believed it can “explain at least a very large portion of the observations which 

have been made” in the Bray-Liebhafsky reaction system. Theirs faith in the ability of 

the model to provide oscillations had been based on the fact that production of iodine is 

autocatalytic. Noyes et al [37] as well as Ren et al [70] showed that iodine and oxygen 

oscillate and that oscillations do not involve a true limit cycle.  

 

2.3. Model proposed by Schmitz and its variants 

 

In 1987 Schmitz [29] proposed the simplest model for the Bray-Liebhafsky 

reaction mechanism. It is a nonradical model without any direct autocatalytic or 

autoinhibition step and it is the first of this kind in which oscillations were obtained. Here 

crucial reactions in the process of HIO oxidation into compounds with higher oxidation 

number occur by I2O participation. This model downside is fact that I2O is not found 

experimentally in the Bray-Liebhafsky reaction. Schmitz’s model consists of reaction (M 

1)-(M 6) presented in Table 5 and describes well only the reaction process in medium area 

of acidity [30], but no in high and low acidity solution. This lacks are solved by adding 

reactions (M 7) [31] and (M 8) [38] respectively. Model with mentioned improvements 

are also known as model 1-8 or M (1-8) and it is given in Table 5. 

Except the reactions with I2O, all of them can be found in the Liebhafsky and 

Wu model and earlier papers. Thus, reaction (M 1) is analysed in [3, 5, 18], (M 4) in 

[10, 17, 18], (M 5) in [7,16, 18], (M 7) in [4], and (M 8) in [5, 18].  

 

Table 5. M (1-8) model [38].  

- - +

3 2
I + IO +2H HIO+HIO→←                                                     (M1) 

+ -

2 2 2
HIO +H +I I O+H O→                                                          (M2) 

2 2
I O+H O 2HIO→←                                                                     (M3) 

+ -

2 2
HIO+H +I I +H O →←                                                          (M4) 

+ -

2 2 2 2 2
HIO+H O H +I +H O +O→                                                (M5) 
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2 2 2 2
I O+H O HIO+HIO→                                                             (M6) 

- +

2 2 2 3 2
HIO +H O IO +H +H O→                                                     (M7) 

- +

3 2 2 2 2 2
IO +H O +H HIO + O + H O→                                          (M8) 

The added reactions control the appearance and duration of the induction 

period preceded to the oscillations occurrence. Using this model, beside the impact of 

acidity, successfully are simulated the impact of temperature [43], the perturbations by 

polymers, the occurrence of inflection in a model parameter space. In addition, the M (1-

8) model provides relatively good agreement with the experimental results (Figs. 2 and 

3) on the oscillations number, the shape and lasting for all reaction species that can be 

monitored experimentally. Agreement between the experimental findings and the model 

prediction proved to be quite good also in [59], where the pulsed perturbations with 

iodide were applied. For the M (1-8) model, the stability criteria were established [39] 

and it’s also qualitatively consistent with the experimental data. 

 

 
 

Figure 2. Iodide oscillograms of the BL reaction at the different temperatures: (a) 56.0 
o
C, (b) 62.0

 o
C, 

and  (c) 67.0
o 
C (Reprinted with Editors permission from [41]). 

 

The M (1-8) model is able to describe almost all features of the Bray-Liebhafsky 

reaction, including simple oscillatory evolution, mixed-modes and chaos [66, 69, 74, 79, 

82]. 

Experimental inability to prove existence of I2O as reaction species was 

theoretically overcome by the elimination of I2O from the system chemical equations [47, 

50, 52]. One of the models from [47] created by the contraction of M (1-8) is presented in 

Table 6. 
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Figure 3. Simulated iodide evolution of the BL reaction based on the reaction M(1)-M-(6) at the 

different temperatures: (a) 54,8
 o

C, (b) 59.8
 o

C, (c) 65.8
 o

C, and (d) 68,8
 o

C (Reprinted with Edirors 

permission from [68]). 
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Table 6. Reduced M (1-8) model [47].  

- - +

3 2
I +IO +2H HIO+HIO→←                                                     (RM1) 

+ -

2 2
HIO+H +I I + H O→←                                                         (RM2) 

- +

2 2 2 2
HIO+H O I +O +H +H O→                                            (RM3) 

- +

2 2 2 3 2
HIO +H O IO +H +H O→                                                (RM4) 

- +

3 2 2 2 2 2
IO +H O +H HIO +O +H O→                                          (RM5) 

- +

2
2HIO HIO +I +H→←                                                           (RM6) 

- +

2 2 2 2 2
HIO +I +H +H O HIO+HIO +H O→                                (RM7) 

This model, like the previous one, can simulate oscillatory evolution (of every 

containing intermediate), but in a slightly worse agreement with experimental results. 

This is understandable considering the applied simplification. 

Also, there are the researches treating M (1-8) model without reaction (M 7), 

but with changed reaction (M 8) rate constant [71, 75]. Obtained results are nearly the 

same. 

Significant research is also the one performed by Adamčiková and Ševčík on 

the effects of pressure decrease, gases bubbling and stirring on the oscillating Bray-

Liebhafsky reaction [42, 46]. They showed the rate of iodine interphase transport can be 

greatly influenced by physical processes and that they can cause the oscillatory state to 

be inhibited. By adding this process into the reaction mechanism, iodide is not pure 

catalyst anymore, because iodine is consumed in the reaction and therefore, total 

concentration of iodine containing species cannot be treated as a constant. 

With co-workers they complemented the M (1-8) model with the reaction of 

iodine (AS 1) [48] and the oxygen escape (AS 2) [58] from the reaction system: 

2(aq) 2(g)
I I→                                                                               (AS1) 

2(aq) 2(g)
O O  →                                                                            (AS2) 

As they shown, the reaction of iodine (AS1) removal follows the pseudo-first-

order kinetics: 

 

2(aq)

AS1 2(aq)

d[ ]
k [ ]

d

I
I

t
− =

                                                                   (eq3)
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where 
2(aq)

[ ]I is the iodine concentration in the solution and 
AS1

k  is a constant depending 

on the stirring rate, while the other parameters are fixed.  

The simulated the period and number of oscillations showed very good 

agreement when they took only a minor modification of several M (1-8) model rate 

constants. In [48] they also found a critical value above which oscillation cannot be 

observed by numerical simulation. Agreement with experiments was satisfactory.  

After Schmitz conformed [52] that the escape of oxygen causes the loss of 

iodine into gas phase, Ševčík et al examined oxygen production in the Bray-Liebhafsky 

reaction [55]. Experimental data from this paper were used for comparison with the 

numerical results in [58] where they tried to answer on the question if the model M (1-8) 

with the two reactions of iodine and oxygen removal is able to correctly simulate the 

pulsing oxygen gas evolution. At the first approach, they assumed the first-order rate 

law, similarly to iodine kinetics (see eq3): 

2(aq)

AS2 2(aq) 2(aq,sat)

d[ ]
k ([ ]-[ ])

d

O
O O

t
− =

                                              (eq4)

 

where 
AS2

k  is a constant depending on experimental conditions. 

The results were in satisfactory good agreement with the experiments (Fig. 4), 

which may indicate that the kinetics of oxygen removal cannot be described by a first-

order rate law and seems to be a more complicated.  

 

    
Figure 4. Experimental results (on the left side, reprinted with permission from [55]. Copyright (2000) 

American Chemical Society) and numerical simulation obtain by the M (1-8) model with the two 

reactions of iodine and oxygen removal (on the right side, Reprinted from [58] with permission from 

Elsevier.). 

 

 
Figure 5. (a)Experimental results (originally from [20]) and (b) numerical simulation [81] obtain by the 

Ren et al model. (Reprinted with Editors permission from [81]). 
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In 2008 Ren et al [72] analysed model similar to the one Ševčík et al did, 

except they set all steps to be irreversible and changed a rate constants (Table 7). 

They compared simulated results [81] with the experimental results presented 

in [20] (Fig. 5). Agreement between these two is qualitatively good; there is only a small 

difference in the oscillations shape. This model does not involve a true limit cycle. 

 

Table 7. Model used by Ren et al [72].  

- - +

3 2
I + IO +2H HIO+HIO→                                                        (R1) 

+ -

2 2 2
HIO +H +I I O+H O→                                                          (R2) 

2 2
I O+H O 2HIO→                                                                    (R3) 

+ -

2 2
HIO+H +I I +H O→                                                              (R4) 

+ -

2 2 2 2 2
HIO+H O H +I +H O +O→                                                  (R5) 

2 2 2 2
I O+H O HIO+HIO→                                                            (R6) 

- +

2 2 2 3 2
HIO +H O IO +H +H O→                                                     (R7) 

- +

3 2 2 2 2 2
IO +H O +H HIO +O +H O→                                               (R8) 

2(aq) 2(g)
I I→                                                                               (R9) 

2(aq) 2(g)
O O→                                                                           (R10) 

 

In 2010 Schmitz proposed the new model (Table 8) [76], with a set of rate 

constants at 25
o
C. He analysed [76, 80] iodine concentration impact on the rate constant 

of iodine interphase transport and asserted this reaction can be treated as first-order one 

only when iodine concentration is much larger than a steady state concentration (the one 

in which rates of reaction (O) and (R) are equal). Also, he discussed applicability 

conditions of reaction constants and adequacy of each reaction step from Table 6, i.e. 

under which circumstances steps can be considered as simple and under which it must 

be seen as the complex process consists of the simple steps. In addition, these papers 

show that Arrhenius law can be used if one wants to calculate a reaction constant for 

some other temperature. In favour goes agreement with measurements by Liebhafsky at 

50
o
C [6] and by Schmitz at 60

o
C (Fig. 6) [52].  

In the model presented in Table 8, reaction (M 7) is replaced by three reactions  

(S 7a), (S 7b), and (S 7c). Schmitz highlights that steps (S 7c) and (S 9)-(S 13) are the 

minor reactions, but they allow good simulation of the oxygen effect on the oscillations. 
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Reactions (S 11) and (S 13) can be found in [29], but since the oscillations can be 

obtained without them, they were neglected in the development of the model M (1-8), 

while the rates and kinetics law of (S 12) were obtained even by Liebhafsky and 

Mohammed [8]. 

Although, the kinetics of oxygen transport to gas phase is not simple and 

involves a nucleation and growth of bubbles, Schmitz used the first-order rate law as it 

other authors previously did. 

As Bray noticed [2] oxygen production is higher during the step (O), in which 

it is not a product, then during (R). This statement was confirmed also in [18]. 

Simulation of it is thorn in the side. Schmitz claimed reaction BL always takes place 

during the reaction (O) and since IOH concentration is higher in the course of (O) then 

(R), fifth reaction may be the main source of “characteristic” oxygen production. 

Moreover, the simulations obtained by Schmitz last model are in appreciably agreement 

with measurements [18]. 

 

Table 8. Model proposed by Schmitz [76].  

- -

3 2
I + IO +2H HIO+HIO

+ →←                                                 (S1) 

+ -

2 2 2
HIO +H +I I O+H O→                                                    (S2) 

2 2
I O+H O 2HIO→←                                                               (S3) 

+ -

2 2
HIO+H +I I +H O→←                                                           (S4) 

+ -

2 2 2 2 2
HIO+H O H +I +H O +O→                                                (S5) 

2 2 2 2
I O+H O HIO+HIO→                                                        (S6) 

2 2 3 2
2HIO I O +H O→←                                                             (S7a) 

- +

2 3 2 2 3 2
I O +H O IO +H +HIO→                                                  (S7b) 

- +

2 3 2 3
I O +H O IO +H +HIO→                                                      (S7c) 

- +

3 2 2 2 2 2
IO +H O +H HIO +O +H O→                                          (S8) 

2(aq) 2(g)
I I→                                                                                  (S9) 

2(aq) 2(g)
O O→                                                                             (S10) 

2 2 2 2 2
HIO +H O IOH+O +H O→                                                (S11) 

- +

2 2 2
I +H +H O IOH+H O→                                                      (S12) 

- +

2

1
I +H + O IOH

2
→                                                               (S13) 
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Figure 6. Experimental results [52] (on left side) and numerical simulation [80] obtain by the Schmitz’s 

model (on the right side). Reproduced by permission of The Royal Society of Chemistry. 

 

3. Differential equations for describing a time evolution of reaction 

 

Generally, the above models can be associated with a set of differential equations 

describing the time evolution of the Bray-Liebhafsky reaction. These differential 

equations, which describe the rates of individual reactions, are performed directly on the 

basis of the 

mass-action law. The procedure of differential equations forming will be given for the 

M (1-8) model of the Bray-Liebhafsky reaction. 

In the case which is of interest, the Bray-Liebhafsky reaction is considered to be 

homogeneous. That is, there are no chemical reactions that can be found in several 

phases (aggregate states). Also, the Bray-Liebhafsky reaction is deemed to be strictly 

determined by its chemism (only by chemical transformations) and that kinetic is not 

influenced by physical processes (diffusion, thermal effects, etc.). 

 

3.1. M (1-8) model-Reaction rate equations 

 

In the M (1-8) model, there are eight chemical reactions, three of them are reversible 

and five are irreversible. Irreversible reaction is one in which all reactants (starting 
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substances) are fully transformed into reaction products. Reversible reaction consists of 

two irreversible, one in which reactants are converted into products and another in 

which products (of the first reaction) react to become starting substances. Therefore, M 

(1-8) model has eleven irreversible chemical reactions. For each of them, reaction rate is 

determined and used to calculate overall rate of some chemical species (see below). 

         As an example, here is derived rate of one irreversible chemical reaction which is  

involved in reaction (M 1). Reaction in which reactants of (M 1) are converted into 

products is: 

- - +

3 2
I + IO +2H HIO+HIO→                                                                (R1) 

As one can notice, it is also a first reaction in model proposed by Ren et al and its rate 

(v1) is: 

 + 2

1 1 3 1
  k '[ ][ ] [ ]=k [ ]v IO H I I− − −=  (eq5) 

where k1’ is rate constant. It is rate of reaction when concentrations of all reaction 

species, IO3
‒
, H

+
 and I

‒
, are unity ones. In chemistry, it is commonly to denote the 

concentration of a species, by putting its chemical formula in square brackets. Exponents 

in the relations that describe the reaction rate corresponding stoichiometric coefficients 

(numbers which standing in front of a chemical species). If stoichiometric coefficient is 

1, it is not displayed. Concentrations of IO3
‒
 and H

+
 are considered to be negligible 

changed in the 

Bray-Liebhafsky reaction (i.e. they are constants) and hence, k1 is pseudo-constant, since 

it contains IO3
‒
 and H

+
 concentrations. 

The same procedure was performed for each other chemical species from the 

M (1-8) model and the rate of each chemical process are presented in Table 9. 

 

Table 9. Reaction rates and rate constants of M(1-8) model which are commonly used in 

numerical simulation of the Bray-Liebhafsky reaction. Concentration of water, 

[H2O] = 55 M, is involved in the corresponding rate constants. Also, [IO3
‒
] = 0.0474 and 

[H
+
] = 0.0958 M are considered as constants and involved in pseudo-constants. [77] 

Reaction rate Reaction rate constant Reaction 

v1 = k1 [I
−
] k1 = 1,375 × 10

2
 min

−1
   (R 1) 

v−1 = k−1 [HIO] [HIO2] k−1 = 7,91 × 10
7
 M

−1
 min

−1
   (R -1) 

v2 = k2 [HIO2] [I
−
] k2 = 4,79 × 10

10
 M

−1
 min

−1
   (R 2) 

v3 = k3 [I2O] k3 = 5,00 × 10
10

 min
−1

   (R 3) 

v−3 = k−3 
2

[ ]HIO  k−3 = 3,15 × 10
8
 M

−1
 min

−1
   (R -3) 

v4 = k4 [HIO] [I
−
] k4 = 3,00 × 10

11
 M

−1
 min

−1
   (R 4) 

v−4 = k−4 [I2] k−4 = 46,97 min
−1

   (R -4) 

v5 = k5 [HIO] [H2O2] k5 = 1,487 × 10
4
 M

−1
 min

−1
   (R 5) 

v6 = k6 [I2O] [H2O2] k6 = 5,00 × 10
5
 M

−1
 min

−1
   (R 6) 

v7 = k7 [HIO2] [H2O2] k7 = 2,00 × 10
3
 M

−1
 min

−1
   (R 7) 

v8 = k8 [H2O2] k8 = 2,2303 × 10
−4

 min
−1

   (R 8) 
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3.2. M (1-8) model- Overall rate equations of chemical species 

 

Let us take as an example H2O2, it is participate in reactions (M 5), (M 6), (M 7) and (M 

8). Hydrogen peroxide time derivation, 
2 2

[ ]d H O

dt
, i.e. overall rate of hydrogen peroxide 

change, is given by the sum of all mentioned reactions, that is, 

 
2 2

5 6 7 8

[ ]d H O
v v v v

dt
= − − − −  (OR1) 

Here, minus (in the front of reaction rates) indicates that in these reactions hydrogen 

peroxide is consumed. But for example, overall rate of I
−
 is: 

 
1 4 5 1 2 4

[ ]d I
v v v v v v

dt

−

− −
= + + − − −  (OR2) 

where + indicates formation of iodide by the first three reactions. 

In the same way, overall rate equations for other species are defined: 

 
1 3 4 6 1 3 4 5

[ ]
2 2

d HIO
v v v v v v v v

d t
− − −= + + + − − − −  (OR3) 

 
2

1 6 8 1 2 7

[ ]d HIO
v v v v v v

dt
−= + + − − −  (OR4) 

 
2

2 3 3 6

[ ]d I O
v v v v

dt
−= + − −  (OR5) 

 
2

4 4

[ ]d I
v v

dt
−= −  (OR6) 

In the mathematical sense, concentrations of chemical species can be observed 

as independent variables. For an example, [H2O2] = x1, [I
−
] = x2, [HIO] = x3, [HIO2] = x4, 

[I2O] = x5 and [I2] = x6. Presented set of differential equations is to be solved using a 

numerical method, that is, with appropriate program package. In Fig. 7, evolution of 

chemical species simulated on the basis of the model M (1-8) is given. 
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Figure 7. Numerical simulation of  evolution of the chemical species concentration on the basis of 

M (1-8) models. 

 

4. Conclusions 

 

To summarize, in Liebhafsky papers one may found plenty of reactions that can take a 

place in reaction mechanism, but to the best of our knowledge by the model proposed by 

Liebhafsky and Wu the oscillations could not be obtained. In papers presenting the models 
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by Noyes et al, possible and important reactions are highlighted, but there is no good 

agreement with experiments. Maybe extensions of the Treindl and Noyes can give a 

better accordance. The 

M (1-8) model and its variants represent one realistic model of the Bray-Liebhafsky 

oscillatory reaction mechanism that well describes its phenomena and does not contain 

any direct autocatalytic or autoinhibition step. Moreover, it is nonradical model, so 

radical reactions, which rates are notably large in relation to reaction oscillatory 

frequency, are not responsible for oscillations.  

Ševčík et al have made major efforts to further upgrade the M (1-8) model by 

the involvement of iodine and oxygen interphase transport processes, while Ren et al 

analysed the model with a different set of rate constants (with regard to experimentally 

obtained ones). 

After almost a century of the Bray-Liebhafsky reaction investigation, we still 

don’t know answers on many questions. One of the essential questions is how it is that 

during the step (O) many times more oxygen is produces than during the step (R) and 

still oxygen is not product of the reaction (O). To resolve this question (and many other 

disagreements between experiment and theory), maybe we need to add a few parallel 

processes. 
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Abstract. We report that defocusing cubic media with spatially 

inhomogeneous nonlinearity, whose strength increases rapidly enough 

toward the periphery, can support stable localized modes. Such 

nonlinearity landscapes give rise to a variety of stable solitons in all 

three dimensions, including 1D fundamental and multihump states, 2D 

vortex solitons with arbitrarily high topological charges, and 

fundamental solitons in 3D. Moving solitons maintain their coherence, 

oscillating in the nonlinear potential as robust quasi-particles and 

colliding elastically. In addition to numerically found soliton families, 

particular solutions are found in an exact analytical form, and 

accurate approximations are developed for the entire families, 

including moving solitons. The original version of this paper was 

published in: O. V. Borovkova, Y. V. Kartashov, L. Torner, and B. A. 

Malomed, Phys. Rev. E 84, 035602 (R) (2011). 

Key words: Bright solitons, defocusing, nonlinearities. 

PACS numbers: 42.65.Jx; 42.65.Tg; 42.65.Wi; 05.45.Yv 

 

1. Introduction 

 

A commonly adopted principle underlying the studies of self-sustained localized 

modes (bright solitons) in various physical settings is that they are supported either by 

the focusing nonlinearity [1], or, in the form of gap solitons, by the defocusing 

nonlinearity combined with periodic linear potentials [2]. The formation of bright 

solitons was reported also in more sophisticated systems, where the nonlinearity 

periodically changes its magnitude, and even the sign, along the evolution variable or in 
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the transverse direction(s). One thus deals with the nonlinearity management if it 

oscillates between focusing and defocusing in the course of the evolution [3], while 

transversely modulated nonlinearity landscapes are known as nonlinear lattices [4]. The 

latter setting readily supports stable solitons in 1D [5], while it is much harder to employ 

it for the stabilization of 2D and 3D solitons [6]. Note also that a hole in a uniform 

defocusing background was used as a support for 1D and 2D solitons in Ref. [8], but in a 

combination with a linear trapping potential. 

Guiding bright solitons by pure defocusing nonlinearities, without the help of a 

linear potential, is commonly considered impossible. The primary objective of this Rapid 

Communication is to demonstrate that this is nevertheless possible, if the strength of the 

defocusing term is modulated in space, growing fast enough towards the periphery. The 

existence of bright solitons in this setting is a consequence of the fact that, in contrast to 

media with homogeneous nonlinearities, when the presence of decaying tails of the 

soliton places it into the semi-infinite spectral gap of the linearized system, where 

defocusing nonlinearities cannot support any self-localization, in our case the growth of 

the nonlinearity coefficient makes the underlying equations non-linearizable for the 

decaying tails. A similar argument explains the existence of embedded solitons inside 

the continuous spectrum in self-focusing media [7]. 

 

2. Bright solitons from defocusing nonlinearities 

 

We demonstrate that the spatially modulated defocusing nonlinearity supports 

stable bright solitons, both quiescent and coherently moving ones, in all three 

dimensions. Not only fundamental solitons, but also stable 1D multipoles and 2D vortex 

rings are obtained. The model is based on the nonlinear-Schrödinger/Gross-Pitaevskii 

equation for rescaled field amplitude q  in optical media of dimension 1,2D = , or the 

wave function in a Bose-Einstein condensate (BEC) of any dimension: 

 22/ (1/ 2) ( ) .i q q q qx s¶ ¶ = - Ñ + r 

Here x
 

is the propagation distance or time, ( , , )h z t=r  is the set of transverse 

coordinates, 2 2 2 2 2 2 2/ / /h z tÑ = ¶ ¶ + ¶ ¶ + ¶ ¶ , and ( ) 0s >r  is the defocusing 

nonlinearity strength that varies in the radial direction. In optics, spatially 

inhomogeneous nonlinearities can be realized in various ways [4]. In particular, in 

photorefractive materials, such as 3LiNbO , nonuniform doping with Cu or Fe may 

considerably enhance the local nonlinearity [9]. In BEC spatially modulated nonlinearity 
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landscapes can be created, via the Feshbach resonance (FR), by nonuniform external 

fields [10,11]. We here assume that the strength of nonlinearity grows with radius as 

 2 2
0 2( ) ( / 2) exp( )r rs s s a= +r 

with 0 2, 0s s > , and 0a >  that may be fixed by scaling (we set 1/ 2a =  below). If 

the nonlinearity is controlled by the FR, the divergence of the nonlinearity strength at 

infinity implies that the background value of the control field at r = ¥  corresponds to 

the exact resonance. In the optical realization with dopants that give rise to the two-

photon resonance, the effective modulation of the nonlinearity may be achieved via the 

inhomogeneity of the resonance detuning, controlled by an external field, with the exact 

resonance occurring at r = ¥ . 

For any D , Eq. (1) with ( )s r  taken as per Eq. (2) admits particular analytical 

solutions for fundamental solitons: 

 2 1/ 2 2
2( , ) ( / ) exp( / 2),q r ib rx a s x a= - 

with 2
0 2( / 2 / )b Da s a s= - + , where b  is the propagation constant. For 2 0s = , 

exact solutions for a vortex with topological charge 1m =  in 2D, and a dipole soliton 

in 1D are available too: 

 ( )1/ 2 2
0( , ) (2 ) exp / 2 ,q r r ib i rx s a x f a-= + - 

with (1 / 2)b Da= - + , where azimuthal coordinate f  is a part of the solution for 

2D = . 

The analytical solutions correspond to the particular values of propagation 

constant b [multiplying Eq. (1) by *q  and integrating, one can prove that the solitons 

may exist only for 0b< ]. For families of fundamental solitons, a variational 

approximation (VA) can be developed in any D  by adopting the ansatz suggested by 

the exact solutions, 2exp( / 2)q A ib rx a= -  (amplitude A  is a variational 

parameter). Using the Lagrangian of Eq. (1), the VA yields the norm of the fundamental 

solitons as a function of b , written here for at 2 0s =  and 0 1s = : 

 2 / 2( ) ( / ) ( / 2).DU q d b Dp a aº = - +ò r r 

The comparison with numerical results presented in Figs. 1(c) and 3(c) demonstrates 

that the variational dependences ( )U b  are virtually indistinguishable, on the scale of 

the figures, from their numerical counterparts for all dimensions. For the soliton's width, 

defined as 
2

12 ( )W U r q d-= ò r r , the VA gives 1/ 2
1D 3D / 2 2/ ( )W W pa= = , 

1/ 2
2D ( / )W p a= . Numerically found widths approach these values with the increase 

of U , see, e.g., Fig. 5(b). 

The steep anti-Gaussian profile of the modulation of the defocusing nonlinearity 

postulated in Eq. (2) is not a necessary condition for the existence of solitons. In fact 
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( )~ Dr r es +  with arbitrary 0e > , where D  is the spatial dimension, is sufficient 

[14]. Furthermore, for the exponential profile 2( ) sinh ( )as h h= + , with any 1a < , 

it is easy to find an exact 1D soliton solution 1/ 2(1 ) sech( )w a h-= -  with 

(1 )/ [2(1 )]b a a= - + - , and for 2( ) cosh ( )s h h=  one can find the exact dipole 

solution 1/ 2 23 sinh( )sech ( )w h h=  with 5/ 2b= - . The system can be also made 

finite, thus presenting a nonlinear counterpart of quantum-dot potentials. An example is 

the 1D variant of Eq. (1) with 2 2 2 3( ) (1/ 4)(1 3 ) (1 )s h h h -= + - , defined at 

2 1h < , which gives rise to an exact ground-state mode, 

2 2( , ) (1 ) exp( 9 / 4)q ih x h x= - - . 

Here we report numerical results for the basic version of model (2) with 2 0s =  

and 0 1s º . Fundamental solitons are sought for as ( , ) ( ) exp( )q w r ibx x=r . The 

solutions were found using the standard relaxation method that quickly converges to 

exact solitons for a properly selected initial guess. The stability of thus found solutions 

was investigated by numerical computation of eigenvalues for small perturbations (with 

the help of an ordinary eigenvalue solver), using the linearization of Eq. (1), and then 

verified through direct simulations of the perturbed evolution. 

 
Figure 1. (Color online) Profiles of 1D solitons: (a) with 10b= -  and different numbers 

of nodes; (b) dipole solitons with different values of b . This and other figures are 

displayed for 0.5a =  in Eq. (2), with red horseshoe-shaped curves showing the 

nonlinearity modulation profile. (c) U  vs. b  for 1D solitons with different 

numbers of nodes, k . For 0k = , this dependence is indistinguishable from its 

variational counterpart (5) with 1D = . Here and in Fig. 3(c), stable and unstable 

portions of the soliton families are shown by black and green curves, respectively. 

(d) Stability (white) and instability (shaded) domains in the ( , )ba  plane for 1D 

solitons with 5k = . The fan-shaped structure here and in Fig. 3(d) below is a 

manifestation of the scaling invariance of Eq. (1). 
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As said above, our main result is that, in contrast to the belief that the defocusing 

nonlinearity cannot give rise to bright solitons, the inhomogeneous defocusing medium 

does support families of stable localized modes. The tails of the solitons of all types 

decay at r ® ¥  super-exponentially, irrespective of the dimension: 

1/ 2 2( / 2 ) exp( / 2)w r r
h

a a
® ± ¥

» - , which complies with exact solutions (4). 

Note that this asymptotic form does not contain the propagation constant b . 

Examples of 1D solitons, with different numbers k  of zeros (nodes) in the ( )w h  

shape, are displayed in Figs. 1(a) and 1(b). The solitons' amplitude increases with b , 

and the numerical results show that their width, at first, rapidly decreases and then 

saturates at 20b ; (as predicted by the VA). For all types of the solitons, their energy 

flow (norm) increases with b  [Fig. 1(c)]. The solitons of higher orders have smaller 

norms, which is natural, taking into account the fact that, in terms of the mean-field 

description, the fundamental solitons, representing the ground state of the system, must 

minimize the chemical potential, b- , for a given norm. 

 

 

Figure 2. (Color online) Top row: Contour plots of ( , )q h x  demonstrating the stable 

propagation of the perturbed 1D soliton with 1k = , 10b= -  (left), instability of 

the one with 3k = , 10b = -  (center), and stability of the complex mode with 

5k = , 13b= -  (right). Bottom row: Oscillations of 1D solitons with 

0,1,2k = , 20b= - , after the application of phase tilt 1.5q= . 

 

 

The 1D solitons are remarkably robust. The computation of the stability 

eigenvalues demonstrates that the modes with 0,1,2k =  are stable at least up to 

40b = -  [in particular, this fact implies the stability of exact solution (4); it was 

checked that exact solution (3) is stable as well]. Only the families with 3k ³  feature 

instability domains alternating with stability areas. The structure of the instability and 

stability domains becomes more complex with the increase of k , see Fig. 1(d) for 
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5k = . We did not find any limit on the number of nodes possible in stable 1D solitons, 

hence even very complex structures (with 10k ³ ) may be stable. Direct simulations of 

the evolution of perturbed solitons verify the predictions of the stability analysis: while 

stable solitons keep their shape over distances far exceeding 310x = , their unstable 

counterparts transform into irregularly breathing modes that remain tightly confined, see 

the top row in Fig. 2. 

The physically relevant definition of solitons includes their ability to maintain the 

intrinsic coherence in the state of motion, and quasi-elastic collisions. Solitons may be 

set in motion multiplying them by ( )exp iqh , with phase tilt q . As a result, both 1D 

and 2D solitons start regular oscillations (see examples for 1D solitons with 0,1,2k =  

in the bottom row of Fig. 2) – somewhat similar to matter-wave solitons in the cigar-

shaped traps [12], with the difference that the nonlinearity is repulsive in the present 

setting, and the solitons oscillate in the effective nonlinear potential. An equation of 

motion for vectorial coordinate ( )xR  of the soliton can be readily derived in the quasi-

particle approximation: 

 2 2 / 2 2
D/ 2 ( / ) exp(2 )Dd d U Rx a a p a= -R R 

1,2D =  (here DU  is the soliton's norm). As follows from Eq. (6), the squared 

frequency of small-amplitude oscillations of the kicked soliton is 

2 / 2 2
D D2 ( / ) (3 / 2)D Uw a a p a q= + , which was found to be in a virtually exact 

agreement with results of numerical simulations. Further, we applied opposite kicks to 

two lobes of a 1D dipole, thus initiating oscillations and recurrent collisions of two 

solitons with opposite signs. It was found that the solitons keep bouncing from each 

other elastically. Assuming the instantaneous rebound, Eq. (6) predicts the frequency of 

the periodic collisions very accurately too. Thus, both 1D and 2D solitons are robust 

quasi-particle objects, that maintain their intrinsic coherence in the course of the motion 

and interact elastically. 

The 2D version of the model gives rise to vortex solitons, 

( , ) ( ) exp( )q r w r im ibx f x= + , for all integer values of topological charge m , see 

Figs. 3(a) and 3(b). For the same reason as in 1D, the vortices with different m , while 

having completely different asymptotic forms at 0r ® , become identical at r ® ¥  

(in contrast to vortex solitons in focusing media, that considerably broaden with the 

increase of the topological charge [13]). The increase of b  results in a gradual 

contraction of the vortex rings toward 0r =  [Fig. 3(b)]. The energy flow (norm) 

carried by the 2D solitons at fixed b  decreases with the increase of m  [Fig. 3(c)], 

similar to the 1D case, cf. Fig. 1(c). 
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Figure 3. (Color online) Profiles of 2D solitons: (a) for 10b = -  and different vorticities 

m ; (b) for 2m =  and different values of b . (c) U  vs. b  for different m  

[the curve for 0m =  is indistinguishable from the variational result (5) with 

2D = ]. (d) The lowest stability (white) and instability (shaded) domains in the 

( , )ba  plane for vortex solitons with 2m = . 

 

 

Another essential result is that, due to the defocusing character of the 

nonlinearity, azimuthal instabilities, that are fatal for vortex solitons in focusing media 

[13], are suppressed in our system. We have found that the solitons with 0m =  and 

1m =  [including the 2D exact solution (4)] are completely stable, while the vortices 

with 1m >  give rise to a complex structure of stability and instability domains. This 

structure can be produced upon substituting a perturbed solution, 

[ ( ) ( ) exp( ) ( ) exp( )]exp( )q w r u r in v r in im ibf dx f d x f x* *= + + + - + + , 

with azimuthal perturbation index n , into Eq. (1), and solving the corresponding linear 

eigenvalue problem. The structure of the stability domains is displayed in Fig. 3(d) for 

vortices with 2m = , that can be destroyed by perturbations with 2n =  at certain 

values of b  (similarly, at 2m >  the most destructive perturbations pertain to 

, 1n m m= ± ). Note that the stability and instability domains are equidistantly spaced 

in b . We stress that conspicuous stability regions have been found for all the considered 

values of m . An example of the stable evolution of a perturbed vortex ring, which 

keeps its structure over indefinitely long distances, is shown in Fig. 4(a). Unstable 

vortex solitons (with 2m ³ ) tend to split into m  separate unitary vortices, that stay in 

a vicinity of the pivotal point, performing persistent rotation around it, which is a  
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consequence of the conservation of the angular momentum. Examples for 2m =  and 

3  are displayed in Figs. 4(b) and 4(c). 

 

 

Figure 4. (Color online) (a) Stable propagation of the perturbed vortex soliton with 2m = , 

17b= - . (b) Splitting of the unstable double vortex ( 2)m =  with 11b= -  

into a steadily rotating pair of unitary vortices. (c) Splitting of the unstable vortex 

with 3m = , 9b = -  into a rotating set of three vortices. 

 

 

 
Figure 5. (Color online) (a) Profiles of fundamental 3D solitons at 0.5a = . (b) The width 

of these solitons vs. the norm. 

 

 

 

The 3D model also supports bright solitons with rapidly vanishing tails (recall 

the 3D model makes sense for BEC, but not in optics, unlike its 1D and 2D 

counterparts). Examples of such spherically symmetric fundamental solitons are shown 
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in Fig. 5(a). The norm of the 3D solitons increases almost linearly with b , in 

accordance with Eq. (5), while their width rapidly saturates to the aforementioned VA-

predicted value, 1/ 2
3D 4/ ( )W pa=  [Fig. 5(b)]. The 3D fundamental solitons are 

completely stable in their entire existence domain, as illustrated by Fig. 6. 

 

 

 

Figure 6. Isosurface plots drawn at the level of 0.1max q  at 0x =  (left), 300x =  

(center), and 600x =  (right), showing stable propagation of the perturbed 3D 

soliton with 10b= - . 

 

3. Conclusions 

 

Summarizing, it is found that, in contrast to the usual expectations, the 

defocusing nonlinearity, without any linear potential, may support families of stable 

bright solitons in all dimensions, provided that the nonlinearity strength increases 

rapidly enough from the center to the periphery. In addition to the fundamental solitons, 

we show that such media support a variety of stable higher-order modes, including 1D 

multipoles and 2D vortex rings with all values of the topological charge. If set in 

motion, the solitons move and interact as particles. The settings considered here may be 

implemented for matter waves in BEC and for light waves in optical materials. 
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Abstract. Mechanical lightweight structures often tend to unwanted vibrations due to 

disturbances. Passive methods for increasing the structural damping are often 

inadequate for the vibration suppression, since they include additional mass in the 

form of damping materials, additional stiffening elements or mass damper. This paper 

presents a modern concept for active control of smart structures using piezoelectric 

materials. The approach is especially well suited for light weight structures and it is 

presented through several subsequent steps: modeling (model identification and 

numerical modeling), optimization, controller design, simulation and experimental 

verification/testing. 

 

 

1. Introduction 

 

High efficiency, functionality, quality and assuring a high profitability are the main 

requirements for products in today's world. In the field of engineering, these properties 

are manifested in application of thin and lightweight structures. Mechanical lightweight 

structures often tend to unwanted vibration, which may result in disturbing sound 

radiation or even in damage of components [1]. Passive methods for increasing the 

structural damping are often inadequate, because they always include the use of 

additional mass in the form of damping materials, additional stiffening designs or mass 

damper. 

The concept of active vibration control has become a useful approach in the 

recent years, due to improvement of the vibration susceptibility of lightweight structures 

with the least possible increase in mass. For the active vibration control, supporting 

mechanical structure is supplied with sensors and actuators operated by a controller. 

High integration of the structural system with active materials (actuators/sensors) and 

control is regarded as a smart structure due to its ability to adapt to environmental 

changes. The technology of smart materials and structures, especially piezoelectric smart 

structures, has become mature over the last decade. One promising application of 

piezoelectric smart structures is the control and suppression of unwanted structural 

vibrations [2]. 
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2. State of the art 

 

Smart structures have been intensively investigated in the past years. In numerous 

studies the smart structure community has developed a large variety of sophisticated 

analysis approaches, control methods and optimization procedures. A review of the state 

of the art of smart structures is given by Chopra [3] and some other examples of 

analytical and experimental studies concerning the actuation and vibration control of 

smart piezoelectric structures can be found in [4]–[10]. Different approaches to 

modeling and vibration suppression of a piezoelectric cantilever beam have been 

investigated and reported in the literature. In [11] for example, the effect of different 

types of controllers to vibration reduction of the beam have been studied. In [12] the 

feedback control with a time delay was used in the investigation of vibration control for 

the primary resonance of a cantilever beam. The analytical results are compared with 

numerical simulations. 

Modeling and controller design techniques presented in this paper are 

successfully applied for the vibration suppression of higher bending modes then 

investigated in [12], [13]. Proposed controller in combination with augmented plant 

dynamics [6]–[8] can be successfully used in the presence of combined disturbances and 

for the vibration suppression of even higher modes. 

In [13] active vibration control of a flexible cantilever beam was studied using the 

Filtered-X LMS algorithm, applied to design a control law for a piezoelectric actuator. 

In comparison with this algorithm, we propose in this paper the technique with the 

optimal LQ controller and Kalman estimator which results in considerably faster 

controlled response in the time domain, and in higher vibration magnitude suppression 

in the frequency domain. 

Paper by Tjahyady et al. [15] also deals with the vibration control of a flexible 

cantilever beam. The control technique applied here is adaptive resonant control. For the 

controller design purposes, the model of the beam, i.e. its first three natural frequencies 

were estimated using the RLS algorithm. In the present paper the model development 

procedure is based on the subspace based identification algorithm (n4sid). The proposed 

identification procedure is of special interest if a state space model of the structure is 

required for the subsequent design and analysis phases. State space models are especially 

convenient for the multiple-input multiple-output (MIMO) control design problems. 

Unlike in [15], where only the single-input single-output system was considered, we 

propose efficient methodology for MIMO systems. In one of our papers [16] we have 

also presented implementation of a user-defined piezoelectric finite shell element in 

order to model piezoelectric properties of smart structures. The element efficiency was 

tested through several examples of a bimorph piezoelectric beam. 

 

3. Modeling of smart structures 

 

In the overall design procedure of actively controlled smart structures in this paper two 

modeling approaches are proposed: experimental model identification, which requires a 

real or a prototype structure, and finite element (FE) based numeric approach. 
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3.1. Experimental model identification – subspace based approach 

 

The models identified by a subspace based identification procedure are obtained in a 

general discrete-time state space form. This form is convenient for the controller design 

as well as for the comparison with the models obtained through FE procedure. 

The state space representation of an n
th

-order system with m inputs and l outputs 

which should be identified from the input-output measurement data can be expressed in 

its general deterministic-stochastic form [17]: 
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Since the subspace identification is based on sampled input/output measurement 

sequences u[k] and y[k], the method applies to a discrete-time form of the resulting 

state-space model, with discrete-time state and control matrices ΦΦΦΦ and ΓΓΓΓ, respectively. 

The process noise and the measurement noise vector sequences w[k] and v[k] are white 

noise with zero mean and with covariance matrix: 
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The task of the subspace identification is to express the input-state-output relationships 

in the state space form (1) and to determine the order n of the unknown system and the 

system matrices 
nn×∈  

RΦ , 
mn×∈  

RΓ , 
nl ×∈  

RC , 
ml ×∈  

RD  as well as the 

covariance matrices 
nn×∈  

RQ , 
ln ×∈  

RS , 
ll ×∈  

RR  of the noise sequences w[k] and 

v[k]. In the subsequent derivations, only the pure deterministic case will be considered 

as described in [18]. Measured input and output data are arranged into block Hankel 

matrices [19] defined in the following way: 
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The output block Hankel matrix Y is defined in a similar way. The purpose of writing 

the matrix in this manner is to build the relations between the input, output and state 

sequences in a matrix form. Using the matrix notation, the system equation can be 

written as: 
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The matrix G is the extended observability matrix built as 
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and H is the lower block triangular Toeplitz matrix of impulse responses from u to y: 
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For a deterministic case the problem is simplified to determining G and H by computing 

the singular value decomposition (SVD) of U in the first step 
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If matrix U has dimension nm×  and rank r, then the partition in (7) is performed as 

follows: 

 [ ]1 1 1 2
     

r r m u u+=   = P p p p p P P   (8) 

 [ ]1 1 1 2
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where pi are the left singular vectors of U. It can be shown that they are eigenvectors of 

TUU . Vectors qi are the right singular vectors of U. It can be shown that they are 

eigenvectors of UUT
. Multiplying (4) by 2uQ , matrix G can be determined from a 

SVD of 2uYQ . Then matrix C is obtained as the first row of the observability matrix 

G, and matrix ΦΦΦΦ is calculated from: ΦGG  =  applying pseudo inverse, where  G  is 

obtained by dropping the last row of G. Matrix G  represents the matrix obtained by 

dropping the first row of G. For the calculation of ΓΓΓΓ and D matrices, (4) is multiplied by 

the pseudo inverse of U on the right and by T
2uP  from (7) on the left. Thus the equation 

is reduced to 
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T 1 T

2 2u u

− =P YU P H . (10) 

After rearranging, (10) can be solved for ΓΓΓΓ and D using the least squares, see (6). In this 

way the system parameters in the form of state-space matrices of the model (1) are 

identified using the subspace-based identification method. 

 

3.2. Finite element approach for model development of piezoelectric smart structures 

 

If a real structure or a prototype are not available, which is especially the case in the 

early development phases, as well as in design review or optimization phases, another 

efficient modeling methodology is proposed, based on the FE approach. The FE based 

modeling of piezoelectric adaptive smart systems and structures represents a good basis 

for the overall simulation and design. This approach enables both a suitable controller 

design [6], [8] and the appropriate actuator/sensor placement [20]. 

FE based modeling of piezoelectric smart structures and systems relies on a 

standard modeling procedure for coupled electro-mechanical behavior. The FE analysis 

is based on the finite element semi-discrete form of the equations of motion of a 

piezoelectric smart system describing its electro-mechanical behavior. These equations 

can be derived using the established approximation method of displacements and 

electric potential and the standard finite element procedure. Here the coupled electro-

mechanical behavior of smart structures will be considered. In the formulation used in 

this paper the temperature is assumed to be constant and electro-mechanical coupling in 

the domain of linear piezoelectricity is considered. 

Constitutive equations in the stress-charge form (11) are used for the 

development of the equations of motion for a smart structure: 

 
T,= − = +σ Cε eE D e ε κE  (11) 

with following notations: [ ]T

11 22 33 12 23 31= σ σ σ σ σ σσ  mechanical stress 

vector, C(6×6) symmetric elasticity matrix, [ ]T

11 22 33 12 23 312 2 2= ε ε ε ε ε εε  strain 

vector, [ ]T

1 2 3E E E=E  electric field vector, e(6×3) piezoelectric matrix, 

[ ]T

1 2 3D D D=D  vector of electrical displacement and κκκκ(3×3) symmetric dielectric 

matrix. The system of equations which describe electromechanical behavior consists of 

the constitutive equations (11) together with the mechanical equilibrium and electric 

equilibrium (charge equation of electrostatics resulting from the 4
th

 Maxwell equation): 

 T T
,

u ϕ+ − ρ = =D σ P v 0 D D 0  (12) 

where [ ]T

1 2 3P P P=P  represents the body force vector, [ ]T

1 2 3v v v=v  is the vector 

of mechanical displacements, ρ is the mass density and Du and Dφ are differentiation 

matrices: 
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Variational statement of the governing equations for the coupled electro-mechanical 

problem derived from the Hamilton’s principle represents the basis for development of 

the finite element model [21]−[23]. It is obtained in the form: 
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where FΩ represents the surface applied forces (defined on surface Ω1), FP the point 

loads, φ the electric potential, q the surface charge brought on surface Ω2 and Q the 

applied concentrated electric charges. Applying the approximation of displacements and 

electric potential with the shape functions over an element, representing the structure by 

a finite number of elements and adding up all elements contributions, the finite element 

semi-discrete form of the equations of motion is obtained: 

 ( ) ( )d t t+ + = = +Mq D q Kq F Ef Bu   (15) 

where vector q represents the vector of generalized displacements including mechanical 

displacements and electric potential and contains all degrees of freedom: 

 
T T T T

1 1 2 2[ ]n nφ φ φ=q u u u . (16) 

Matrices M, Dd and K are the mass matrix, the damping matrix and the stiffness matrix, 

respectively. 

The total load vector F in (15) is split for the purpose of the control design into the 

vector of external forces FE and the vector of control forces FC: 

 
E C 0( ) ( )t t= + = + =F F F Ef Bu B u . (17) 

The forces are here generalized quantities, which include also electric charges or electric 

potentials. Matrices E  and B  describe the positions of generalized external forces f  

and the control parameters u  in the finite element structure, respectively. Matrix B0 

represents the input matrix, and vector u includes all model inputs. 

For the controller design purposes equation (15) is accompanied by the output equation 

in the form: 

 0 0q v
= +y C q C q  (18) 
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where in a general case C0q represents the output displacement matrix, and C0v the 

output velocity matrix. Matrices C0q and C0v are obtained through an FE procedure by 

defining appropriate sensor locations. 

Solution of the equation (15) is determined in the form 
j te ω=q ϕϕϕϕ  by solving the 

eigenvalue problem for a homogeneous case: 
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which is satisfied for n different pars ωi, φi, with 
dof

n n=  being the total number of 

degrees of freedom, ωi the i
th

 natural frequency and φi the i
th

 mode shape vector. The 

solution can be represented in the matrix form by the matrix of natural eigenfrequencies 

ΩΩΩΩ (spectral matrix) and the modal matrix ΦΦΦΦm: 
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The tools for modal reduction are also included, which enable development of 

appropriate models with reduced orders for the controller design. Based on the modal 

truncation, which was adopted as a suitable technique for the reduction of the number of 

equations in the FE models, a state space model of an actively controlled structure can 

be obtained in the form convenient for the controller design. A limited number of 

eigenmodes of interest is taken into account, while the remaining modes are truncated. 

Introducing the modal coordinates z 

 m( ) ( )t t=q Φ z  (21) 

into equation (15), and applying the ortho-normalization with 
T

m m
=Φ MΦ I , 

T

m m
=Φ KΦ  , 

T

m d m
= Φ D Φ , where ∆∆∆∆ represents the modal damping matrix and Dd is 

the damping matrix with Rayleigh damping 
d

α β= +D M K , the state space model of 

the modally reduced system can be obtained in the form: 
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where [ ]
T

( )t =x z z  represents a state-space vector. With the state and the output 

equations, the state space model is represented in the form: 

 ( ) ( ) ( ) ( )t t t t= + +x Ax Bu Ef ,    ( ) ( ) ( )t t t= + +y Cx Du Ff   (23) 

which is convenient for the controller design. 

Models of the form (23) obtained through modal reduction should fulfill the 

controllability/observability criteria. Through a balanced modal reduction such models 



130

 TAMARA NESTOROVIĆ 

can be obtained. The task of the balanced reduction is actually to find such state 

transformation, which provides equal controllability and observability of retained modes. 

In other words, the controllability and observability grammians of the retained modes 

are diagonal and equal, and based on this criteria balanced model reduction can be 

performed. Ranks of the controllability and observability matrices, although relatively 

simple criteria, provide only an answer to the controllability/observability question in 

terms “yes” or “no”. As very well known, if the rank of the controllability/observability 

matrices is equal to the number of states, the model i.e. the realization is 

controllable/observable. This approach gives good results only for lower system orders, 

otherwise numerical difficulties may be encountered. 

Controllability and observability properties of the state space systems can be 

qualitatively expressed in terms of controllability (P) and observability (Q) grammians, 

defined in the following way: 

 ∫∫
∞∞

==

0

T

0

T TT

, dteedtee
tttt AAAA

CCQBBP  (24) 

P and Q satisfy algebraic Lyapunov linear matrix equations: 

 CCQAQABBPAAP TTTT , −=+−=+ . (25) 

For an arbitrary transformation of the states by some transformation matrix, appropriate 

grammians are obtained, with the property that the eigenvalues of the controllability and 

observability grammians products remain invariant. These invariants are the Hankel 

singular values of the system, and they represent the basis of the balanced model 

reduction. In balanced realization each state (mode) is equally controllable and 

observable and the reduced order model is obtained by truncating the least controllable 

and observable modes. For more details the readers are referred to [20]. 

 

4. Controller design for smart structures 

 

Here we propose two control techniques for smart structures, with primary aim of 

vibration suppression: optimal LQ controller with additional dynamics and model 

reference adaptive control. 

 

4.1. Optimal LQ control with additional dynamics and Kalman filter 

 

Optimal controller with additional dynamics includes available a priori knowledge about 

occurring disturbance type contained in the additional dynamics [4]. Such an a priori 

knowledge is available in terms of type of the disturbance function which has to be 

rejected or whose influence should be suppressed by the controller. Periodic disturbances 

with frequencies corresponding to the eigenfrequencies of a smart structure can cause 

resonance states and their suppression is therefore important. 

Modern concepts of actively controlled smart structures – Anoverall design approach 

As a starting point for the controller design a discrete-time state space equivalent 

(26) of the state space model (23) developed through the FEM procedure and modal 

reduction is used: 

 [ 1] [ ] [ ] [ ], [ ] [ ] [ ] [ ]k k k k k k k k+ = + + = + +x Φx Γu εw y Cx Du Fw  (26) 
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where T represents the sampling interval for a discrete-time system. 

Using the a priori knowledge about the disturbance type, which has to be 

suppressed, the model of the disturbance is represented in an appropriate state-space 

form, where the disturbance is assumed to be the output of the state-space 

representation. The poles λi of the disturbance transfer function are used to define the 

additional dynamics using the coefficients of the polynomial: 
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where mi represents the multiplicity of the pole λi. Additional dynamics is expressed in a 

state-space form: 
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where xa is the vector of the state variables for the additional dynamics, e is the error 
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For multiple-input multiple-output (MIMO) systems additional dynamics is replicated q 

times (once per each output). In this case the replicated additional dynamics is defined 

as: 

 

times times
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q q
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Φ Φ Φ , Γ Γ ΓΦ Φ Φ , Γ Γ ΓΦ Φ Φ , Γ Γ ΓΦ Φ Φ , Γ Γ Γ  (31) 

The discrete-time design model (ΦΦΦΦd, ΓΓΓΓd) is formed as a cascade combination of the 

additional dynamics (ΦΦΦΦa, ΓΓΓΓa) or ( , )Φ ΓΦ ΓΦ ΓΦ Γ  and the discrete-time plant model (ΦΦΦΦ, ΓΓΓΓ): 

 [ 1] [ ] [ ]
d d d d
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As a starting point for the controller design a discrete-time state space equivalent 

(26) of the state space model (23) developed through the FEM procedure and modal 

reduction is used: 
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additional dynamics (ΦΦΦΦa, ΓΓΓΓa) or ( , )Φ ΓΦ ΓΦ ΓΦ Γ  and the discrete-time plant model (ΦΦΦΦ, ΓΓΓΓ): 

 [ 1] [ ] [ ]
d d d d

k k k+ = +x Φ x Γ u ; (32) 
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[ ]

, ,
[ ]

d d d

a

k

k∗ ∗

    
= = =     
     

x
x

xC 0

Φ 0 ΓΦ 0 ΓΦ 0 ΓΦ 0 Γ
Φ ΓΦ ΓΦ ΓΦ Γ

Γ ΦΓ ΦΓ ΦΓ Φ
 (33) 

where 
*Φ  and 

*Γ  denote respectively 
a

Φ  and 
a
Γ  in the case of single-input single-

output systems or Φ  and Γ  for MIMO systems. For the design model (32) the 

feedback gain matrix L of the optimal LQ controller is calculated in such a way that the 

feedback law u[k]= −Lxd[k] minimizes the performance index (34) subject to the 

constraint (32), where Q and R are symmetric, positive-definite matrices: 

 
0

1
( [ ] [ ] [ ] [ ])

2

T T

d d

k

J k k k k
∞

=

= +∑ x Qx u Ru . (34) 

The matrices Q and R in (34) are the designer specified symmetric positive definite 

weighting matrices. The feedback gain matrix L of the optimal LQ control law for a 

discrete-time state space system is determined through the algorithm for the synthesis of a 

linear quadratic (LQ) state-feedback regulator by determining: 

 ( )
1

T T
−

= +L R Γ PΓ Γ PΦ , (35) 

where P is obtained as a solution of the discrete-time Riccati equation [24] in the form: 

 ( )
1

T T T T
−

− − + + =Φ PΦ P Φ PΓ R Γ PΓ Γ PΦ Q 0  (36) 

which, after rearrangement, can be written in the form [4]: 

 ( )
1

T T T T
−

= + − +P Q Φ PΦ Φ PΓ R Γ PΓ Γ PΦ . (37) 

 

 

Figure 1: Optimal LQ control system with additional dynamics and observer. 
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The choice of the weighting matrices Q and R in the performance index is designer 

dependant and it is based on the relative importance of the various states and controls. 

The trade-off between the control effort and the system response determines the choice of 

the weighting matrices. In general, the weighting matrices are chosen in such a way that 

large input signals are penalized by increasing the value of the matrix R and faster 

response of appropriate state variables is achieved by increasing the values of appropriate 

elements in the weighting matrix Q. 

In the end the feedback gain matrix L is partitioned into: 

 [ ]1 2=L L L  (38) 

so that L1 corresponds to the state-space model of the controlled structure, and L2 to the 

modeled additional dynamics. Block diagram of the optimal LQ control system with 

additional dynamics is represented in Fig. 1. 

The role of the observer is to estimate the model state variables, which cannot be 

directly measured. For the state estimation the Kalman filter can be used. Equations for 

the Kalman filter design based on the current estimator assume the state-space equation 

of the plant in the form (26) and the measurements depending on the state variables and 

influenced by the measurement noise [ ] [ ] [ ]k k k= +y Cx v . The covariances of the 

process and measurement noise are denoted as 
T( )

w
E = Qww  and ( )T

v
E = Rvv , 

respectively. Then the Kalman estimator is defined by the following equations: 

 ˆ ˆ[ ] [ ] [ ]( [ ] [ ]), [ 1] [ ] [ ]
est

k k k k k k k k= + − + = +x x L y Cx x Φx Γu  (39) 

with the Kalman gain matrix: 

 
T 1

[ ] [ ]est vk k
−=L P C R  (40) 

and:  

 
T T 1[ ] [ ] [ ] ( [ ] ) [ ]

k k k v k
k k k k k−= − +P M M C CM C R CM  (41) 

 
T T[ 1] [ ]

k w
k k+ = +M ΦP Φ εQ ε  (42) 

Matrices P and Mk are determined by solving equations (41)–(42). 

4.2. Model reference adaptive control (MRAC) 

 

Another approach to the controller design suggested in this paper is model reference 

adaptive control. Controller design is based on the prescribed reference model, which 

defines the desired behavior of the controlled structure. In this case the available 

structural model is used for the investigation on the reference model prescription. 

Applied control technique is a direct model reference adaptive controller [6], [25], 

which includes the innovative integral term in the adaptation law of the adaptive gains 

[26], [27] to achieve robustness with respect to the boundness of the system states and 

adaptive gains, with small tracking errors. The model reference adaptive controller is 

designed as a discrete-time controller. 
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With general bounded, unknown and unmeasurable plant and output disturbances 

][x kf and ][y kf  respectively, discrete-time model (26) can be represented in the 

following form: 

 x y[ 1] [ ] [ ] [ ], [ ] [ ] [ ] [ ]k k k k k k k k+ = + + = + +x Φx Γu f y Cx Du f  (43)  

For a general discrete-time state space plant model (43) the control objective of the 

MRAC system is to find without an explicit knowledge of the state matrices ΦΦΦΦ and ΓΓΓΓ, 

which contain the system parameters, such control law u[k] that the plant output y[k] 

follows the output ym[k] of a specified reference model with the least possible error. 

Direct robust MRAC algorithm is derived from the general model reference adaptive 

tracking problem [25]. MRAC system is based on the reference model, specified by the 

designer, which reflects the desired behavior of the controlled structure (Fig. 2). The 

reference model is prescribed in a discrete-time state space form: 

 [ ] [ ] [ ]1 , [ ] [ ]
m m m m m m m m

k k k k k+ = + =x Φ x Γ u y C x  (44) 

where ΦΦΦΦm and ΓΓΓΓm represent the discrete-time state and control matrices, respectively, Cm 

is the output matrix,  1mn

m
R

×∈x  is the state vector, 1mm

m
R

×∈u  the command vector and 

1mp

m
R

×∈y  the output of the reference model. 

 

 
 

Figure 2: General form of a discrete-time MRAC system. 

The output tracking error is defined as: 

 [ ] [ ] [ ]
m

k k k= −
y

e y y . (45) 

The reference model is designed to meet some desired performance properties. 

Since its output prescribes the behavior of the plant output, the number of reference 

model outputs has to be equal to the number of the plant outputs (pm=p). Otherwise it is 
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independent of the controlled plant. Further it is required that the reference model is 

asymptotically stable.  The model is assumed to be bounded-input/bounded-state stable. 

Since the reference model only represents desired behavior of the controlled structure, 

the dimension nm of the reference model state vector may be much less than the 

dimension n of the plant state, which is practically the case with large flexible smart 

structures. Regarding the stated requirements, the reference model can be designed by 

selecting the parameters which provide asymptotic stability. Desired responses of the 

reference model can be obtained by an appropriate parameter selection and confirmed 

through an iterative simulation and through tuning procedures. Generally it is required 

to achieve the desired properties of the reference model and therefore of the controlled 

system output, maintaining at the same time the simplicity of the control system. The 

lower reference model orders are preferred on one hand due to reduced computational 

effort. On the other hand, the simulated prescribed behavior of the reference model must 

comply with the real behavior of the controlled plant, i.e. of its model in the simulation. 

Too low orders of the reference model sometimes do not fulfill this requirement and 

therefore cannot be used to prescribe the controlled behavior which complies with the 

realistic behavior of the controlled plant. The task of the reference model selection 

becomes therefore a trade-off between the requirement for the lower reference model 

order and control algorithm simplicity on one hand, and the requirement that the 

reference model represents the realistic possible behavior of the controlled plant. 

 

 

Figure 3: Equivalent representations of the reference model. 

With this regard in this paper the selection of the reference model is proposed, 

based on the equivalent representation of the closed-loop feedback control system (Fig. 

3) with an optimal LQ controller, designed using the procedure explained in section 4.1, 

which provides the desired behavior in the sense of the suppressed output magnitudes 

subjected to control in the presence of periodic excitations. Realistic prescription of the 

desired behavior is possible if the influence of the excitations is taken into account in the 

design of the reference model. In such a case the excitations represent the input of the 
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reference model and the reference model in turn outputs the optimally controlled 

behavior. In Fig. 3 the first block diagram represents the feedback system with the plant 

model used for the reference model design. Discrete-time plant model is defined based 

on the equations (26) and has the form given in the upper block of the first block-

diagram in Fig. 3. Here f represents periodic excitations with the frequencies 

corresponding to selected eigenfrequencies of the plate or acoustic fluid. The feedback 

loop is closed by: 

 [ ] [ ].
m m

k k= −u Lx   (46) 

where L represents the feedback gain matrix of the optimal LQ controller, designed 

using the procedure explained in section 2 in such a way that the controller minimizes 

the performance index: 

 
0

1
( [ ] [ ] [ ] [ ])

2

T T

m m m m m m

k

J k k k k
∞

=

= +∑ x Q x u R u  (47) 

with symmetric, positive-definite weighting matrices Qm and Rm. An equivalent 

representation of the closed-loop reference system in the upper block-diagram is 

represented in the lower block-diagram, which corresponds to the reference model 

designed to meet the requirements of the desired plant behavior with the reduced output. 

With regard to the control objective the realization (ΦΦΦΦ, ΓΓΓΓ) is supposed to be 

controllable and output stabilizable, the realization (ΦΦΦΦ, C) is supposed to be observable 

and the matrix ΓΓΓΓ is assumed to have a maximum rank. Then, a discrete-time direct 

model reference adaptive law is expressed in the following form: 

 
e x u

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

r

m m

k k k

k k k k k k

=

= + +
y

u K r

K e K x K u
 (48) 

where the adaptive gains as well as the vectors ey, xm and um are concatenated within 

appropriate matrices of dimensions m×nr and nr×1, respectively: 

 [ ]e x u

[ ]

[ ] [ ] [ ] [ ] , [ ] [ ]

[ ]

r m

m

k

k k k k k k

k

 
 = =  
  

ye

K K K K r x

u

. (49) 

The control task involves several objectives. The output tracking error ey (45) should 

be minimized by the adaptive system. In a general case the output can be affected by an 

external disturbance or a measurement disturbance, which are represented by the term 

fy[k] in the general plant output equation (43). Disturbance or excitation affecting the 

states of the plant fx[k] is included in the state equation (43). The robust stability and 

performance of the controlled system in the presence of a wide class of input signals and 

input or output disturbances/excitations is the aim of the control. In [6] it was shown 

that the adaptive controller is able to maintain small tracking errors in non-ideal 

environment. This property reflects the robustness of the adaptive controller with respect 



137

Modern concepts of actively controlled smart structures – Anoverall design approach 

to boundness of the states, errors and adaptive gains. The adaptive gain [ ]
r

kK  in (26) is 

determined as a sum of proportional and integral parts p
K  and 

I
K  respectively: 

 [ ] [ ] [ ]
r p I

k k k= +K K K  (50) 

According to the basic model reference adaptive algorithm the proportional and integral 

gains are adapted in the following way: 

 

T

T

0

[ ] ( ) ,

[ 1] [ ] , (0)

p

I I I

k t

k k

=

+ = =

y

y

K e r T

K e r T K K
 (51) 

where T and Tare nr×nr time-invariant weighting matrices and 
0IK is the initial 

integral gain. 

Another aspect of the control requirements regards the convergence of the 

adaptive gains. In the robust model reference adaptive control approach the integral gain 

differs from the basic adaptive algorithm in (51). The robust model reference control 

system should successfully face disturbances (or the parameter variation viewed in terms 

of unmodeled or unknown dynamics). In ideal conditions without disturbances the 

integral gain increases as long as the error exists. When the integral gain reaches a 

certain stabilizing value the error begins to decrease and it decreases further till it 

reaches the zero value. Than the integral gain stops increasing and maintains some 

stabilizing constant value. In realistic environment due to disturbances the error does not 

reach the zero value and thus the integral gain never stops increasing. Although almost 

strictly positive real structures are theoretically proven to be stable in the presence of 

high gains, the infinite increase of the integral gains can lead to divergence of the 

adaptive control system or to numeric instability in the presence of disturbances. A 

modification of the integral gain in (50) by adding a σ-term is therefore introduced [6], 

[26], in order to guarantee the convergence. Discrete-time form of the robust adaptation 

with respect to the integral gain convergence is: 

 T
[ 1] [ ] [ ] σ [ ]I Ik k k k+ = −yK e r T K . (52) 

A condition, which the plant (43) including disturbances or excitations should fulfill 

in order to be globally stable with respect to boundness, is that it is almost strictly 

positive real [6], [27] and that the disturbances are bounded. In that case the states, 

gains and errors involved in the adaptive control are bounded. In order to guarantee 

robust stability, perfect tracking is not obtained in general, but the adaptive controller 

maintains a small tracking error over large ranges of non-ideal conditions and 

uncertainties. 

5. Application examples 

 

Implementation of the overall design procedure for vibration control of smart structures is 

demonstrated through several examples. Through the experimental application of control 

and simulation results, the possibilities of the successful vibration control are shown. 
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Examples include vibration control of a clamped cantilever beam, the funnel shaped inlet 

of the magnetic resonance tomography, and the car roof. 

 
4 (a) 

 
4 (b) 

 
4 (c) 

 
4 (d) 

Figure 4: Simulated sensor signal (velocity) and control voltage signals of uncontrolled 

and controlled (after 4s) system, due to a harmonic excitation force:  

( ) sin(2 )
i

F t A f t= π⋅ ; 

(a) f1=13.4 Hz, (b) f2=72.5 Hz, (c) f3=198 Hz, (d) f4=392 Hz 
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5.1. Vibration suppression of a cantilever beam 

 

For the solution of the control task an optimal LQ controller in combination with a 

Kalman filter is designed (based on the procedure in Section 4.1.) in such a way that the 

vibration amplitudes due to periodic excitation forces with frequencies corresponding to 

the eigenfrequencies of the clamped beam, are significantly suppressed in comparison 

with the uncontrolled case. Simulation results of the controller design, with periodical 

and random excitation forces are represented in Figures 4 and 5. 

Simulated exciting forces ( ) sin(2 )
i

F t A f t= π⋅  exerted to the free end of the 

beam were chosen with regard to the resonant bending eigenfrequencies fi of the beam. 

The optimal LQ control system was designed with the weighting matrices CCQ T=  

and 441.0 ××= IR . For the Kalman filter design, it is assumed in the state estimation 

procedure that only the sensor voltage (vibration velocity) is measured. Furthermore, a 

plant noise vector (force disturbance) with 4 4
100

w ×= ×R I   and a sensor noise 

disturbance with 10
v

=R   are considered for the definition of the noise correlation 

matrices and Kalman feedback gain design. 

 Diagrams 4(a) – 4(d) represent the uncontrolled and controlled (after 4s) 

vibration velocity of the beam, due to harmonic excitation forces with frequencies 

corresponding to the 1
st
, 2

nd
, 3

rd
 and 4

th
 bending eigenfrequency of the clamped beam 

respectively, as well as the corresponding control signals (actuating voltages on piezo 

patches). The uncontrolled and controlled (after 4s) vibration velocity of the beam due to 

a white noise force disturbance and the corresponding actuating voltages on piezo 

actuator patches are represented in Figure 5. In both cases, periodical and random 

excitation, a significant reduction of the vibration magnitudes can be observed in the 

presence of the controller. 

 
Figure 5: Simulated sensor signal (velocity) and control voltage signals of uncontrolled 

and controlled (after 4s) system, due to a white noise force disturbance 
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For the purpose of experimental validation, the identified model coupled with the 

Kalman state estimator and optimal LQ controller designed based on the identified 

model are implemented within a real time configuration. The closed loop system for the 

active vibration control of the beam is implemented on the real time data acquisition 

platform of the dSPACE system with sampling frequency of 1 kHz. The task of the 

control is to suppress the vibration magnitudes of the sensor signal in time domain an 

accordingly to reduce the resonance peaks in the frequency domain. Therefore, 

investigations are carried out both in the time domain and in the frequency domain by 

means of the experimental rig represented in Figure 6. 

For the analysis in 

the time domain 

the shaker, 

represented in 

Figure 6, is used. 

The shaker is 

connected to the 

tip of beam with a 

rubber band, in 

order to excite the 

beam with 

periodic forces. 

The sinusoidal 

excitation signal 

for the shaker is 

generated in 

Simulink and lead 

out through the 

dSPACE DAC 

board. The 

frequency of the 

sine signal corresponds to the eigenfrequen-cies to be controlled. The excitation 

frequencies for the experimental investigation were fine adjusted experimentally to the 

values which cause greatest vibration magnitudes, so that disturbances correspond to the 

system’s actual resonant states. The response of the sensor for the uncontrolled and 

controlled system (after 4s) and the corresponding control signals in the time domain are 

represented in Figure 7. Diagrams shown on the left hand side represent the velocity 

magnitudes of the beam measured by dSPACE ADC board and diagrams shown on the 

right hand side represent the voltages at the piezo actuator patches generated by 

dSPACE DAC board. These results were obtained using the hardware-in-the-loop 

system with the dSPACE Real-Time Interface platform. The experimental results show, 

that the application of the control results in an obvious reduction of the vibration 

amplitudes. 

 

Figure 6: Experimental rig for validation of the control system 

based on the identified model 
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Figure 7: Sensor signal (velocity) and control voltage signals of uncontrolled 

and controlled (after 4s) system, due to a harmonic excitation force: 

( ) sin(2 )
i

F t A f t= π⋅ ; (a) f1=14.5 Hz, (b) f2=72.6 Hz, (c) f3=202 Hz 

Successful performance of the controlled system is demonstrated for the case of the 

initial displacement disturbance type as well. Free vibrations of the beam caused by an 

initial displacement applied to the tip of the beam are comparable with impulse 

disturbance vibrations. The free vibration response (velocity) of the open-loop and 
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closed-loop system subjected to an initial displacement of 8mm is measured using the 

laser vibrometer at the point, which is located 22 mm away from the free end, and it is 

represented in Figure 8. Designed controller attenuates significantly the magnitudes of 

the free end displacement. The closed-loop 5% settling time is equal to 0.3 s, which 

reveals a great improvement of the response attenuation when compared with the open-

loop one (7.9 s). 

 

Figure 8: Free vibration response (velocity) of the controlled and uncontrolled system 

 

The effect of the control is also documented in the frequency domain by obtaining 

frequency response functions from measured input and output signals. The frequency 

response functions between the sensor signal (laser vibrometer) as the output and the 

impulse excitation by an impact hammer as an input were determined using the 

experimental rig represented in Figure 6, in this case with the hammer instead of shaker. 

The free end of the beam was excited using the impact hammer and the response from the 

sensor was measured, for both controlled and uncontrolled case. Controlled and 

uncontrolled frequency response functions are represented in Figure 9 for the frequency 

range of up to 500 Hz. The figure shows significant vibration suppression in terms of the 

peak amplitudes reduction for the controlled eigenfrequencies. Especially in the lower 

frequency range, the designed controller significantly reduces the peak magnitude at the 

first resonant frequency for approximately 32dB. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Frequency response of the controlled and uncontrolled system 
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5.2. Vibration suppression of an MRI tomograph funnel shaped inlet 

 

Control structure in this application example is a funnel shaped piezoelectric shell 

structure, which represents the inlet part of the magnetic resonance tomograph (Figure 

10) used in medical diagnostics. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10:  Magnetic resonance tomograph Figure 11:  The finite element mesh of the 

funnel with   actuator/sensor placement 

 

One major problem in MRI equipment is the high-level noise that a patient must 

undergo during the medical treatment. The aim of the control is an attempt to reduce the 

noise by suppressing vibration of the magnetic resonance tomograph. The Lorenz force 

acting on the copper coils surrounding the cylindrical body of the tomograph excites the 

vibrations of the cylindrical housing. These vibrations are also transmitted to the funnel-

shaped inlet of the tomograph. The need for the noise reduction through the vibration 

suppression imposes the idea that the vibration control of the complex funnel-shaped 

shell inlet of the tomograph can contribute to the overall vibration suppression of the 

device and therefore to the noise reduction. Since the vibrations transmitted from the 

copper coil around the cylindrical body of the tomograph to the funnel are viewed as a 

secondary source of the noise, their suppression plays an important role in the noise 

reduction. The present research and experimental results regard the field of the vibration 

suppression. Control is achieved using piezoelectric actuators and sensors glued to the 

surface of the funnel. The finite element mesh of the funnel with locations of the 

actuators and sensors is shown in Figure 11. 

Vibration modes in the frequency range of interest corresponding to the modally 

reduced numeric model are controlled in the presence of excitations with frequencies 

corresponding to the eigenfrequencies of the funnel. Due to possible resonance 

occurrence this represents the worst case. Numeric model of the funnel is obtained using 

the finite element approach and modal reduction (as explained in the Section 3.2) in 

order to obtain a state space model convenient for the controller design. Vibration 

control of the selected modes in the sense of the vibration amplitudes suppression is 

performed applying two proposed control techniques: optimal LQ tracking system with 

additional dynamics (Section 4.1) and a direct robust model reference adaptive control 

(Section 4.2). 

Sensor 2R

Sensor 3R

Sensor 3L

Sensor 2L

Sensor 1L

Sensor 1R

Actuator 2R

Actuator 3L Actuator 3R

Actuator 1L

Actuator 1R
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Active vibration suppression of the funnel is achieved by piezoelectric patches 

used as actuators and sensors. Each of the six actuators represents a group consisting of 

four piezoelectric patches (function modules), whereas each of the six sensors is a single 

piezoelectric patch. Function modules are made of piezoceramic films (PZT film Sonox 

P53), with standard dimensions 50×25×0.2 [mm].  

Controller verification and testing was performed for several different cases. Here 

some representative results of the control implementation are presented.  

For a single input single output case, selected actuator/sensor pair A2R−S1R (see 

Figure 11) is considered. In order to achieve vibration suppression of the sensor response 

magnitudes, in the presence of the sine excitation with the frequency equal to the first 

eigenfrequency (f1=9.573 Hz), an optimal LQ controller with additional dynamics is 

designed, where the design model has order 13, and the weighting matrices are selected 

as: Q=0.001 I13×13 and R=100. Experimental results of the vibration suppression are 

shown in Figure 12, which represents the sensor response and the control signal. 

 

 

 

 

 

 

 
 

Figure 12:  Sensor response and control signal for the actuator/sensor pair A2R – S1R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Actuator and sensor signals 

based on design model involving three 

eigenfrequencies of the funnel (periodic 

excitation with frequency f1) 

 

Figure 14:  Actuator and sensor signals 

based on design model involving three 

eigenfrequencies of the funnel 
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A more general control case regards the simultaneous control of the first three 

eigenfrequencies. The task of the control system is to suppress vibration magnitudes 

measured by sensors in the presence of sinusoidal excitation, the frequency of which can 

be equal to any of the first three funnel eigenfrequencies, or to the combination of these 

sinusoidal signals.  

Additional dynamics takes into account all three funnel eigenfrequencies of interest 

included in the reduced order state space model (f1=9.573 Hz, f2=23.333 Hz, f3= 

31.439Hz). Design model developed based on this additional dynamics was used to 

design a controller for a multiple input multiple output case. The sensors S1R, S2L and 

the actuator A2R were considered. The controller was tested under different excitation 

conditions and selected results, time responses of the sensors and the controller signal, 

are represented in Figures 13 and 14. 
Based on the procedure for adaptive controller design described in Section 4.2, a 

direct robust model reference adaptive control was applied to the funnel-shaped structure 

in order to suppress the vibrations caused by excitations which are assumed to be 

sinusoidal with frequencies corresponding to selected eigenfrequencies of the funnel. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Uncontrolled and controlled 

sensor response 
Figure 16:  Zoomed controlled response 

of the sensor S1R 

Figure 17: Control signal (actuator A2R) Figure 18: Adaptive gain 
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Coefficient σ in the modified robust algorithm (52) enables a stable control 

algorithm in the sense of convergence of the outputs, states and adaptive gains (see 

Figure 18). It is chosen to be σ=0.1. For a SISO case the coefficients of the reference 

model are chosen in the following way: Am= −3, Bm=1, Cm=3. Actuator/sensor pair 

A2R−S1R is considered. For the presented simulation results obtained with the FE based 

state space model of the funnel appropriate elements of the matrices T and T  are 

selected to be 1000. Excitation sin(2πf1)t  is considered. Uncontrolled and controlled 

output is represented in Figure 15. Zoomed portion of the controlled response is 

represented in Figure 16. Actuator signal and adaptive gain Ke are represented in 

Figures 17 and 18, respectively.  

 

5.3. Vibration suppression of a car roof 

 

Vibration suppression of a car roof with attached piezoelectric patches using the optimal 

LQ controller with additional dynamics is demonstrated through a numerical simulation 

for a test structure. Piezoelectric patches attached to the surface of the car roof are used 

as actuators and sensors. Excitation by shakers at prescribed points is intended for the 

experimental investigations (Fig. 8). 

 

 
 

Figure 19: Passenger compartment and inner surface of the car roof with attached 

piezoelectric patches and exciting shakers 

 

FEM model including the piezo-electric effects of the actuator/sensor groups was 

obtained using the FEM software COSAR [28]. Based on the generated FEM mesh, an 

optimization of the actuator/sensor placement was performed under consideration of the 

eigenmodes of interest and the controllability index. For the controller design a modally 

reduced state space model was used, which takes into account five selected 

eigenfrequencies: f1=48.45Hz, f2=51.12Hz, f3=63.23Hz, f4=64.67Hz and f5=68.00Hz. 

Using the control concept with optimal LQ controller, additional dynamics and Kalman 
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estimator the simulation of the vibration suppression was performed in order to show the 

potentials of the control strategy. The results are represented in Figure 20. 

The comparison of the uncontrolled and controlled cases shows significant 

reduction of the vibration magnitudes in the presence of the controller. The controller 

was also compared with the standard optimal LQ controller without additional dynamics 

which compensates for the presence of the periodic sinusoidal excitations with critical 

frequencies. The comparison shows much better vibration suppression in the presence of 

the controller with additional dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: a) Controlled and uncontrolled responses of the sensor patches. 

b) Zoomed portion of the controlled responses. 

 

 

6. Conclusion 
 

An overall concept for active control of smart structures using piezoelectric materials is 

presented in this paper. The approach is especially well suited for light weight structures 

and it is presented through several subsequent steps: modeling (model identification and 

numerical modeling), optimization, controller design, simulation and experimental 

verification/testing. The effectiveness of the concept is demonstrated trough application 

examples. 
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Abstract. In this paper, they  are presented recently obtained results which 

are related to applications of fractional calculus in  dynamics- specially 

stability and control issues.In recent years, there have been extensive research 

activities related to applications of fractional calculus (FC), in nonlinear 

dynamics, mechatronics as well as control theory. First, they are presented the 

new algorithms of  PID control based on fractional calculus (FC) and optimal 

procedure in the position control of robotic system with 3 DOFs driven by DC 

motors. The objective of this work is to find out optimal settings for a 

fractional PI Dα β controller in order to fulfill proposed design specifications 

for the closed-loop system, taking advantage of the fractional orders, α  and 

β . The effectiveness of suggested optimal fractional PID control is 

demonstrated with a suitable robot with three degrees of freedom as the 

illustrative example. Also, this paper proposes a robust fractional-order 

sliding mode control of a 3-DOF robot system driven by DC motors. 

Primarily, a conventional sliding mode controller based on PDα  sliding 

surface is designed. Numerical simulations have been carried out to show the 

proposed control system's robustness properties as well as compare the 

significance of the proposed control which resulted in reducing output 

oscillations (chattering-free) of the given robot. Simulations also include 

comparison fractional-order PD sliding mode controller with standard PD 

sliding-mode controller. Also, it is proposed sufficient conditions for finite 

time stability for the (non)homogeneous fractional order systems with time 

delay.  New stability criteria for this class of fractional order systems will be 

derived using a recently obtained generalized Gronwall inequality as well as 

“classical” Bellman-Gronwall inequality. Last,a numerical example is 

provided to illustrate the application of the proposed stability procedure.  

 

1. Introduction  

 

Fractional calculus (FC) is a mathematical topic with more than 300 years old history, 

but its application to physics and engineering has been reported only in the recent years. 
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The fractional integro-differential operators are a generalization of integration and 

derivation to non-integer order (fractional) operators. It is remarkable the increasing 

number of studies related with the application of fractional controllers in many areas of 

science and engineering,  where specially fractional-order systems are of interest for 

both modeling and controller design purposes. It has been found that in interdisciplinary 

fields, many systems can be described by the fractional differential equations i.e. in the 

fields of continuous-time modeling, fractional derivatives have proved useful in linear 

viscoelasticity, acoustics, rheology, polymeric chemistry, biophysics robotics, control 

theory of dynamical systems, electrical engineering, bioengineering and so on, [1-3].  

Also, robots today are making a considerable impact on many aspects of modern life, 

from manufacturing to healthcare. Mobile robots, underwater and flying robots, robot 

networks, surgical robots, and others are playing increasing roles in society, [4]. 

Moreover, robots are important components in automation systems and new solutions on 

the system level often result in new requirements on the robot control. Sometimes new 

automation concepts ask for big changes in the design of the robot control, as for 

example in the case of automation concepts based on collaborating robots [5]. Thus, 

robot control development has made it possible to improve the quality of robot-based 

manufacturing and increase the productivity of robot automation. At the same time the 

robot control development has made it possible for the robot manufacturers to reduce the 

cost of the robots and introduce robots in applications with high requirements on motion 

performance. Without the efforts made to refine the robot control, there would not be 

one million robots working in industries world-wide today. Unlike the industrial robotics 

domain where the workspace of machines and humans can be segmented, applications 

of intelligent machines that work in contact with humans are increasing, which involve 

e.g. haptic interfaces and teleoperators, cooperative material-handling, power extenders 

and such high-volume markets as rehabilitation, physical training, entertainment. In 

that way, robotic systems are more and more ubiquitous in the field of direct interaction 

with humans, in a so called friendly home environment. For example, providing contact 

sensing on the whole body of a robot is a key feature to increase the safety level of 

physical human-robot interaction. One of these robotic systems capable of operating in 

human friendly environments is NeuroArm robot, Fig.1.  

                  

Figure 1. NeuroArm robot system,Laboratory of Mechanics        Figure 2. Model of NeuroArm with 7 DOFs 

at Faculty of Mechanical Engineering in Belgrade 
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This robotic arm possesses seven degrees of freedom, which described with six 

parameters for rotating and one parameter for translating, Fig.2. Within NeuroArm 

Manipulator System there are a rich set of options that enable scientists and engineers to 

configure your robot that will meet the needs [6,7].                                                   

Besides, in classical control theory, state feedback and output feedback are two 

important techniques in system(robotic), control. Specially, due to its functional 

simplicity and performance robustness, the PID controller has been widely used in the 

process industries. Design and tuning of PID controllers have been a large research area 

ever since Ziegler and Nichols presented their methods in 1942, [8]. Specifications, 

stability, design, applications and  performance of the PID controller have been widely 

treated since then [9,10].  

However, in the recent years, emergence of effective methods to solve differentiation and 

integration of noninteger order equations makes fractional-order systems more and more 

attractive for the systems control community. The fractional controller PI Dβ α
 [3], the 

fractional PD
α

controller [11], the
⋅
 fractional PI

α
controller [12], the CRONE 

controllers [13,14], and the fractional lead-lag compensator [15] are some of the well-

known fractional order controllers. In this paper, we suggest and obtain new algorithms 

of  PID control based on fractional calculus (FC) in the control of robotic system driven 

by DC motors. The objective of this work is to find out suitable settings for a fractional  

PI D
α β

controller in order to achieve better transient response as well as  fulfill  

proposed design specifications for the closed-loop system, taking advantage of the 

fractional orders, α  and β . 

Also, sliding-mode controller (SMC) is a powerful tool to robustly control 

incompletely modeled or uncertain systems [16] which has many attractive features such 

as fast response, good transient response and asymptotic stability. The conventional SMC 

law guarantees robustness of the sliding manifold if the model uncertainties are bounded 

with known bounds and comply with the matching condition. Once the system states hit 

the sliding surface, they stay there, and the equivalent system dynamics are predefined 

with a reduced order. However, SMC has some disadvantages related to well known 

chattering in the system. Chattering is undesirable in the control of  mechanical systems, 

since it causes excessive control action leading to increased wear on the actuators and to 

excitation of the high order nonmodeled dynamics. Therefore, chattering must be 

eliminated from the SMC system. Since chattering is caused by the discontinuous 

control, there exist several techniques to reduce high switching amplitude, [17].  

Recently, fractional-order sliding mode control technique, authors, Monje et al. [18]  has 

been successfully applied for robot manipulator , as well as  in [19], or in [20]  results of 

combining sliding mode control and fractional order derivative is considered in two 

different approaches. In this paper, we suggest and obtain chattering-free fractional 

PD α  sliding-mode controller in the control of robotic system driven by DC motors. In 

that way, one has  used a fractional-order sliding surface to design a fractional-order 

sliding mode controller for chattering-free tracking the given robot system. 

                                                        
⋅
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Finally, some  results of the stability criteria of fractional order systems with time-

delay as well as free-delay are presented. Particularly, they are obtained and 

presented sufficient conditions for finite-time stability for (non)linear 

(non)homogeneous as well as perturbed fractional order time-delay systems. 

Several stability criteria for this class of fractional order systems are proposed 

using a recently suggested generalized Gronwall inequality as well as “classical” 

Bellman-Gronwall inequality. Some conclusions for stability are similar to those of 

classical integer-order differential equations. Lastly, numerical examples are given 

to illustrate the validity of the proposed procedure. 

2. Preliminaries on the fractional calculus  

 

The fractional integro-differential operators-(fractional calculus–(FC)) are a 

generalization of integration and derivation to non-integer order (fractional) operators. 

The idea of FC has been known since the development of the regular calculus, with the 

first reference probably being associated with Leibniz and Marquis de l’Hopital in 1695. 

Both Leibniz and L`Hospital, aware of ordinary calculus, raised the question of a 

noninteger differentiation (order 1 / 2n = ) for simple functions. It had always attracted 

the interest of many famous ancient mathematicians, including L'Hospital,  Leibniz, 

Liouville, Riemann, Grünward, and Letnikov [1-3]. In that way, the theory of fractional-

order derivative was developed mainly in the 19
th

 century. Since from 19
th

 century  as a 

foundation of fractional geometry and fractional dynamics, the theory of FO, in  

particular,  the  theory  of  FC  and  FDEs  and  researches  of  application  have  been  

developed rapidly in the world. The modern epoch started in 1974 when a consistent 

formalism of the fractional calculus has been developed by Oldham and Spanier,[1], and 

later Podlubny,[3]. Applications of FC are very wide nowadays, in rheology, 

viscoelasticity, acoustics, optics, chemical physics, robotics, control theory of dynamical 

systems, electrical engineering, bioengineering and so on, [11-20].  
The modern epoch started in 1974 when a consistent formalism of the fractional 

calculus has been developed by Oldham and Spanier [1]. The theory of FC is a well-

adapted tool to the modeling of many physical phenomena, allowing the description to 

take into account same peculiarities that classical integer-order models simply neglect. 

The main reason for the success of applications FC is that these new fractional-order 

models are more accurate than integer-order models and fractional derivatives provide 

an excellent instrument for the description of memory and hereditary properties of 

various materials and processes due to the existence of a ”memory” term in a model. 

There exist today many different forms of fractional integral operators, ranging from 

divided-difference types to infinite-sum types, Riemann-Liouville fractional 

derivative,Grunwald–Letnikov fractional derivative, Caputo’s, Weyl’s and Erdely-Kober 

left and right fractional derivatives and so on, Kilbas et al.[21]. The three most 

frequently used definitions for the general fractional differintegral  are: the Grunwald-

Letnikov (GL) definition, the Riemann-Liouville (RL) and the Caputo definitions, [1-3]. 

First is the GL definition i.e Grunwald-[22], Letnikov [23] developed an approach to 

fractional differentiation based on the definition 
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which is the left Grunwald-Letnilov (GL) derivative as a limit of a fractional order 

backward difference. Similarly, we have the right one as 
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As indicated above, the previous definition of GL  is valid for α > 0 (fractional 

derivative) and for α < 0 (fractional integral) and, commonly, these two notions are 

grouped into one single operator called differintegral.  The GL derivative and RL 

derivative are equivalent if the functions they act on are sufficiently smooth. For 

generalized binomial coefficients calculation for Rα ∈ and 0k ∈� we can use the 

relation between Euler’s Gamma function and factorial, defined as 
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If we consider / ,n t a h= − where a  is a real  constant, which expresses a limit value, 

one may write 
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where [x] means the integer part of  x, a and t are the bounds of operation for 

, ( )GL a tD f t
α

. For numerical calculation of fractional-order derivatives we can use the 

following relation (5) derived from the GL definition (4). This approach is based on the 

fact that for a wide class of functions, three definitions—GL, RL, and Caputo’s — are 

equivalent. The relation to the explicit numerical approximation of α -th derivative at 

the points kh, (k = 1,2, . . .) has the following form, [3] 

 ( )
( )

0

N( x )

x j( x L

j

D f ( x ) h b f ( x jh )
αα α ±±

−
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≈ −∑                                            (5) 

where L is the "memory length", h is the step size of the calculation,   
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h h
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[ ]x  is the integer part of x  and 
( )
jb

α±
 is the binomial coefficient given by 

( )
0 1

1
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For expression of the Riemann-Liouville definition, we will consider the Riemann-

Liouville n-fold integral  for  , 0n N n∈ >  defined as 

( )
( )

( ) ( )
1 3 2

1

1 1 2 1

1
... ... ,

n nt t t tt t
n

n n

a a a a a a

n fold

f t dt dt dt dt t f d
n

τ τ τ
−

−
−

−

= −
Γ∫ ∫ ∫ ∫ ∫ ∫



       (8) 

Fractional Riemann-Liouville integral of order α  for the function ( )f t  for ,a Rα ∈   

can be expressed  as follows 

( ) ( )
( )

( ) ( )11
,

t

RL a RL a

a

I f t D f t t f d
αα α τ τ τ

α

−−≡ = −
Γ ∫                       (9) 

Here, (.)Γ  is the well known Euler's gamma function which is defined by the so-called 

Euler integral of the second kind: 

1

0

( ) ,
t zz e t dt z

∞
− −Γ = ∈∫ �     (10)  

For this function the reduction formula holds, for { }\ 0, 1, 2, 3,...z ∈ − − −� : 

0( 1) ( ), ( 1) ( 1)! !z z z n n n n nΓ + = Γ ⇒ Γ + = − = ∈� ,            (11)  

The second important property of the gamma function is that has simple poles at the 

points , ( 0,1,2,...)z n n= − = .  Another important relationship for the gamma function is 

the Legendre formula: 

  ( ) ( ) ( )2 1
1/ 2 2 2 , 2 0, 1, 2,...

z
z z z zπ −Γ Γ + = Γ ≠ − − ,           (12) 

Taking  1 / 2z n= +  in previous relation one can obtain a set of particular values of the 

gamma function: 

          ( )
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For the case of 0 1, 0tα< < > , and ( )f t being a a causal function of t , the fractional 

integral is presented as 

( )
( )

( )

( )
1

1
, 0 1, 0

t

RL a

a

f
D f t d t

t

α
α

τ
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Moreover, the left Riemann-Liouville fractional integral and the right Riemann-Liouville 

fractional integral are defined respectively as 
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where  0, 1n nα α> − < < . Furthermore, the left Riemann-Liouville  fractional 

derivative is defined as  
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and the  right Riemann-Liouville fractional derivative is defined as  

                                ( )
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where 1n nα− ≤ < , a, b are the terminal points of the interval [ ],a b , which can also be  

,−∞ ∞ . Also, for the RL derivative, we have 
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The RL fractional derivative of a constant C  takes the form  
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But,the definitions of the fractional differentiation of Riemann-Liouville type leads a 

conflict between the well-established and polished mathematical theory and proper 

needs, such as the initial problem of the fractional differential equation, and the nonzero 

problem related to the Riemann-Liouville derivative of a constant. A certain solution to 

this conflict was proposed by Caputo first in his paper [24].The Caputo fractional 

derivatives are defined as follows. The left Caputo fractional derivative is  
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and the right Caputo fractional derivative is  
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where 
( )

( ) ( ) /
n n n

f d f dτ τ τ=   and 1n nα +− ≤ < ∈� . By definition the Caputo 

fractional derivative of a constant is zero. Previous expressions show that the fractional-

order operators are global operators having a memory of all past events, making them 

adequate for modeling hereditary and memory effects in most materials and systems.  

Moreover,  for the Caputo derivative, we have   
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where obviously, ( ), ,
RL a

D n
α ∈ −∞ +∞  varies continuously with n , but the Caputo 

derivative cannot do this. Obviously, the Caputo derivative is more strict than Riemann-

Liouville derivative, one reason is that the n-th order derivative is required to exist. On 

the other side, initial conditions of fractional differential equations with Caputo 

derivative have a clear physical meaning and Caputo derivative is extensively used in 

real applications. The Riemann-Liouville fractional derivatives  and Caputo fractional 

derivatives are connected with each other by the following relations: 
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The Caputo and Riemann-Liouville formulation coincide when the initial conditions are 

zero,[1-3]. Besides, the RL derivative is meaningful under weaker smoothness 

requirements. Also, the RL derivative can be presented as: 

( ) ), ( ), 1, ,
n n

RL t a tD f t D D f t n n
α α α− = ∈ −                         (27) 

and the Caputo derivative  

 ( ), ,( ) ( ), 1, ,
n n

C a t a tD f t D D f t n n n
α α α−= ∈ −                           (28) 

where 
nDZn ,

+∈  is the classical n -order derivative. For convenience, Laplace domain 

is usually used to describe the fractional integro-differential operation for solving 

engineering problems. The formula for the Laplace transform of the RL fractional 

derivative has the form: 

1
1

0 0 0

00

n
st k k

RL ,t RL ,t t

k

e D f ( t )dt s F( s ) s D f ( t )α α α
∞ −

− − −
=

=

= −∑∫            (29) 
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where for 0<α  (i.e., for the case of a fractional integral) the sum in the right-hand side 

must be omitted). Also,  Laplace transform of the Caputo fractional derivative is:  

1
1 ( )

0,

00

( ) ( ) (0), 1

n
st k k

C t

k

e D f t dt s F s s f n nα α α α
∞ −

− − −

=

= − − < <∑∫       (30) 

which implies that all the initial values of the considered equation are presented by a set 

of only classical integer-order derivatives. Besides that, a geometric and physical 

interpretation of fractional integration and fractional differentiation can be found in 

Podlubny’s work [25].   

 

3. Mathematical model of a robotic system with DC motors 

Robotic system is considered as an open linkage consisting of 1n +  rigid bodies [ ]iV  

interconnected by n  one-degree-of–freedom joints formed kinematical pairs of the fifth 

class, Fig.3, where the robotic system possesses n  degrees of freedom. Here, the 

Rodriguez` method [26], is proposed for modeling kinematics and dynamics of the 

robotic system. The configuration of the mechanical model of robot can be defined by 

the vector of joint (internal) generalized coordinates q  of dimension ,n  ( )q  = 

(q
1
,q

2
,…,q

n
)

T
 , where relative angles of rotation (in case of revolute joints) and relative 

displacements (in case of prismatic joints). The geometry of the system has been defined 

by unit vectors 1 2ie , i , ,..., j ,..,n=


 where unit vectors ie


 are describing the axis of 

rotation (translation) of the i -th segment with respect to the previous segment and as 

well as vectors iρ


 and iiρ


, where are usually expressed in local coordinate systems 

connected with bodies, ( ) ( )( i ) ( i )
i ii,ρ ρ
 

. The parameters , 1i iiξ ξ ξ= −  denote parameters 

for recognizing joints , 1i iiξ ξ ξ= − , 1 ,i prismaticξ = − 0 revolute− . For the entire 

determination of this mechanical system, it is necessary to specify masses im  and 

tensors of inertia CiJ  expressed in local coordinate systems. In order that the kinematics 

of the robotic system may be described, points ,i iO O′ are noticed somewhere at the axis 

of the corresponding joint ( i ) such that they coincide in the reference configuration. The 

point 
iO  is immobile with respect to the  ( 1i − )-th segment and 

iO′  does so with 

respect to the i − th one; obviously, for a revolute joint ( i ), the points 
iO  and  

iO′ will 

coincide all the time during robotic motion. For an example, the position vector of a 

point of interest Hr


 can be written as a multiplication of matrices of transformation 

1,j jA −   , position vectors iiρ


 and 
i

i iq eξ


 is expressed by   

( ) ( ) ( )( )( ) ( )
1,

1 1 1

( )

in n
i ii i

H ii i i j j iii i
i i j

r q q e A q eρ ξ ρ ξ−
= = =

 
  = + = +  
 

∑ ∑ ∏
   

                  (31) 
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where  appropriate Rodriguez’ matrices of transformation are     

  [ ] ( ) ( )
2

1 1 cos sin
d( j ) d( j )j j

j , j j jA I e q e q−
     = + − +     

                      (32) 

and 

                       ( ) ( )
0

0

0

j j
T( j ) d( j )

j j j j jj j

j j

e e

e e ,e ,e , e e e

e e

ζ η

ξ η ζ ζ ξ

η ξ

 −
  = = −    
−  

                 (33) 

Also, it is shown,[27], regardless of the chosen theoretical approach, that we could start 

from different theoretical aspects (e.g. general theorems of dynamic, d`Alembert`s 

principle, Langrange`s equation of second kind, Appell`s equations etc.) and get 

equations of motion of the robotic system, which can be expressed in the identical 

covariant form as follows                                                           

,

1 1 1

( ) ( ) 1, 2,..., .

n n n

i i ia q q q q q Q i n
βα α

α αβ

α α β= = =

+ Γ = =∑ ∑∑        (34) 

where coefficients aαβ  are covariant coordinates of basic metric tensor 

n n
a Rαβ

× ∈  and ,αβ γΓ , , 1, 2,..., nα β γ =  presents Christoffel symbols of first kind. 

Generalized forces iQ  can be presented in the following expression (35) where 

gc w a
i i i i iQ ,Q ,Q ,Q ,Q

β
 denote the generalized spring forces, gravitational forces, viscous 

forces, semi-dry friction and generalized control forces respectively   

gc w a
i i i ii iQ Q Q Q Q Q , i 1,2,...,n

β
= + + + + =                          (35) 

 

Figure 3.Open-chain structure of  the robotic multi-body system  

Further, on Fig 4. is the equivalent circuit of a DC motor represented. 
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Figure 4. The equivalent circuit of a DC motor 

 

The next equation describes the given circuit 

( )
( ) ( ) ( ), 1, 2,3i

i i i i vi

di t
R i t L ems t u t i

dt
+ + = =

                            (36)  

where iR , iL , ii  and viu are respectively resistance, inductivity, electrical current and 

voltage. Electromotive force is ( ) /i e mems t k dq dt=  where ek const=  and ( )mq t  is 

generalized coordinate of a DC motor. If there is a reductor with a degree of reduction 

iN  than is ( ) ( ), 1,2,3
mi i i

q t N q t i= =  . It can be assumed that  

( ) ( )
u

i i m i
Q t N k i t=                                                         (37) 

where mk const=  is the torque constant. If the equation of robotic system is combined 

with (37) next equation can be written 

[ ] [ ]
1 1

( ) (m m mA q q C(q,q) NK i i NK A q)q NK C(q,q)
− −

+ = ⇒ = +                (38)  

this in combination with (10) becomes    

                                                                          (39) 

[ ] ( ) [ ]
1 1

m m
L NK A(q)q+ A(q)q L NK C(q,q)

− −
+ +    [ ] ( )

1

( )
m e v

R NK A(q)q+C(q,q + K Nq = u t
−

+                            

In state space equation (39) is given with 

1

1

0

0 ( )

) ( ( ))( ))

1 2

2 3 v

•-1
3 1

x (t) x (t)

x (t) x (t) u t

x ( t A x tA (x (t))n(x t
•−

    
    

= +    
     −−    







                     (40) 

where  

[ ]

[ ] [ ] [ ] ( )

1

1 1 1

( ) ( )

(

m

m m m e

A q L NK A q

n(q,q,q) L NK A q)q L NK C(q,q) R NK A(q)q+C(q,q + K Nq

−•

− − −

=

= + +       

             (41) 

and             

   3
( ) [ )] [ ( )]

T n

1 2 3
x t x (t),x (t),x (t q(t),q(t),q t R= = ∈                                                 (42) 
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4.  Non-integer order control of robotic system 

4.1   Optimal conventional and non-integer order PID control algorithm 

     Here, it is used  robotic system with 3 DOF’s ,Fig. 5, driven by  3 DC motors. 

 

Figure 5. Robot with 3 DOF’s 

It is proposed the new algorithms of  PID control based on fractional calculus (FC) in 

the control of robotic system driven by DC motors. Here, we introduce the next 

optimality criterion 

( )J e t dt= ∫                                                              (43) 

where is ( ) ( ) ( )ze t q t q t= − . Conventional PID control algorithm is  

( ) ( ) ( ) ( )
p d i

d
u t k e t k e t k e t dt

dt
= + + ∫                                      (44) 

while the fractional PID control algorithm is given by 

( ) ( ) [ ( )] [ ( )]; , [0,1]D I

p d i D Iu t k e t k D e t k D e tα α α α−= + + ∈                (45) 

 
                                Figure 6. Classical types of PID and fractional PID controller 

 

 

The integrator term is sα
, that is to say, on a semi-logarithmic plane, there is a line 

having slope −20αdΒ. /dec. Clearly, selecting 1α β= = , a classical PID controller can 
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be recovered. The selections of 1, 0, 0, 1,α β α β= = = = respectively corresponds 

conventional PI & PD controllers. All these classical types of PID controllers are the 

special cases of the fractional 
βα

DPI controller,Fig.6. It can be expected that the 

controller  
βα

DPI  may enhance the systems control performance. 
 

In order to determine the optimal parameters, a simulation of a given robotic system 

with three degrees of freedom driven by DC motors was made in Simulink-Matlab 

environment. For control of the system, voltage is used where parameters are set for 

each DC motor. The idea was to first determine the optimal parameters for the 

conventional PID control algorithm (its gains) and then to use these optimal parameters 

(gains) as known parameters for fractional PID control algorithm in order to determine 

optimal exponents of differentiation and integration. For calculation of fractional 

derivatives and integrals the Crone approximation of second order was used 

2

0.3

2

3.981 20.15 1

20.15 3.981

s s
s

s s

+ +
≈

+ +
,

2

0.6

2

15.85 40.21 1

40.21 15.85

s s
s

s s

+ +
≈

+ +
                          (46) 

                              

2

0.9

2

63.1 80.23 1

80.23 63.1

s s
s

s s

+ +
≈

+ +
,

2

0.3

3 2

25.12 50.62 1

50.62 25.12

s s
s

s s s

− + +
≈

+ +
 

 

 

           Figure7. Optimal trajectory 
1

q                              Figure 8. Optimal trajectory 
2

q  

4.1.1   Simulation results for position control 

 

Desired value of vector of generalized coordinate was ( )1 1 1
d

q = . Optimal parameters 

for conventional PID and optimality criterion in this case had the following values 

(results are given for each DC motor): 

       1 1 1 1
50, 8, 4, 0.4672,p d ik k k J= = = =

2 2 2 2
50, 12, 4, 0.8591p d ik k k J= = = =        (47) 

        3 3 3 3
50, 4, 8, 0.3602p d ik k k J= = = =              

Optimal parameters for fractional PID and optimality criterion had the following values: 
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1 1 1 1 1 1

50, 8, 4, 1, 0.2, 0.3836p d i d ik k k Jα α= = = = = =  

                      
2 2 2 2 2 2

50, 12, 4, 1, 0.2, 0.7401
p d i d i

k k k Jα α= = = = = =                          (48) 

                        
3 3 3 3 3 3

50, 4, 8, 1, 0.8, 0.3555p d i d ik k k Jα α= = = = = =  

On Figs. 7,8 and 9 are given coordinate-time diagrams for  previous optimal parameters 

–position control. 

 

Figure 9. Optimal trajectory 
3

q  

 

4.1.2   Results for tracking control 

Also, we are interested in tracking control, so, we introduced vector of generalized 

coordinates   

0.5sin( / 2) 0.5

0.5sin( / 2) 0.5

0.5sin( / 2) 0.5

z

t pi

q t pi

t pi

− + 
 = − + 
 − + 

,                                                     (49) 

Optimal parameters for conventional PID and optimality criterion had the following 

values: 

1 1 1 1
50, 8, 22, 0.1067p d ik k k J= = = =                                                         (50) 

                                    2 2 2 2
50, 12, 18, 0.2115

p d i
k k k J= = = =  

                                   
3 3 3 3

50, 18, 22, 0.1856
p d i

k k k J= = = =  

 Optimal parameters for fractional PID and optimality criterion had the following 

values:                             

1)   
1 1 1 1 1 1

50, 8, 22, 0.6, 0.2, 0.0788
p d i d i

k k k Jα α= = = = = =  

2) 
2 2 2 2 2 2

50, 12, 18, 0.6, 0.2, 0.1386p d i d ik k k Jα α= = = = = =                                                  

(51) 

3)   
3 3 3 3 3 3

50, 18, 22, 1, 1, 0.1856p d i d ik k k Jα α= = = = = =  

On Figs.10,11 and 12 are given coordinate-time diagrams for optimal parameters-

tracking control. 
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Figure 10. Optimal trajectory 

1
q                                  Figure 11. Optimal trajectory 

2
q  

 
Figure 12. Optimal trajectory 

3
q  

 

As, it is expected that the controller βα
DPI  may enhance the systems control 

performance. It has been shown, that using fractional PID gives better transient response  

as well as steady state error, and better tracking performances in position and tracking 

control  of robotic system with 3 DOFs driven by DC motors. 

 

4.2   A chattering-free sliding mode controller design based on fractional order 

PD
α

 sliding surface 

Moreover, it is suggested here and obtain chattering-free fractional PD
α

 sliding-mode 

controller in the control of robotic system driven by DC motors. It is well-known that 

sliding-mode control is used to obtain high-performance robust control nonsensitive to 

disturbances and parameter variations. For a nonlinear MIMO system represented in so-

called normal form  

 ( ) ( )x f x G x u= +                                                             (52) 

one general sliding mode control law is, [28]  
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( ) ( ) ( ) ( )sgn
-1 -1

du = - ΛG x Λ f x - x - ΛG x Q s                            (53) 

consisting of  continuous and discontinuous control part where switching 

surfaces [ ]
T

1 2 ns s s ...s=  are defined as ( )ds x xΛ= − , dx  being the vector of desired 

states and Q positive definite diagonal matrix.  Elements of the matrix Λ are chosen so 

that i-th component of sliding hypersurface has the structure 

( )

( )
1

1, 2,...,

ir

i i i di

d
s λ x x , i n

dt

−
 

= + − =  
                                     (54)  

where ir  is the order of the i-th subsystem and 0iλ > .  More general, considering (14) 

as a nominal (known) plant dynamics, we can write 

( ) ( ) ( ) ( )x f x f x G x G x u = + + + 
                                            (55) 

where ( )f x  and ( )G x  represent uncertainties or unknown plant dynamics. Choosing 

as it is common Lyapunov function candidate to be  

1

2

T
V s s=                                                                          (56) 

we have  

( ) ( ) ( ) ( )sgn ds PQ s P I x f x f x= − + − Λ − + Λ  
                                       (57) 

where ( ) ( )
1

:P G G G
−

= Λ + Λ . Regardless whether 0G ≠  and/or 0f ≠ , with an 

appropriate choice of  Q , we can obtain 0
Ts s <  for 0s > , and this result indicates 

that the error vector defined by the difference 
dx x−  is attracted by the subspace 

characterized by 0s =  and moves toward the origin according to what is prescribed by 

0s = , [28]. In most cases this leads to good results but there are some disadvantages 

like chattering phenomenon. This problem could be overcome by approximating sgn(.) 

function in control law (53) with sat(.) or tanh(.) but here, we want to suggest one other 

solution. Instead of replacing sgn(.) function, we suggested to apply fractional sliding 

surface in order to decrease output signal oscillations. In this paper, it can be shown that 

without special tuning of Q  for perturbed plant case, using just fractional order sliding 

surface and values of Q  suitable for nominal plant, model uncertainties can be 

successfully compensated. For 3-DOF robotic system a conventional sliding manifold is 

of a first order PD structure ,  1,2,3
i i i i

s dx dt x iλ= + = 
 

where 
i i id

x x x= − . There 

were some examples of using fractional PI and PID structures, [29]  and now we propose 

a fractional PDα
structure as follows:  

                
,  1,2,3i i i is d x dt x iα α λ= + =                                       (58) 
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4.2.1   Simulation results for position control-based on fractional PD
α

 sliding-mode control 

Simulation studies have been carried out to verify the effectiveness of the proposed 

fractional PD
α

 sliding-mode control. Some experimental simulations were undertaken 

for 0.7,0.8,0.9,0.95,0.99α = , and we found that best results are obtained with 

0.95α = , (Fig.13). Transfer function s
ν

 was realized by Crone’s approximation, [30] 

and matrix [ ]5,5,5nomQ diag= as well as ( )5,2.5,2.5
T

λ = . The parameters of  robot 

system and DC motors are set as: 

     1 2 3
6.2712 kg ,  5.5575  kg,  1.8970  kgm m m= = =

                                           (59)
 

    

1 1 1 2 2 2

2

3 3 3

0.5273,  0.5273,  0.0164 , 1.0441,  1.0441,  0.0073,

0.1016,  0.1016,  0.0016

x y z x y z

x y z

J J J J J J

J J J kgm

= = = = = =

 = = =  

       

    

=2,  =1,  =1, =1
ei mi i i

K K N R  

To verify the robustness of the proposed fractional sliding/mode control we have applied 

corresponding  parameter variation as follows: 

    

31 2

1 2 3

9.92%,  9.47%,  9.75%
mm m

m m m

∆∆ ∆
= = =

                                                               (60) 

    

5%,  10%,  10%,  20%
ei mi ei ei

ei mi ei ei

K K K K

K K K K

∆ ∆ ∆ ∆
= = = =

 

     

1 21 21 2

1 1 1 2 2 2

33 3

3 3 3

=14.39%,   17.88%, 9.39%,  12.83%

14.20%,  =17.32%

y yx xz z

x y z x y z

yx z

x y z

J JJ JJ J

J J J J J J

JJ J

J J J

∆ ∆∆ ∆∆ ∆
= = = = =

∆∆ ∆
= =

      

  Nominal case: 
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s
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FrPD

 
Figure 13. Sliding surface s2- nominal case            Figure 14.    Step response ( )2q t  with PDα

surface 

 

Simulation results are depicted in Figs 13 to 17 , where black  lines are desired 

trajectories. Here, they are presented simulation data for case 2i = , 2 2,q s ,(Fig-s.13-

17). Particularly, we present comparing results for second coordinate 2q   responses with 
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PD  and fractional PD
α

cases and same all other conditions, for nominal object, Fig.13 

and perturbed object, Fig.16. 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [s]

r2
,q

2
 [

m
]

nominal plant responses

 

 

reference

PD sliding surface

FrPD sliding surface

 

Figure 15. Stabilizing using sliding mode control PD  and fractional PD
α

-nominal case 

Perturbated case:    

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

t [s]

s
2

sliding surfaces

 

 

PD

FrPD

 
Figure 16 Stabilizing using sliding mode                            Figure  17  Sliding surface s2- perturbed case 

      control PD  and fractional PD
α

-perturbed case        

    

     As, it can be seen from previous figures a sliding mode control with fractional sliding 

surface is more robust to parameter perturbations and what is most important to 

emphasize output oscillations are almost completely attenuated and overall quality of 

transient response is much better. In that way, we obtain chattering-free tracking of the 

given robot system.  

Also, the question of stability is of main interest in control theory. In the rest of this 

paper, some recently obtained results of the stability criteria of fractional order system 

with time delay as well as free delay are presented. They are employed the “classical” and 

the generalization of Gronwall Belmann lemma to obtain finite time stability and 

stabilization criteria for proposed class of time delay system. Also, they are presented 

some  results on the stability of fractional order time delay systems. Finally, a numerical 

example is given to illustrate the validity of the proposed procedure. 
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5. Stability of fractional order time-delay systems 

 

Recently,  there have been some advances in control theory of fractional (non-integer 

order) dynamical systems for stability questions such as robust stability, bounded input–

bounded output stability, internal stability, finite-time stability, practical stability, etc. 

Despite intensive researches, the stability of fractional order including time-delay 

systems remains an open problem.As for linear time invariant integer order systems, it is 

now well-known that stability of a linear fractional order system depends on the location 

of the system poles in the complex plane. Applying Matignon's stability theorem [31] 

one can check the system stability through the location in the complex plane of the 

dynamic matrix eigenvalues of the state space like system representation. But, in the 

case of fractional order time-delay system the characteristic function of a fractional-delay 

system involves fractional-order powers and exponential elements. As we know, due to 

the presence of the exponential function
se τ−

, this equation has an infinite number of 

roots, which makes the analytical stability analysis of a time-delay system extremely 

difficult. In the field of infinite-dimensional fractional-delay systems most studies are 

concerned with the stability of a class of distributed systems, whose transfer functions 

involve s and/or 
se−

,[32]. Many examples of fractional differential systems with 

delay can be found in the literature. Simple examples such as 

( ) exp( ) / , 0G s a s s a= − >  arise in the theory of transmission lines [33], or one can 

find in [34] fractional delay  systems with transfer function linked to the heat equation, 

which leads to transfer functions ( )G s such as  

( )
cosh( )

( ) , 0 1
sinh( )

x s
G s x

s s
= ≤ ≤   or  

2

2
( )

(1 )

a s

a s

e
G s

b e

−

−
=

−
                    (61) 

In the literature few theorems are available for stability testing of fractional-delay 

systems. Chen and Moore [35] analyzed the stability of a class of fractional-delay 

systems, whose characteristic function can be represented as the product of factors of the 

form  ( ) 0
cs

as b e d
α + + = where the parameters , , ,a b c d , and r are all real numbers. 

They considered the following delayed fractional equation 

( )
( )

q

pq

d y t
K y t

dt
τ= −                                                                    (62) 

where q and Kp are real numbers and  0 < q < 1, time-delay τ is a positive constant and  

all the initial values are zeros. The stability condition is that for all possible q, r and Kp 

 ( )
1/

0
q

p

q
W K

r

τ

τ

 
≤ 

 
                                                            (63) 

where in the inequality,W(.) denotes the Lambert function such that 
( )

( )
W x

W x e x= . 

However, such a bound remains analytic and is difficult to use in practice. Further, 

Matignon's theorem has been used in [36] to investigate fractional differential systems 
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with multiple delays stability. For forced fractional-delay systems, it is usually required 

that BIBO stability holds, or equivalently, the characteristic function has roots with 

negative real parts only, while for unforced autonomous fractional delay systems, the 

stability usually means asymptotical stability in the sense of Lyapunov, namely, the 

characteristic function has roots with negative real parts only. Bonnet and Partington 

[37,38] analyzed the BIBO stability of fractional exponential delay systems which  are of 

retarded or neutral type. Stability conditions can be expressed in terms of the location of 

the poles of the system. Also, they have handled the robust stabilization of fractional 

exponential delay systems of retarded type. However, all these contributions do not 

provide universally acceptable practical effective algebraic criteria or algorithms for 

testing the stability of a given general fractional delay system. Although the stability of 

the given general characteristic equation can be checked with the Nyquist criterion or 

the Mikhailov criterion, it becomes sufficiently difficult when a computer is used since 

one should find an angle of turn of the frequency response plot for an infinite variation 

of the frequency ω . A visual conclusion on stability with respect to the constructed part 

of the plot is not practically reliable, since, along with an infinite spiral, the delay 

generates loops whose number is infinite. As evidenced from the literature, the lack of 

universally acceptable algebraic algorithms for testing the stability of the characteristic 

equation has hindered the advance of control system design for fractional delay systems. 

This is particularly true in the case of designing fixed-structure fractional order 

controller, e.g., PI D
α β

. On the other side, Hwang and Cheng [39] proposed a 

numerical algorithm that uses methods based on the Cauchy integral theorem and 

suggested the modified complex integral, where the stability of a given fractional-delay 

system can be achieved by evaluating the proposed integral and comparing its value with 

zero. Recently, in paper [40] the authors have studied the stability of fractional order 

nonlinear time-delay systems for Caputo’s derivative and they extended the Lyapunov-

Krasovskii theorem for the fractional nonlinear systems. Also, the Razumikhin theorem 

for the fractional nonlinear time-delay systems for Riemann-Liouville and Caputo 

derivatives was extended in [41] because the Razumikhin stability theory is more widely 

used to prove the stability of time-delay systems, since the construction of Lyapunov-

Krasovskii functional is more difficult than that of the Lyapunov-Razumikhin function. 

Further, in [42] the authors proposed and proved the Mittag-Leffler stability theorem in 

the presence of both the Riemann-Liouville or the Caputo fractional derivatives and 

delay. The obtained theorems contain particular cases of the fractional calculus versions 

as well as the time-delay ones. 

 

5.1 Finite-time stability of fractional order time-delay systems  

All classical stability concepts, e.g., Lyapunov stability, asymptotic stability, bounded-

input-bounded-output (BIBO) stability, deal with systems operating over an infinite 

interval of time. Finite-time stability is a concept that was first introduced in the 1950s 

and it deals with systems whose operation is limited to a fixed finite interval of time and 

requires prescribed bounds on system variables. Moreover, the boundedness properties of 

the system responses are very important from the engineering point of view. That is to 

say, enable system trajectories to stay within a priori given sets for the fractional order 
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time-delay systems in state-space form, i.e. system stability from the non-Lyapunov 

point of view is considered. From this fact and author best knowledge, he firstly 

introduced and defined finite-time stability for fractional order time-delay systems, [43-

48]. Sufficient conditions of this kind of stability, for particular classes of fractional 

time-delay systems are derived.We also need the following definitions to analyze the 

case of fractional order systems with time-delay from non-Lyapunov point of view. First, 

it is introduced [43] the fractional order homogenous system with time-delay in state-

space   

* , 0 1

( )
( ) ( ) ( ), 0 1,to t

d t
D x t A t A t

dt

α
α

α
τ α= = + − < <

x x x                            (64) 

with the associated function of initial state:  

 [ ]( ) ( ) , 0 , 0.xt t C tψ τ τ= ∈ − − ≤ ≤x                                            (65) 

Also, for the case of multiple time delays the state of  fractional order systems can be 

presented as:  

* , 1 2 3

1

( ) ( ) ( ), 0 ... ...

n

to t o i i i n

i

D t A t A t
α τ τ τ τ τ τ

=

= + − ≤ < < < < < < = ∆∑x x x ,        (66) 

and with the associated function of initial state: 

 0),()( ≤≤∆−= ttt xψx .                                          (67) 

Here, * , (.)to tDα
 denotes either the Caputo fractional derivative , (.)C to tDα

or the Riemann-

Liouville fractional derivative , (.)RL to tD
α

. Also, Lorenzo and Hartley [49] considered 

variable prehistories of  ( )x t  in 0t < , and its effects were taken into account in the 

fractional derivative in terms of the initialization function. Moreover, using the short 

memory principle and taking into account the initial function (65) one can obtain correct 

initial function, where it is assumed that there is no difficulty with questions of 

continuity of solutions with respect to initial data (function). 

Definition 1.[43] The system given by (64), satisfying the initial condition (65) is finite 

stable w.r.t { }, , , , ,ot J δ ε τ δ ε<  if and only if: 

 ,x C
ψ δ<                                                                    (68)     

implies:                             ( ) , ,t t Jε< ∀ ∈x                                                        (69)  

Definition 2.[43] The system given by (66),satisfying the initial condition (67) is finite 

stable w.r.t { }, , , , ,ot J δ ε δ ε∆ <  if and only if: 

,x C
δ<ψψψψ    [ ], ,0t J J R∆ ∆∀ ∈ = −∆ ∈ ,                                (70)  

implies:                        ( ) , ,t t Jε< ∀ ∈x                                            (71)  
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Theorem 1.(A)[43] The autonomous system given by (64) satisfying the initial condition 

(65) is finite-time stable w.r.t.{ }, , , , , ,ot Jδ ε τ δ ε< , if the following condition is 

satisfied:      

 
( )

( )
( )

max 0
( )

1max 0
1 / , .

1

A
t t

A
t t

e t J

ασα
ασ

ε δ
α

−

Γ +
 − + ⋅ ≤ ∀ ∈
 Γ +
 

             (72)   

where (.)maxσ  is  the largest singular value of matrix (.), namely: 

   ( ) ( )max max 0 max 1
A

A Aσ σ σ= + ,                                    (73) 

and ( ).Γ  is the Euler's gamma function.  

B) The autonomous system given by (66) satisfying the initial condition (67) is finite-

time stable w.r.t. { }, , , , , ,ot Jδ ε δ ε∆ < , if the following condition is satisfied:                  

 ( )
( )

( )
max 0( )

1max 0
1 / , .

1

A
t t

A t t
e t J

ασα
ασ

ε δ
α

Σ −

Γ +Σ
 −
 + ⋅ ≤ ∀ ∈

Γ +  

                        (74) 

where ( )A
max (.) Ai i

i

σ σΣ =∑   of matrices ,iA i = 0,1,2,...,n   where σmax(.)is the largest 

singular value of matrix niAi ,...,2,1,0, = .        

The above stability results for linear time-delay fractional differential systems are 

derived by applying Bellman - Gronwall’s inequality. In that way, one can check system 

stability over finite-time interval. 

Remark 1. If 1α = , one can obtain the same conditions related to integer order time-

delay systems  

                
0 1

( )
( ) ( ),

d t
A t A t

dt
τ= + −

x x x                                        (75) 

as follows ([50]): 

 ( )
1

max 0( )1

max 0 11 / , .
1

A
t tA

t t
e t J

σ
σ

ε δ

− − + ⋅ ≤ ∀ ∈
 
 

, (2) 1Γ =       (76)  

 Further, it is shown in [44] that fractional order time-delay state-space model of PD
α

 

control of  Newcastle robot can be presented by (64) in a homogenous state-space form. 

It is suggested using the Caputo version of the fractional derivative, where introducing  

( )4( ) , , ,
T

1 2 3t x x x x=x  one can obtain: 

1 1

2 21/2

3 3

4 4

( ) ( )0 1 0 0 0 0 0 0

( ) ( )0 0 1 0 0 0 0 0
( )

( ) ( )0 0 0 1 0 0 0 0

( ) ( )17.8 0 12.8 0 0.04 0.04 0 0

t

x t x t

x t x t
D t

x t x t

x t x t

τ

τ

τ

τ

−      
       −      = +
       −
      

−− − − −      

x        (77) 
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 Also, one has to check the finite-time stability w.r.t 

{ }{ }0, 0,1 , 0.06, 100, 0.1 ,ot J δ ε τ= = = = = where ( )( ) 0.05,0,0,0 , 0.1, 0
T

x t tψ = ∀ ∈ −   . 

From initial data and the Eq. (77) , one can easily obtain: 

                               ( ) 0.06,x C
tψ <   

max 0 max 1 max( ) 21.95, ( ) 0, 21.95,A Aσ σ σ= = =                                    

             ( )
( )

( )2 2

2 1 (2)!
1 1/ 2 0.886

22 1 1 2 1!

π π πΓ +
Γ + = = = =

Γ +
,        (78) 

From the Theorem 8(A), it immediately follows  

 

1/2
21.951/2

0.866
21.95

1 100 / 0.06, 0.05
0.866

eT

eT
e Te s

 
+ ⋅ ≤ ⇒ = 

  
,       (79) 

eT  being the “estimated time” of finite-time stability. Also, in paper [51], a stability test 

procedure is proposed for nonhomogeneous fractional order systems  with pure time-

delay   

        * , 0 1 0

( )
( ) ( ) ( ) ( ), 0 1,to t

d t
D x t A t A t B t

dt

α
α

α
τ α= = + − + < <

x x x u                (80) 

with the associated function of initial state, (65).  

Definition 3. The system given by (80) satisfying the initial condition (65) is finite 

stable w.r.t { }, , , , , , ,u ot Jδ ε β α δ ε<   if and only if: 

      x C
ψ δ<                                                                       

(81) 

    ( ) , , 0u ut t Jα α< ∀ ∈ >u                                             (82) 

implying:  

         ( ) ,t t Jε< ∀ ∈x                                                                       (83) 

 

Theorem 2.  The nonautonomous system given by (80) satisfying the initial condition 

(65) is finite-time stable w.r.t. { }0, , , , , , ,u ot Jδ ε α α δ ε< , if  the following condition is 

satisfied: 

               
( )

( )
( )

( )

max 0
( )

1max 0 0( )
1 / , .

1 1

A t t
A

t t t t
e t J

ασα α
ασ

γ ε δ
α α

−

Γ +
 − − + ⋅ + ≤ ∀ ∈
 Γ + Γ +
 

�
        (84)   

where 0 0 0/ ,ub B bγ α δ= =�
 and (.)Γ  Euler's gamma function. 

Recently, we have studied and reported in paper [45] a stability test procedure for linear 

nonhomogeneous  fractional order systems  with pure time-delay. New stability criteria 

for this class of fractional order systems were derived by applying Bellman-Gronwall`s 

approach using for the starting point a recently obtained generalized Gronwall 
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inequality reported in [52].In that way, one can check system stability over finite-time, 

which is illustrated  using  a suitable illustrative example.  

 

Theorem 3. ([52] Generalized Gronwall inequality) . Suppose ( ), ( )x t a t  are 

nonnegative and local integrable on 0 ,t T some T≤ < ≤ +∞ ,and ( )g t  is a 

nonnegative, nondecreasing continuous function defined on 

0 , ( )t T g t M const≤ < ≤ = , 0α >  with 

 ( ) 1

0

( ) ( ) ( ) ( )

t

x t a t g t t s x s ds
α−

≤ + −∫                                    (85) 

on this interval.Then                                                    

( )( )
( )

( ) 1

10

( )
( ) ( ) ( ) , 0

t n

n

n

g t
x t a t t s a s ds t T

n

∞
α−

=

 Γ α ≤ + − ≤ <
 Γ α
 
∑∫         (86) 

Corollary 2.1 of Theorem 9, [52]    Under the hypothesis of  Theorem 11, let ( )a t  be a 

nondecreasing function on [ )0,T . Then it holds: 

 ( ) ( )( )( ) ( )x t a t E g t t
α

α≤ Γ α                                   (87) 

Theorem 4. The linear nonautonomous system given by (80) satisfying the initial 

condition ( ) ( ), 0xt t tτ= − ≤ ≤x ψψψψ  is finite-time stable w.r.t. { }0, , , , ,u Jδ ε α δ ε<  if  

the following condition is satisfied: 

( ) ( ) ( )
{ }max 01 0

max 01 01 / , 0,
1 1

ut t
E t t J T

α α
α

α
σ γ

σ ε δ
α α

• 
 + + ≤ ∀ ∈ =
 Γ + Γ + 

,       (88) 

where 0 0 / ,u ubγ α δ• = and (.)maxσ  being the largest singular value of the matrix (.), 

where: ( ) ( )max 01 max 0 max 1A Aσ σ σ= +   and ( ).Eα denotes Mittag-Leffler function. 

Theorem 5. The linear autonomous system given by (64) satisfying the initial condition 

( ) ( ), 0xt t tτ= − ≤ ≤x ψψψψ  is finite-time stable w.r.t. { }0, , , ,Jδ ε δ ε<  if the following 

condition is satisfied: 

( ) ( )max 01
max 01 01 / ,

1

t
E t t J

α
α

α
σ

σ ε δ
α

 
 + ≤ ∀ ∈
 Γ + 

,                               (89) 

Specially, the problem of finite time stability with respect to some of the variables 

(partial stability) is considered. Particularly, we are interested in partial stability i.e of 

the stability of motion with respect to some of the variables ( )y t  where are  
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( ) ( ) ( )1 2 1 2 1, ,..., , , ..., , , ..., ,

0, 0,

TTT T T
n m px x x x y y y z z y z

m p n m p

= = =

> ≥ = +

              (90) 

This class includes problems of stability to the components of the vector ( )y t  of the 

equilibrium position 0x = of a nonlinear system of ordinary differential equation  

             ( ) ( ), , , , , ,y Y t y z z Z t y z= =                                                (91) 

Moreover, for the vector functions Y and Z, of given system is usually assumed to be 

continuous in the domain 

0, , zt y h z L≥ ≤ < ≤ ∞                                                    (92) 

and its solutions are assumed to be unique and z-continuable,where are , zh L R
+∈  

known real positive numbers,[53] .Also, one can introduce,                 

  ( ) ( ) ( ), ,x y zψ θ ψ θ ψ θ =  

                                                         

(93) 

 where is usually assumed for t J∀ ∈                                     

0 0

sup ( ) , sup ( )

M M

y y z zCC
h L

τ θ τ θ
ψ ψ θ ψ ψ θ

− ≤ ≤ − ≤ ≤

= ≤ = <                  (94)                                  

Definition 4: A solution ( ) 0x t =
 
of the time delay system given by homogenous state 

equation (80) ( ( ) 0,u t t≡ ∀ ) satisfying initial condition ( ) ( ), 0x Mt t tψ τ= − ≤ ≤x
, 

where 
  ,y z CC

hψ ψ≤ < ∞  , for all 0t t≥ ,   is  

a) y –stable  if for any 0ε >  and 0 0t ≥ , there exists ( )0, 0tδ ε >  such that  

0x C
ψ δ<  implies 

0( ; , ( )) ,xy t t tψ ε< for all 0t t≥ ,           (95) 

b)  uniformly y-stable if  δ does not depend on 0t . 

Definition 5: The time delay system given by homogenous state equation (64) (when 

( ) 0,u t t≡ ∀ ) satisfying initial condition ( ) ( ), 0x Mt t tψ τ= − ≤ ≤x
, 

where 

z C
Lψ < , t J∀ ∈  is  finite time  partially stable w.r.t  { }, , , , ,ot Jδ ε δ ε<  if  and 

only if 

        ( )0 0y z CC
ψ ψ δ+ <                                             (96) 

imply:                                        0( ; , ( )) , .xy t t t t Jψ ε< ∀ ∈                        (97) 

 

Definition 6: System given by (80) satisfying initial condition 

( ) ( ), 0x Mt t tψ τ= − ≤ ≤x  where 
z C

Lψ < , t J∀ ∈  is finite time partially stable 

w.r.t  { }, , , , , ,u ot Jδ ε α δ ε<  if and only if                           



174

 MIHAILO LAZAREVIĆ 

                   ( )0 0y z CC
ψ ψ δ+ < ,                                             (98) 

and                           ( ) ,uu t t Jα< ∀ ∈                                            (99)  

imply                             0( ; , ( )) , .xy t t t t Jψ ε< ∀ ∈                              (100) 

 

So, it is proposed finite time partial stability test procedure of linear (non)autonomous 

unknown time delay fractional order systems. Time-delay is assumed to be unknown but 

its upper bound is assumed to be known. System is  given as  follows  

          
( ) ( ) ( )

0 0 1 1 0

0 0 1 1 0

( ) ( ) ( )
( )

yy yz yy yz y

zy zz zy zz z

A A A A By t y t y td
u t

z t z t z tA A A A Bdt

α

α

τ

τ

    −       
= + +               −               

 

(101) 

Specially, we consider stability of the following  subsystem 

( )
( ) ( )0 0 1 1 0

( )
( ) ( ) ( )yy yz yy yz y

d y t
A y t A z t A y t A z t B u t

dt

α

α
τ τ= + + − + − +

      

(102) 

Theorem 6:  [54]  The linear nonautonomous system given by (102) satisfying initial 

condition ( ) ( ), 0x Mx t t tψ τ= − ≤ ≤ , where z C
Lψ < , 0t J∀ ∈ , is finite time 

partially stable w.r.t. { }0, , , , ,u Jδ ε α δ ε< , if the following condition is satisfied 

( ) ( ) ( ) ( )
( ) [ ]0 01 1 / 0,

1 1 1

y uo z
y

t t t
E t L t J T

α α α
α

α

µ λ η
µ ε δ

α α α

Σ Σ
Σ

 
 + + + + ≤ ∀ ∈ =
 Γ + Γ + Γ +
 

    (103) 

where 
yµΣ
 is defined by ,y Aoyy A1yyµ σ σΣ = +  

0 0 0/ , / ,u u z Aoyz A1yzb L L a aλ α δ δ ηΣ= = = +
 ( ).σ being the largest singular value 

of matrix, and )(zEα  the Mittag-Leffler function which is defined by:  

                 
( )

0

( )
1

k

k

z
E z

k
α α

∞

=

=
Γ +∑   , 0, .e zαℜ > ∈�

                     
(104)   

 

6 Discussion 

 

New algorithms of PID control based on fractional calculus (FC) are studied and 

presented. We introduced an optimal procedure in the position control of a 3 DOF 

robotic system driven by DC motors as well as a robust fractional-order sliding mode 

control. As expected, the controller βα DPI  may enhance the systems control 

performance. It has been shown that using fractional PID gives a better transient 

response and a steady state error as well as better tracking performances in the position 

control of a 3 DOF robotic system driven by DC motors. The optimal parameters for the 

conventional PID control algorithm (its gains) are determined first and they are used as 
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initial, known parameters for the fractional PID control algorithm in order to determine 

the optimal fractional exponents of differentiation and integration. After that, the 

effectiveness of the suggested optimal fractional PID control is demonstrated with a 

suitable robot with three degrees of freedom as an illustrative example. In addition, we 

proposed a robust fractional-order sliding mode control of a given robot system driven by 

DC motors where a fractional order sliding surface PDα  is introduced. It is shown that a 

sliding mode control with the fractional sliding surface is more robust to parameter 

perturbations and, what is most important to emphasize, the output oscillations are 

almost completely attenuated and the overall quality of the transient response is much 

better.While Lyapunov methods have been developed for stability analysis and control 

law synthesis of integer linear systems and have been extended to stability of fractional 

systems, only few studies deal with non-Lyapunov stability of fractional systems. 

Further, in this paper, we have studied and presented the finite time stability of 

(non)perturbed (non)linear fractional order time-delay systems. Specially, the problem of 

finite time stability with respect to some of the variables (partial stability) is considered. 

New stability criteria for this class of fractional order systems were derived using a 

recently obtained generalized Gronwall inequality as well as “classical” Bellman-

Gronwall inequality to obtain finite-time stability criteria for the proposed class of time-

delay systems. Finally, numerical examples are given to illustrate the validity of the 

proposed procedure.Some of these results  are presented at the fifth symposium of 

fractional differentiation and its applications was held a t the Hohai University, Nanjing, 

China in the period of May 14-May 17, 2012. Also, author received awards  for the Best 

poster  for  the paper  Finite Time Partial Stability of Fractional Order Time Delay 

Systems, as well as  and  the Best oral presentation for  the paper Optimal Fractional 

Order PID Control Of Expansion Turbine  In The Air Production Cryogenic Liquid, [54-

56]. 
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Abstract. The paper analyzes various forms of differential equations of motion for 

nonlinear nonholonomic systems in terms of their equivalence. All well-known forms 

of differential equations of motion (Maggi, Volterra, Appell, Voronec, Chaplygin, 

Ferrers, Boltzmann-Hamel) are written for nonlinear nonholonomic systems and 

translated into the same general form, or derived from it. This way, their mutual 

equivalence is proved, i.e., the conclusions that hold for linear nonholonomic systems 

are generalized. Theoretical considerations are illustrated by a detailed example of a 

conservative mechanical system with a nonlinear nonholonomic constraint.  

Key words: equation of motion, system, nonholonomic, constraint, nonlinear. 

 

 

 

1. First Part 

 

In the mechanics of nonholonomic systems there are several forms of differential 

equations of motion [1-9] that can be translated into the same general form, i.e., it is 

shown that they are mutually equivalent, [10]. It is demonstrated that various forms of 

differential equations of motion are a consequence of the manner of incorporating 

nonholonomic constraints in the Lagrange-D’Alembert principle.  

 Let us generalize the conclusions presented in [10] to nonholonomic systems 

with nonlinear constraints, using standard variables (independent generalized 

coordinates and quasicoordinates) in contrast to the theory of Poincare’s equations, 

where a set of operators figure, with a property of a group (conditionally speaking, those 

equations are written with a group variable). In Poincare’s equations written in the 

Poincare-Chetayev variables, dependent generalized coordinates are figuring in addition 

to the operators mentioned. 

 Since considerations to follow employ the transformation of coordinates, 

presented in [11], it is described in brief. Let the position of a system of particles Ma 

(a=1,…,N), in 3-dimensional Euclidean space E3, be determined by coordinates xa
1
, xa

2
, 

xa
3
 (a=1, …, N). Let us incorporate new variables y

b
, as in [11], by the relations 
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1 1 2 2 3 3

1 1 1 1 1 1

3 2 1 3 1 2 3 3

, ,

, ,
N N N

N N N N N N

y m x y m x y m x

y m x y m x y m x
− −

= = =

= = =

    

where index b takes the following values: b=1, …, 3N. After taking into account the 

holonomic constraints, let the system have n degrees of freedom, i.e., the determination 

of the position of the system requires q
i
 (i=1,…,n) generalized coordinates. All 

coordinates y
b
 can be expressed via generalized coordinates q

i
 by the relations 

( )1
,..., , 1,...,3

b b n
y y q q b N= =  

 Let us observe a mechanical system subject to the action l of nonlinear 

nonholonomic constraints of the form 

 
( ) ( )

1

, 0 ,
i i i

q q q q q
ν ν ν αφ ψ= → =  

                                                                    (1)
  

Let us express independent generalized velocities qα , using particular independent 

kinematic parameters 
απ  by the relations 

 ( ),
i

q q
α α βθ π=   (2) 

Using the constraints (1), dependent generalized velocity qν  can be also expressed by 

means of independent kinematic parameters 
απ  applying the relations  

 ( ) ( ), , ,
i i i

q q q q q
ν ν α ν α β νψ ψ θ π θ = = =     (3) 

Based on the (2) and (3), the expression for the transformation of all velocities 
i

q  reads 

 ( ),
i i j

q q
αθ π=   (4) 

The derivation of differential equations of motion, starting from Lagrange-D’Alembert’s 

principle, requires certain expressions and relations, therefore they are mentioned first. 

The expression for kinematic energy of the system reads 

 1

2

i j

ijT g q q=    (5) 

or considering the (4) 

 
* 1

2

i j

ijT g θ θ=  (6) 

Countervariant coordinates of the acceleration vector in holonomic coordinates read 

 
S S S i j

ijf q q q= + Γ    (7) 

___________________________ 

1 Einstein summation convention is used in the paper. Indices take the following values:    i, j, k, r, s=1,…,n;    

, , 1,..., ; , 1,...,m m m l nα β γ ν ρ= = + + = . 
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In accordance with the Hertz-Hölder principle 

 
i

iq α

α

θ
δ δπ

π

∂
=

∂ 
 (8) 

and taking into account that (considering (4), (7)) 

 

 i i i i
i j j

j j
q q

q q

α α

α α

θ θ θ θ
π θ π

π π

∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂
   

 
 (9) 

 

the Lagrange-D’Alembert principle reads 

( ) ( )0 0
j j i j i

ij ij ig f Q q g f Q qδ δ− = → − =  

 

0

j j i
r j r S

ij ij ij Sr ir
g g g Q

q

α β

α β

θ θ θ
π θ θ θ δπ

π π

 ∂ ∂ ∂
+ + Γ − = 

∂ ∂ ∂ 


 
                           (10)

 

Considering the independence of variations 
βδπ , i.e. 0

βδπ ≠  it follows                                     

 
*

j j i i
r j r S

ij ij ij Sr ir
g g g Q Q

q

α
βα β β

θ θ θ θ
π θ θ θ

π π π

 ∂ ∂ ∂ ∂
+ + Γ = = 

∂ ∂ ∂ ∂ 


  
                       (11)

 

Introducing the designation 

i j

ij
G gαβ α β

θ θ

π π

∂ ∂
=

∂ ∂ 
 

Eqs (11) finally read 

 
*

i j i
r i S r

ij ij Srr
G g g Q

q

α
αβ ββ β

θ θ θ
π θ θ θ

π π

∂ ∂ ∂
+ + Γ =

∂ ∂ ∂


 
                                            (12)

 

Starting from the Lagrange-D’Alembert principle in the form 

 

0
k

kk k

d T T
Q q

dt q q
δ

 ∂ ∂
− − = ∂ ∂ 

                                                                              (13)

 

and taking into account Eq (8), Eq (13) is transformed into the equation  

       

0

k

kk k

d T T
Q

dt q q

α

α

θ
δπ

π

 ∂ ∂ ∂
− − = ∂ ∂ ∂  

                                                                    (14) 

 

Considering the independence of variations 
βδπ , i.e. 0

βδπ ≠ , Eq (14) is 

decomposed into m equations (Maggi’s equations) 

 

0

k

kk k

d T T
Q

dt q q α

θ

π

 ∂ ∂ ∂
− − = ∂ ∂ ∂  

                                                                       (15) 
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Let us transform Eq (15) using the following relations  

 k k k

k k k

d T d T T d

dt q dt q q dtα α α

θ θ θ

π π π

 ∂ ∂ ∂ ∂ ∂ ∂
= − 

∂ ∂ ∂ ∂ ∂ ∂      
                                                   (16)

  

 * *i i

k k i k k k i k

T T T T T T

q q q q q q q q

θ θ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + → = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
                                     (17)

 

 *k k k k
i i i

ik ik ikk

T T
g q g g

q
α α α α α

θ θ θ θ
θ θ

π π π π π

∂ ∂ ∂ ∂ ∂ ∂
= = ↔ =

∂ ∂ ∂ ∂ ∂ ∂


     
                   (18) 

  

Now, Eq (15) obtains the following form 

 * *

*

k k k S k

kk k S

d T T T d
Q Q

dt q q dt q
αα α α α α

θ θ θ θ θ

π π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
          (19)

  

 

Eqs (19) and (12) are equivalent, i.e., Eqs (12) represent, conditionally speaking, a 

direct form of Eqs (19), which is proved by the following transformations: 

 

 * 2

2

i i i
ijj S j r j

ij ijS r

i i j j
j r

ij r

gd T d
g q g q

dt dt q q

g q
q

α α α α

β β

α β α β

θ θ θ
θ θ θ

π π π π

θ θ θ θ
π θ π

π π π π

∂    ∂ ∂ ∂ ∂
= = + +    

∂ ∂ ∂ ∂ ∂ ∂    
  ∂ ∂ ∂ ∂

+ + +  
∂ ∂ ∂ ∂ ∂  

 
   

  
   

 (a) 

 

 *
1

2

k k k i
ij i j j

ijk k k

gT
g

q q qα α α

θ θ θ θ
θ θ θ

π π π

∂   ∂ ∂ ∂ ∂ ∂
= +   ∂ ∂ ∂ ∂ ∂ ∂     

 (b) 

 

 2 2k k S k k k S
i r

ikk S r S

T d
g q q

q dt q q q

β

α α α β α α

θ θ θ θ θ θ θ
π

π π π π π π

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− = + −   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
  

      
 (c) 

 

(a)-(b)-(c)=
1

2

i j i k
ij ijr S j i j

ij r S k

g g
G g

q q q

β
αβ α α α

θ θ θ θ
π θ θ θ θ θ

π π π

∂ ∂ ∂ ∂ ∂ ∂
+ + − 

∂ ∂ ∂ ∂ ∂ ∂ 


  
 

,

1
...

2

k k k k
kj iji j i j i j S i j

ij k Sk iji k

g g
g

q q
α α α α

θ θ θ θ
θ θ θ θ θ θ θ θ

π π π π

∂ ∂∂ ∂ ∂ ∂
− = = Γ = Γ

∂ ∂ ∂ ∂ ∂ ∂   
 

( ) ( )*
19 ~ 12

i j k
r S i j

ij Sk ijr
G g g Q

q

β
αβ αα α

θ θ θ
π θ θ θ

π π

∂ ∂ ∂
+ + Γ = ⇒

∂ ∂ ∂


 
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2. Second Part 

 

(a) After we have arrived at Eqs (19) starting from Maggi’s equations [1], it is evident 

that they are equivalent to those of Maggi’s. 

 (b) Volterra’s equations [2] are obtained when transferring from the velocity 

components in Cartesian coordinates to the kinematic parameters 
απ . Eqs (19) will 

represent Volterra’s equations only if we write that  

 ( ) ( ), , 1,..., 3
i i j i i

x x q x i n N
αθ π= = = =   (20) 

 

where 
ix  are independent Cartesian coordinates in which the mass of the system has 

been incorporated in a manner indicated in Introduction. Let us reduce Eqs (19) to 

Volterra’s equations. For this case, kinetic energy has the form 

 1

2

i j

ijT x xδ=    (21) 

or, using (20), 

 
* 1

2

i j

ijT δ θ θ=  (22) 

 

Calculating the values of the following expression from the (19), it is obtained 
*

1
0

2

k k S k i k k S
ijj i j i

ij ikk k S k k S

gT T
g g

q q q q q qα α α α α

θ θ θ θ θ θ θ θ
θ θ θ θ

π π π π π

∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + = − − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

considering that 

0
ij ij

k k

g

q q

δ∂ ∂
= =

∂ ∂
 

Accordingly, Eq (19) is reduced to the form that represents Volterra’s equations for 

nonlinear nonholonomic systems 

 * j
i

ij

d T d
P

dt dt
αα α

θ
δ θ

π π

∂ ∂
− =

∂ ∂ 
 (23) 

where 

 i

iP Xα α

θ

π

∂
=

∂ 
 (24) 

 

Eq (23) for linear nonholonomic constraints ( )i i
q

α
αβ π=   is reduced to the well-

known form 
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 *

, ,

k

r i

rk i

d T
b P b

dt x

γβ γ
βγ α α βγ α β αα

β
π π δ β β

π

 ∂∂
− = = 

∂ ∂ 
 


 (25) 

 (c) Further analysis shows the equivalence of Appell’s equations [3] to Eqs 

(19), i.e., (12). Appell’s acceleration function reads (in accordance with notes given 

above for the mass): 

 

( )
21

2
S a=


 (26) 

or 

 1

2

i j

ijS g f f=  (27) 

Taking into account that  

( )i i i k r i i

krf q q q q θ= + Γ =      

velocity dependencies and their derivatives can be eliminated by means of constraints 

(4), wherefrom it follows    

 
*

i i
i S i k r

krS
f

q

α

α

θ θ
θ π θ θ

π

∂ ∂
= + + Γ

∂ ∂



                                                                     (28)

    

Appell’s equations have the form  

 *

*S
Qααπ

∂
=

∂ 
 (29) 

Since  

 * *

*

j j i i
i S i k r

ij ij krS

S f
g f g

q

α

α α α α

θ θ θ
θ π θ θ

π π π π

 ∂ ∂ ∂ ∂ ∂
= = + + Γ 

∂ ∂ ∂ ∂ ∂ 


   
       (30) 

Appell’s equations can be written in the form 

       

*

j i j i j
S i k r

ij ij ij krS
g g g Q

q

β
αα β α α

θ θ θ θ θ
π θ θ θ

π π π π

∂ ∂ ∂ ∂ ∂
+ + Γ =

∂ ∂ ∂ ∂ ∂


   
 

respectively 

 
*

j i j
S i k r

ij ij krS
G g g Q

q

β
αβ αα α

θ θ θ
π θ θ θ

π π

∂ ∂ ∂
+ + Γ =

∂ ∂ ∂


 
   (31) 

 

which coincides with the (12), i.e., with the (19) 

 (d) Voronec’s equations have been derived with reference to real generalized 

velocities, i.e., 
1
,...,

nq q   and generalized coordinates q1,…, q
n
 using both expressions 

for kinetic energy, i.e., T and T
*
, [4]. Voronec’s equations for nonlinear nonholonomic 

constraints (1) read 
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 * * *
d T T T T

Q Q
dt q q q q q q

ν ν
ν
α α να α α ν ν α

ψ ψ
γ

∂ ∂ ∂ ∂ ∂ ∂
− − − = +

∂ ∂ ∂ ∂ ∂ ∂   
        (32) 

   

where the coefficients 
ν
αγ  are determined by expressions 

 d

dt q q q q

ν ν ρ ν
ν
α α α α ρ

ψ ψ ψ ψ
γ

∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ 
                (33) 

 

In the choice of kinematic parameters for real generalized velocities, i.e., qα απ =   Eqs 

(4) read 

,
i i

q q q
α α α ν ν νθ θ π ψ θ= → = = = =     

while Eqs (19) then obtain the form 

 * *

*

k k k S

k k S

d T T T d
Q

dt q q q q dt q q q
αα α α α

θ θ θ θ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂     
         (34) 

or 

* * *

*

S v v S

v S v S

d T T T T d T d
Q

dt q q q q q dt q q q q dt q q q

ν β β

αα α α β α α α α

ψ θ θ θ θ θ θ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − − − − =   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

 

respectively 

* * *

*

v v

d T T T T d
Q

dt q q q q q dt q q q q q

ν ν ν β ν ρ

αα α α α β α ρ α

ψ ψ ψ θ ψ θ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − − − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 

Finally, Eqs (19) are converted into the form 
* * *

*

i

iv v

d T T T T
Q Q Q Q Q Q

dt q q q q q q q q q

ν β ν ν
ν
α α β ν α να α α α α α α

ψ θ θ θ ψ
γ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = = = + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

 

which coincides with Eq (32), whereby it is shown that Voronec’s equations are 

equivalent to the initial system of equations (19), because they can be obtained from 

them. 

 (e) Since Chaplygin’s equations [5] represent a special case of Voronec’s 

equations, the conclusions on equivalence from the above analysis hold for them too. 

 (f)  Ferrers’s equations [6] are very similar to those of Volterra’s and they are 

written for the system subject to nonholonomic constraints, whose position is determined 

by the n=3N Cartesian coordinates xi
. Here, the mass of the system is also incorporated 

via coordinates in the above described manner. Velocities 
ix  are expressed over m 

independent kinematic parameters 
απ  by the relations 

 ( ),
i i j

x x
αθ π=                       (35) 
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Ferrers’s equations have the following form, [6] 

 * i i
j

ij i

d T d
x X P

dt dt
αα α α

θ θ
δ

π π π

∂ ∂ ∂
− = =

∂ ∂ ∂


  
        (36) 

where 

 

( )
*1 1

,
2 2

i i

i j i j

ij ijx
T x x T T

θ
δ δ θ θ

=
= = =


       (37) 

From (37) there follow the relations 

 *

,

i i
j

ijS i S i S i

T T x T T
x

x x x x x x

θ
δ

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂




  
        (38) 

 

Now, Eqs (36) can be written in the following manner 

         

* * *i i i
j

iji i

d T T T d
x P

dt x x dt
αα α α α

θ θ θ
δ

π π π π

∂ ∂ ∂ ∂ ∂ ∂
− + − =

∂ ∂ ∂ ∂ ∂ ∂


     
 * *i i S i

i i S

d T T T d
P

dt x x dt x
αα α α α

θ θ θ θ

π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂     
      (39) 

 

If we incorporate x
i
=q

i
 in the (39), we obtain the expression for Ferrers’s equations, 

which coincides with the (19), whereby their equivalence to other forms of equations of 

motion is proved: 

           

* *i i S i

i i S

d T T T d
P

dt q q dt q
αα α α α

θ θ θ θ

π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

 (g) Generalization of Volterra’s equations was performed by Voronec in his 

paper [7]. A mechanical system, whose position is determined by generalized 

coordinates x
1
,…,x

n
 and which is subject to nonholonomic constraints is observed. 

Velocities 
1
,...,

n
x x   are expressed via m independent quantities 

αϕ  by the relations 

 

        
( ),

i i j
x x

αθ ϕ=   (40) 

 

For nonlinear relations (40), generalized Volterra’s equations read 

 

( )

* *

*
0

i i

i i

i i

i i

d T d T d

dt x dt x dt x

d T
T U

x dt x x x

β γ γ ν ν

α γ α α β α α

ν β γ γ

β γ α α ν α

ω θ θ θ θ θ θ

ϕ ϕ ϕ ϕ ϕ ϕ

θ ω θ θ θ θ

ϕ ϕ ϕ ϕ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − + = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

     

    

 (41) 

 

In order to prove the equivalence of Eqs (41) to other equations of motion, let us reduce 

them to the form of the (19). Let us regroup the terms from (41) in the following way 
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( )

* *

*
0

i

i

v v i i

i i

d T d T T

dt x dt x x

d T
T U

dt x x x

β γ γ ν

α γ α α β ν β

α α ν α

ω θ θ θ θ

ϕ ϕ ϕ ϕ ϕ

θ θ θ θ

ϕ ϕ ϕ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − −   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ ∂ ∂ ∂ ∂

− − − + = 
∂ ∂ ∂ ∂ ∂ ∂ 

     

  

 

Taking into account the relations 

* i

i

T T T T

x x x x

α ν β

β β α β ν β γ

θ θ θ ω

ϕ ϕ ϕ ϕ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = + ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 

( ) ( ), , ,
i i

x x x x
α α β β β αθ ϕ ϕ ω= =    

*
T T T

x x x x x

α β β ν β
α
γβ γ β γ ν β γ γ

θ ω ω θ ω
δ

ϕ ϕ ϕ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= → − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 

the previous equations read 

* *

0

i i i i

ii i i

d T T d T d T
Q

dt x dt x x dt x x

γ γ ν ν

α γ α α ν α α α α

θ θ θ θ θ θ θ θ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − − − − =   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

 

respectively 

* *

*

i j j i

i j i

d T T T d
Q

dt x x dt x
αα α α α

θ θ θ θ

ϕ ϕ ϕ ϕ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

Now, if we introduce the designations ,
i i

x q
β βϕ π= =  , the above expression 

obtains the form 

 * *

*

i j j i

i j i

d T T T d
Q

dt q q dt q
αα α α α

θ θ θ θ

π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂     
 (42) 

 

which coincides with the (19). 

 (h) Lastly, let us show the equivalence of the Boltzmann-Hamel equations [8] to 

Eqs (19). In deriving the Boltzmann-Hamel equations for nonlinear nonholonomic 

constraints, the relations that associate kinetic parameters 
iπ  with generalized 

velocities 
i

q  are written in the form 

 

( ), , det 0

i
i i j j

j
q q

q

ϕ
π ϕ

 ∂
= ≠ ∂ 

 


 (43) 

 

( ), ,

i
i i j j i j

j
q q q

θ
θ π δ δπ

π

∂
= =

∂
 


  (44) 
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The expression for kinetic energy reads (as the function of all 
i

q ) 

           

1

2

i j

ijT g q q=    

while the expression for kinetic energy T  (as the function of all 
jπ ) 

 

    

1

2

i j

ijT δ θ θ=           (45) 

 

Starting from Lagrange-D’Alembert’s principle 

0

i
j

ii i j

d T T
Q

dt q q

θ
δπ

π

 ∂ ∂ ∂
− − = 

∂ ∂ ∂  
 

after certain transformations of Boltzmann-Hamel equations, for nonlinear relations 

between the velocities 
i

q  and the quasivelocities 
iπ , they read: 

 

   

i i S i S i

i jj j i i S j S j j

d T T T d
Q Q

dt q q q dt

θ ϕ θ ϕ θ θ

π π π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + = = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  


      
 (46) 

 

If nonlinear nonholonomic constraints are chosen for one segment of the velocities, i.e., 

the condition holds for the variations 

0
νδπ =  

then, from Lagrange-D’Alembert’s principle, we obtain (n-l) equations of motion for 

nonlinear nonholonomic system (in accordance with the (46)) 

 i i S i S

i i S S

d T T T d
Q

dt q q q dt
αα α α α

θ ϕ θ ϕ θ

π π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  


     
 (47) 

 

where 0
νπ =  is placed after the first differentiation.  

The expression for kinetic energy, where dependent velocities are excluded (real 

generalized velocities and quasivelocities), is written in the form 

 

( ) ( )( )
* 1

2

i j

ijq q
T T g q qν ν ν νψ ψ= =

= =
 

   

( ) ( )( )
*

0 0

1

2

i j

ijT T gν νπ π
θ θ

= =
= =

 

  

              (48) 

 

Based on the (48), the following relations can be written 
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( )
( )( )

*

*

0

0

,

i
j

ij

T T
g Q Q

ν

ν

α αα α α π
π

θ
θ

π π π =
=

 ∂ ∂ ∂
= = = 

∂ ∂ ∂  





  
 

( )

*

0

1

2

i
ij i j j

ijS S S S

gT T
g

q q q qνπ

θ
θ θ θ

=

∂ ∂ ∂ ∂
= + = 

∂ ∂ ∂ ∂  


 

         (49) 

 

The last term in the (47) is transformed in the following manner 

, ,

0

k i i i k
i i j i

iS iS ij Sk S S S k k i k k S

i j j j j j i i j j

S i S S S i S S i S

T T T T T
g q g g

q q q q q

q

q q q q q q q

ϕ θ θ θ ϕ
θ θ δ

π π π π π

ϕ θ θ θ θ ϕ ϕ θ θ

π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = = = = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − = + = → = − 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 


         



   

 

Accordingly, after the above transformations, Eqs (47) obtain the form identical with the 

(19), i.e. 

            

* *

*

i i i S

i i S

d T T T d
Q

dt q q dt q
αα α α α

θ θ θ θ

π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

 Consequently, (as established in [10] for linear nonholonomic systems) for the 

case of nonlinear nonholonomic systems too, various forms of differential equations of 

motion result from the manner of incorporating nonholonomic constraints in Lagrange-

D’Alembert’s principle. However, as shown by above analysis, all mentioned forms of 

differential equations of motion can be reduced to a common general form. 

 

3. Third Part 

 

Let us illustrate the considerations above using a mechanical system with a nonlinear 

nonholonomic constraint. The mechanical system consists of two particles M1 and M2 

connected as shown in Fig. 1, [12]. 
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Fig. 1 

Blades that are perpendicular to one another are positioned at particles M1 and M2, 

which enables the realization of nonlinear nonholonomic constraint of the type 

 
1 2 1 2 1 2

0 0V V x x y y⋅ = → + =
 

           (51) 

 

Let the system move in a potential force field, whose potential energy depends only of 

the distance between particles M1 and M2, i.e., of ξ. For simplicity, we take that 

m1=m2=m=1. Let us choose x1, y1, ϕ , ξ for generalized coordinates of the system (Fig. 

1). The equations of nonholonomic constraints have the form 

 
1 1
cos sin 0,x yϕ ϕ+ = 

( )2 2

1 1 1 1
sin cos 0x y x yξϕ ξϕ ϕ ϕ− + = − − =    

( )ξϕ ϕ ϕ= − + =

 (52) 

 

Kinetic and potential energy of the system read 

 
( ) ( ) ( )

22 2 2 2 2

1 1 2 2 1 1 0

1 1 1 1 1
,

2 2 2 2 2
T mV m V m x y m V V kξ ξ ξ ξ= + = + + = = − 

 

(53) 

If ϕ  and ξ  are chosen from the (52) for independent generalized velocities, there 

follows 

 
1 1

sin , cosx yξϕ ϕ ξϕ ϕ= = −    (54) 

 

The expression for kinetic energy 
*T , which is the function of independent velocities, 

reads 

 
( )

2* 21 1

2 2
T ξϕ ξ= +   (55) 

 

Considering that 

( ) ( ) ( ) ( )* *
, , , , , ,

i
q q q T T q q T T q q V V q

ν ν α α α α α αψ= = = =     

Voronec’s equations (32) 
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* * *
d T T T T

Q Q
dt q q q q q q

ν ν
ν
α α να α α ν ν α

ψ ψ
γ

∂ ∂ ∂ ∂ ∂ ∂
− − − = +

∂ ∂ ∂ ∂ ∂ ∂   
      

d

dt q q q q

ν ν ρ ν
ν
α α α α ρ

ψ ψ ψ ψ
γ

∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ 
 

 

for our concrete example are transformed into Chaplygin’s equations as a special case, 

i.e. 

 * *

, ,
d T T T d V

Q Q
dt q q q dt q q q

ν ν
ν ν
α α α αα α ν α α α

ψ ψ
γ γ

∂ ∂ ∂ ∂ ∂ ∂
− − = = − = −

∂ ∂ ∂ ∂ ∂ ∂  
 (56) 

 

After certain calculations from the (56), there follow differential equations of motion for 

the described mechanical system 

 
0 .,

V
constξϕ ξϕ ξϕ ξ

ξ

∂
+ = → = = −

∂
     (57) 

 

 Let us write Appell’s equations of the same system, which, in a general case, 

read (29) 

*

*S
Qααπ

∂
=

∂ 
 

For independent kinematic parameters, let us choose the velocities of the particles M1 

and M2, i.e. 

 

    

1 2

1 2
,s sπ ξϕ π ξ= = = =     (58) 

 

where S1(t) and S2(t) are the laws for the path of particles M1 and M2. 

The acceleration function of the considered system reads 

          

( ) ( )2 2 2 2 2 2

1 2 1 1 2 2

1 1 1 1

2 2 2 2
S a a x y x y= + = + + +     

Using the equations of constraints (52) and relations 

2 2
cos , sinx yξ ϕ ξ ϕ= =    

we obtain 

1 1 1 1 1 1

2 2

sin cos , cos sin ,

cos sin , sin cos

x s s y s s

x y

ϕ ϕ ϕ ϕ ϕ ϕ

ξ ϕ ξϕ ϕ ξ ϕ ξϕ ϕ

= + = − +

= − = +

      

     
 

respectively 

 

( ) ( )
4 2 2

* 2 2 2 2 2 2 2 21 1 2

1 1 2 2 1 22 2

1 1 1 1

2 2 2 2

s s s
S s s s s s sϕ ϕ

ξ ξ

   
= + + + = + + +   

   

  
        (59) 
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From the (59) there follow 

 * *

* *

1 1 2 2

1 2

0,
S S V

Q s Q s
s s ξ

∂ ∂ ∂
= → = = → = −

∂ ∂ ∂
 

 
 (60) 

and taking into account that 

1 2
,s sξϕ ξϕ ξ= + =     

from the (60) there follow the equations of motion that are identical with the equations 

(57): 

0 .,
V

constξϕ ξϕ ξϕ ξ
ξ

∂
+ = → = = −

∂
     

 Volterra’s equations are obtained by transferring from the velocities in the 

Cartesian coordinate system to kinematic parameters 
απ . The choice for independent 

kinematic parameters, as in the previous case, will be performed as follows 

 1 2 1 1 2 2

1 2 1 1 1 1

3 3 4 4

2 2 2 2

, sin , cos ,

cos , sin

s s x x s x y s

x x s x y s

π π ϕ θ ϕ θ

ϕ θ ϕ θ

= = → = = = = = − =

= = = = = =

         

     

 

(61) 

 

The expressions for kinematic energy T and 
*T read 

 

( ) ( )2 2 2 2 * 2 2

1 1 2 2 1 2

1 1 1 1
,

2 2 2 2
T x y x y T s s= + + + = +       

whereas potential energy V is the function of distance 
1 2

M M , i.e. 

 

( ) ( )
2

2 2

2 1 2 1 0

1

2
V k x x y y ξ = − + − −  

 (62) 

Generalized forces have the following value 

1 2 3 4

1 1 2 3 4 1 2

1 1 1 1 1 1

0, ,
V V

P X X X X X X
s s s s x y

θ θ θ θ  ∂ ∂ ∂ ∂ ∂ ∂
= + + + = = − = − 

∂ ∂ ∂ ∂ ∂ ∂    
 

( ) ( )
1 2 3 4

2 2

2 1 2 3 4 2 1 2 1 0 3 4

2 2 2 2 2 2

, ,
V V

P X X X X k x x y y k X X
s s s s x y

θ θ θ θ
ξ

 ∂ ∂ ∂ ∂ ∂ ∂
= + + + = − − + − − = − = − 

∂ ∂ ∂ ∂ ∂ ∂    

 

Volterra’s equations (23) 

           

* j
i

ij

d T d
P

dt dt
αα α

θ
δ θ

π π

∂ ∂
− =

∂ ∂ 
 

for the system analyzed read 
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1 2 3 4

1 2 3 4

1 11 22 33 44 1 1

1 1 1 1

0
d d d d

s P s
dt s dt s dt s dt s

θ θ θ θ
δ θ δ θ δ θ δ θ
 ∂ ∂ ∂ ∂

− + + + = → = 
∂ ∂ ∂ ∂ 

 
   

 

( )
1 2 3 4

1 2 3 4

2 11 22 33 44 2 2 0

2 2 2 2

d d d d
s P s k

dt s dt s dt s dt s

θ θ θ θ
δ θ δ θ δ θ δ θ ξ ξ
 ∂ ∂ ∂ ∂

− + + + = → = − − 
∂ ∂ ∂ ∂ 

 
   

 

(63) 

Taking into account that 

         
( ) ( )

2 2

1 2 2 1 2 1
, ,s s x x y yξϕ ξ ξ= = = − + −   

Eqs (63) are reduced to Eqs (57) and (60), i.e. 

             

( )0
0 .,

V
const kξϕ ξϕ ξϕ ξ ξ ξ

ξ

∂
+ = → = = − − = −

∂
     

 Ferrers’s equations (36) (differ insignificantly friom Volterra’s equations) 

             

* j
i

ij

d T d
x P

dt dt
αα α

θ
δ

π π

∂ ∂
− =

∂ ∂


 
 

for the link between kinematic parameters 
1 2

1 2
,s sπ π= =     and generalized 

velocities in Cartesian coordinates 
1 1 2 2

1 1 1 1

3 3 4 4

2 2 2 2

sin , cos ,

cos , sin

x x s x y s

x x s x y s

ϕ θ ϕ θ

ϕ θ ϕ θ

= = = = = − =

= = = = = =

     

     
 

read 

 
1 2 3 4

1 2 3 4

1 11 22 33 44 1 1

1 1 1 1

0
d d d d

s x x x x P s
dt s dt s dt s dt s

θ θ θ θ
δ δ δ δ
 ∂ ∂ ∂ ∂

− + + + = → = 
∂ ∂ ∂ ∂ 

     
   

 

1 2 3 4

1 2 3 4

2 11 22 33 44 2 2 0

2 2 2 2

d d d d
s x x x x P s k

dt s dt s dt s dt s

θ θ θ θ
δ δ δ δ ξ ξ
 ∂ ∂ ∂ ∂

− + + + = → = − − 
∂ ∂ ∂ ∂ 

     
   

 

(64) 

Translated to real generalized velocities ,ϕ ξ  and generalized accelerations ,ϕ ξ  

Eqs (64) read just like Eqs (57), (60) and (63) 

( )0
0 .,

V
const kξϕ ξϕ ξϕ ξ ξ ξ

ξ

∂
+ = → = = − − = −

∂
     

The equations of Boltzmann-Hamel are given by the expression (47) 

*

i i S i S

i i S S

d T T T d
Q

dt q q q dt
αα α α α

θ ϕ θ ϕ θ

π π π π π

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  

     
 

Let us choose x1, y1, x2, y2 for generalized coordinates. The relations that associate 

kinematic parameters with generalized velocities read 
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 1 2 2 1 2 2 2 2

1 1 1 2 2 2
, ,s x y s x yπ ϕ π ϕ= = + = = = + =       

3 3 4 4

3 1 1 4 2 2
cos sin , sin coss x y s x yπ ϕ ϕ ϕ π ϕ ϕ ϕ= = + = = = − =       

 

(65) 

 

 
2 2 1 2 2 2

1 3 1 3 1 3 1 3

2 2 3 2 2 4

2 4 2 4 2 4 2 4

cos sin , sin cos

sin cos , cos sin

x s s s y s s s

x s s s y s s s

ϕ ϕ θ ϕ ϕ θ

ϕ ϕ θ ϕ ϕ θ

= + − = = − − =

= + − = = − + − =

       

       
 (66) 

 

Kinematic parameters 
1

s  and 
2

s  represent the velocities of the particles M1 and M2, 

while the expressions 
3ϕ  

and 
4ϕ  

are nonholonomic constraints of a given system 

(
3

0ϕ =  and 
4

0ϕ = ). The expressions for kinematic energy T and T  read 

( ) ( )2 2 2 2 2 2

1 1 2 2 1 2

1 1 1 1
,

2 2 2 2
T x y x y T s s= + + + = +       

so, considering that 

0, 0, 0
i S

T T

q q

β

ν

ϕ

π

∂ ∂ ∂
= = =

∂ ∂ ∂

 


 

the equations of Boltzmann-Hamel obtain a simpler form  

 
*

S

S

d T T d
Q

dt q dt

β

αα β α

ϕ θ

π π π

∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂

 

   
   (67) 

 

From the (67), there follow differential equations of motion for the system 

( ) ( )
2 2

1 2 2 1 2 1 0
0,s s k x x y y kξ= = − − + − +   

Taking into account that 

( ) ( )
2 2

1 2 2 1 2 1
, ,s s x x y yξϕ ξ ξ= = = − + −   

the preceding equations are written in the form of identifiable expressions 

( )0
0 .,

V
const kξϕ ξϕ ξϕ ξ ξ ξ

ξ

∂
+ = → = = − − = −

∂
     

In another variant, let us choose x1, y1, ϕ , ξ for generalized coordinates. The relations 

that associate kinematic parameters with generalized velocities read 

 1 1 2 2

1 2
, ,s sπ ξϕ ϕ π ξ ϕ= = = = = =     

3 3

3 1 1

4

4 1 1

cos sin ,

sin cos 0

s x y

s x y

π ϕ ϕ ϕ

π ξϕ ϕ ϕ

= = + =

= = − + =

   

   
 

(68) 
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( ) ( )1 21

2 1 4 1 3 1 4 1 3
, , sin cos , cos sin

s
s x s s S y s s sϕ θ ξ θ ϕ ϕ ϕ ϕ

ξ
= = = = = − − + = − +

          

 

(69) 

Quasicoordinates 
1

s  and 
2

s  represent the laws for the path of particles M1 and M2, 

while the expressions 
3ϕ  

and 
4ϕ are nonholonomic constraints of a given system 

(
3

0ϕ = , 
4

0ϕ = ). Kinetic (T, T ) and potential energy of the system read 

( ) ( ) ( ) ( )
2 2 22 2 2 2

1 1 3 4 1 2 0

1 1 1 1 1
, ,

2 2 2 2 2
T x y T s s s s V kξ ξ ξ = + + = + − + = − 

      

 

Considering that  

0
i

T

q

∂
=

∂


 

the equations of Boltzmann-Hamel are reduced to the expression 

 i S i S

i S S

d T T d
Q

dt q q dt
αα α α

ϕ θ ϕ θ

π π π π

 ∂ ∂ ∂ ∂ ∂ ∂
− − = 

∂ ∂ ∂ ∂ ∂ ∂ 

 


    
 (70) 

 

From the (70) there follow the equations of motion 

1 2
0,

V
s s

ξ

∂
= = −

∂
   

or, in the identifiable form 

0 .,
V

constξϕ ξϕ ξϕ ξ
ξ

∂
+ = → = = −

∂
     

which is an identical form deriving from above mentioned types of differential equations 

of motion for nonlinear nonholonomic systems. 
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Abstract. I The known earlier force function of two finite bodies in the terms  

of Delaunay’s and Andoyer’s is given to mind   when it contains only eight 

angle variables instead of nine and for one fixed set of coefficients of angle 

variables we have the only one function of cosine and the only one function of 

sin with summarized multipliers before them. 

Key words.  force funvtion, Delaunay’s and Andoyer’s angle variable, 

regrouping, theorem, lemma,  two finite bodies. 

 

1. Introduction 

 

    Knowledge of force function of mutual gravitation   celestial bodies is very important 

for research of their motion. The first general result was obtained by Kondurar’ [1] 

where the series for force function of two ellipsoids (one homogeneous and the other 

unhomogeneous) were presented. A method for calculating the force function of two 

celestial bodies was proposed by Šidlichovský [2] what is based of real Stokes constant. 

And also in [3] by Šidlichovský the full force function of two general rigid  bodies is 

written in the terms of Delaunay’s and Andoyer’s variables. Vidyakin and Popova [4] 

presented expansion of force function of mutual gravitation of two rigid bodies of 

arbitrary form in series of spherical functions. The main purpose of our paper is to 

transform the force function in [3] to new form more convenient for practical use as will 

be seen below. 

 

2. Presentation of the original force function  

 

Let us describe the force function in the terms of Delaunay’s and Andoyer’s variables 

[3]: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 21 2

1 2 1

0 0 0 0

1 2 1 21 2

1 2 1

0 0 0 0

U=

j nj n
CC SS

jm nk jm nk jm nk jm nkj n
j n m k

j nj n
SC CS

jm nk jm nk jm nk jm nkj n
j n m k

a a
f M M C C S S

a

a a
f M M S C C S

a

′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ +
′′ ′′≥ ≥ = =

′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ +
′′ ′′≥ ≥ = =

 Γ + Γ + 

 + Γ + Γ 

∑∑ ∑ ∑

∑∑ ∑ ∑
             (1) 

  where f  is the universal gravitational constant, M1 and M2 are the masses of the 

bodies,   

1a and 2a  are the characteristic diameters of the bodies, a  is the Kepler’s major semi 

axis;   

CC

jm nk′′ ′′Γ = Rejm nkB ′′ ′′ ( )1jnm k jn m k

mZ Z′′ ′′ ′′ ′′−

′′
− +  , 

SS

jm nk′′ ′′Γ = Rejm nkB ′′ ′′ ( )1jnm k jn m k

mZ Z′′ ′′ ′′ ′′−

′′
− − +   

SC

jm nk′′ ′′Γ = Im
jm nk

B ′′ ′′ ( )1jnm k jn m k

mZ Z′′ ′′ ′′ ′′−

′′
− − 

,  

CS

jm nk′′ ′′Γ = Im
jm nk

B ′′ ′′ ( )1
jnm k jn m k

mZ Z′′ ′′ ′′ ′′−

′′
− +  ,                                       (2) 

             
jm nk

B ′′ ′′ = ( ) ( )
( ) ( )

( ) ( )( ) ( )

1/2

! !
1 2

2 1 2 1 ! !

m k j m n k

j n j m n k
π

′′ ′′+  ′′ ′′+ +
−  

′′ ′′+ + − − 
                      (3) 

            

0

exp( )

j n j j qn n

jnm k jnm k mkpm k q jnm k mkpm k q

m j k n p m j k n q

Z D iα
+ =+∞

′′ ′′ ′′ ′′ ′ ′ ′′ ′′ ′ ′
′ ′=− =− = =− =− =−∞

= ∑ ∑∑ ∑ ∑ ∑         , (4) 

( ) ( )1 1
,

jm jm
C S′′ ′′  and 

( ) ( )2 2
,nk nkC S′′ ′′  are real Stokes constants for the first and the second body 

respectively,   Re […], Im […] – are real and imaginary part respectively, i  − imaginary 

unit.       

         
jnm k mkpm k qD ′′ ′′ ′ ′ = ( )eX

p2nj,1nj

q

−+−−− ·     

          ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

⋅







−++−

++−−++++−+
⋅

21

!kn!kn!mj!mj

1n21j2!kmnj!kmnj!p2!p2n2j2

4

1

π
 

 

 
( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 , , 1 , 1 , 2 , 2

1

2 ! !

m m k k j n

j n j j n n

j n p m k m m m m k k k kj n
I I J I J

p j n p

′′ ′′+ + + + +

+

′ ′′ ′ ′ ′′ ′+ − + − − − − − − − −+

−
⋅ ∆ ∆ ∆ ∆ ∆

+ −
,  (5) 

( )eX
ns

q - coefficients of Hansen :                   

( ) iqlexpeXisexp
a

r q

q

ns

q

n

∑
∞=

−∞=

=







υ ,                                                   (6) 

where r − is the distance between the centers of masses of the bodies, υ  is the true 

anomaly, e  − eccentricity of the orbit, l  is the mean anomaly. 
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( ) ( )ϑ∆ j

mm′ = ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )

( )

( )

∑
+′−=

′−=

⋅
−′+−+−′−

′−′+−+
−mj,mjmin

mm,0max

21

!mm!mj!mj!

!mj!mj!mj!mj
1χ

χ

χ

χχχχ          (7)  

                                              ( ) ( )2/sin2/cos
mm22mmj2 ϑϑ χχ −′+−′−+⋅  

           
( )

( ) ( )

1 1 1 2 2 2
2

1
2

j n m k m k p m k q
m l m g mh k l k g kh ql j n p g

m k h j n m k

α

π

′′ ′′ ′ ′ ′′ ′ ′′ ′= − − − − − − + + + − +

′′ ′′+ + + + − −
  (8) 

          Andoyer’s variables are introduced for the i-th body (i=1,2): 

iL  − iζ  component of the angular momentum vector of the i-th body ( iζ is the axis of 

inertia of the i-th body with maximum moment of inertia); 

iG  − the rotational angular momentum  of the i-th body (absolute value); 

iH  − Z  component of the angular momentum vector iG


 of the i-th body ( XYZMi  is 

the Koenig’s coordinate system of the i-th body). 

                                                          iii G/LJcos =  ,      iii G/HIcos =                                                    (9) 

        The Delaunay’s variables h,g,l,H,G,L  are introduced for describing the orbital 

motion of bodies. Impulses H,G,L are related to the Kepler elements I,e,a as: 

( ) 21
aML µ= , 

                                                ( )[ ] 212
e1aMG −= µ ,                                            (10) 

( )[ ] Icose1aMH
212−= µ , 

where  

21

21

MM

MM
M

+
= , ( )21 MMf +=µ .                                      (11) 

        Variable L  is connected with constant of energy, G  is the absolute value of the 

orbital angular momentum the second body around the first body, H  − Z component of 

the angular momentum vector G


.  

 

3. Introducing the new angle variables  

 

We will present the force function (1) in another way  using (2) - (8) and taking  finite 

intervals for index of summation j : 0,1,2,…,ν1;  n: 0,1,2,…,ν2 ; q :-ν3 ,- ν3+1,-ν3+2,  

…,0,1,2,…, ν3 (as usually do in practice). 

 U= ∑∑∑∑∑∑∑∑∑∑
−=−=′−=′

+

=−=−==′′−=′′==

3

3

21 v

vq

n

nk

j

jm

jn

0p

n

nk

j

jm

n

0k

j

jm

v

0n

v

0j
21

MMf 1nj

n

2

j

1

a

aa
++ jnm k mkpm k q

D ′′ ′′ ′ ′ ×  

                           × ( j nm kE ′′ ′′ cos jnm k mkpm k qα ′′ ′′ ′ ′ + j nm k′′ ′′Φ sin jnm k mkpm k qα ′′ ′′ ′ ′ ),      (12) 
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where                     

j nm kE ′′ ′′ = jm nkB ′′ ′′ (
( ) ( ) ( ) ( )1 2 1 2

jm nk jm nk
C C S S′′ ′′ ′′ ′′− ), 

j nm k′′ ′′Φ =
jm nkB ′′ ′′  (

( ) ( ) ( ) ( )1 2 1 2

jm nk jm nk
C S S C′′ ′′ ′′ ′′+ ),   

                                                                                                     if 0m >′′ ; 

j nm k
E ′′ ′′ = ( )1

m′′
−

j m nk
B ′′ ′′−  (

( ) ( ) ( ) ( )1 2 1 2

, ,j m nk j m nk
C C S S′′ ′′ ′′ ′′− −+ ), 

j nm k′′ ′′Φ = ( )1
m′′

−
j m nk

B ′′ ′′−       

                   (
( ) ( ) ( ) ( )1 2 1 2

, ,j m nk j m nk
C S S C′′ ′′ ′′ ′′− −− ),                                        if 0m <′′ ; 

     
0j n kE ′′ = 2

0j nkB ′′
( ) ( )1 2

0j nkC C ′′ , 
0j n k ′′Φ = 2

0j nkB ′′
( ) ( )1 2

0j nkC S ′′ ,        if 0m =′′ .        (13) 

      From (8) and (12) we can see, that in linear combination of angles jnm k mkpm k qα ′′ ′′ ′ ′    

there are 10 indexes of summation for 9 independent angular variables, moreover the 

term ( )kmnj
2

1 ′′−′′−+π  gives us function cosine or sin. For one fixed set of 

coefficients { m,m,m ′−′′− , k,k,k ′−′′− , q , p2nj −+ , km + } of angle variables 

111 l,h,g , 222 l,h,g , h,g,l there are several equal functions of cosine and sin with 

different multipliers before them. It is reasonable for one fixed set of coefficients of 

angle variables to have the only one function of cosine and the only one function of sin 

with summarized multipliers before them. From view of 
jnm k mkpm k q

α ′′ ′′ ′ ′ (8) follows that 

we can introduce instead of 9 variables only the 8 new angle variables:  

             1l′ ( )2l1 π+= , 1g′ = 1g , 1h′ = 1hh − , 2l′ ( )2l2 π+= , 2g′ = 2g ,       

            2h′ = 2hh − , ll =′ , g′ = 2g π+ ,−                                                         (14)  

and new coefficient q′ : 

             q′ p2nj −+= ,   hence   ( ) 2/qnjp ′−+= .                                      (15) 

The interval variation of q′  is  from  ( )jn +− to ( )jn +  with step of summation 

2q =′∆ .                  

          Then angular linear combination 
jnm k mkpm k q

α ′′ ′′ ′ ′  will take next form in new 

variables: 

         
jnm k mkpm k qα ′′ ′′ ′ ′ =

m m m k k k q qα ′′ ′ ′′ ′ ′′ πp+ , 
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where 

     
m m m k k k q q

α ′′ ′ ′′ ′ ′′ = +′+′′−′′′−′+′′−′′′− 222111 hkgklkhmgmlm lq ′ gq ′′+    (16)  

This expression m m m k k k q qα ′′ ′ ′′ ′ ′′  is the linear combination only eight new angle 

variables. 

Then      

cos jnm k mkpm k q
α ′′ ′′ ′ ′ = cos (

m m m k k k q q
α ′′ ′ ′′ ′ ′′ πp+ )= ( ) cos1

p
− m m m k k k q q

α ′′ ′ ′′ ′ ′′ =  

                                            ( )( )/2

1 cos
j n q′+ −

= −
m m m k k k q q

α ′′ ′ ′′ ′ ′′ , 

          sin qkmpkmkmnj ′′′′′′α = ( )( )/2

1 sin
j n q′+ −

− m m m k k k q qα ′′ ′ ′′ ′ ′′                              (17) 

     We rewrite the force function (12) in new notations (14)-(17): 

31 2

3

1 2

0 0 0

vv v j j jn n n

j n m j k m j k n m j k n q v

U f M M
′′ ′′ ′ ′= = =− = =− =− =− =− =−

= ∑∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
( )

( )1 2

1

, 2

1

j nj n
p

jnm k mkpm k qj n
q j n q

a a
D

a

+

′′ ′′ ′ ′+ +
′ ′=− + ∆ =

−∑ ×  

                        × ( j n m kE ′′ ′′ cos m m m k k k q qα ′′ ′ ′′ ′ ′′ + j nm k′′ ′′Φ sin m m m k k k q qα ′′ ′ ′′ ′ ′′ ),   (18)  

where  index p  is given by (15).       

  

4. Regrouping the terms of force function  

 

Then we change the order of summation in force function (18) in order to put together 

and summarize all multipliers with index j and n before functions cosine and sin with 

fixed set of coefficients  { m,m,m ′−′′− , k,k,k ′−′′− , q , q′ }and obtain the next 

expression: 

          
( )

31 1 1 2 2 2 1 2

1 1 1 2 2 3 1 20

vv v v v v v v v

m m mk k k qq

m m v m v k k v k v q v q v v

U Y
ν

+

′′ ′ ′′ ′ ′

′′ ′ ′′ ′ ′=− =− =− = =− =− =− =− +

= ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑       (19) 

where 

                      
m m mk k k q qY ′′ ′ ′′ ′ ′ =                                                                         (20)                                                      

1 2 1 2

4 5 4 5, 2 , 2

cos sinj n m m m k k k q q m m m k k k q q j n m m m k k k q q m m m k k k q q

j n n j n n

A A
ν ν ν ν

ν ν ν ν

α α′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′

= = ∆ = = = ∆ =

    
′ ′ ′′ ′= +    

     
∑ ∑ ∑ ∑

            
j n m m mk k k q qA ′′ ′ ′′ ′ ′′ =

1 2

1 2 1

j n

j n

a a
f M M

a + +
( )p

1− j nm k m k pm k qD ′′ ′′ ′ ′ j nm kE ′′ ′′ ,  

                 
j nm m m k k k qq

A ′′ ′ ′′ ′ ′′′ =
1 2

1 2 1

j n

j n

a a
f M M

a
+ +

( )p
1− j nm k m k pm k q

D ′′ ′′ ′ ′ j nm k′′ ′′Φ ,    (21)          



202

 ALEXANDR ZLENKO 

            ( )4 2
max , , ,m m m q vν ′′ ′ ′= − ; 

            ,5 νν = if  ( ) ( )2modqj ′≡+ν , else 15 +=νν  ;                                  (22)  

here ( )max , , ,k k k q jν ′′ ′ ′= − ,                   

where 
j nm k m k pm k qD ′′ ′′ ′ ′  is given by formula and (5), 

j nm kE ′′ ′′ , 
j nm k′′ ′′Φ  are given by 

formula (13), p  − (15). 

     In order to prove formulas (19)-(20) which has complicated indexes of summation 

54 ,νν   we begin from the simple affirmations. 

Lemma 1. It is  true the next equality: 

( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2 4 50 0 , 2 , 2

v v v v v vj j nn

jn m k q m k q jn m k q m k q

j n m j k n q j n q m k q v v j n n

A A
ν ν

ν ν ν ν

β β
++

′′ ′′ ′ ′′ ′′ ′ ′′ ′′ ′ ′′ ′′ ′
′′ ′′ ′ ′ ′′ ′′ ′= = =− =− =− + ∆ = =− =− =− + = = ∆ =

 
=  

 
∑∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
                                                                                                                               (23) 

where                                        

             ( )4 2
max ,m q vν ′′ ′= − , 

             ,5 νν = if  ( ) ( )2modqj ′≡+ν , else 15 +=νν  ;                              (24) 

             ( )max ,k q jν ′′ ′= −  

      In proof we use the method of mathematical induction. It easy to see that this 

equality is true for the next pairs of indexes of summation 1ν  and  2ν : (0,0), (0,1), 

(1,0), (1,1). Let    the equality (22) will be true for arbitrary   1ν  and   2ν . Then we are 

proving that formula (22) is true for next pairs  ( 11 +ν , 2ν ) and  ( 1ν , 12 +ν ). That’s 

all. Note, that expression (22) is symmetrical relatively indexes j  and n . 

Then we prove by method of mathematical induction   Lemma 2  , using Lemma 1 . 

 
Lemma 2. It is  true the next equality: 

              

( )

1 2

0 0 , 2

v v j j j nn

j nm m k q m m k q

j n m j m j k n q j n q

A β
+

′′ ′ ′′ ′ ′′ ′ ′′ ′
′′ ′ ′′ ′ ′= = =− =− =− =− + ∆ =

∑∑ ∑ ∑ ∑ ∑ = 

      

( )

1 1 2 1 2 1 2

1 1 2 1 2 4 5 , 2

v v v v

j nm m k q m m k q

m m k q v v j n n

A
ν ν ν

ν ν ν ν ν

β
+

′′ ′ ′′ ′ ′′ ′ ′′ ′
′′ ′ ′′ ′=− =− =− =− + = = ∆ =

 
=  

 
∑ ∑ ∑ ∑ ∑ ∑ ,             (25) 

where                                        

              ( )4 2
max , ,m m q vν ′′ ′ ′= − , 

              ,5 νν = if  ( ) ( )2modqj ′≡+ν , else 15 +=νν  ;                               (26) 

              ( )max ,k q jν ′′ ′= −  
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   Then we prove by method of mathematical induction   Lemma 3 ,  using   Lemma 2 ,   

and with their help  the general Theorem  from which follows formulas (19)-(20) for 

force function U. 

 
Lemma 3. It is true the next equality: 

            

( )

1 2

0 0 , 2

v v j j j j nn

j n m m m k q m m m k q

j n m j m j m j k n q j n q

A β
+

′′ ′ ′′ ′ ′′ ′ ′′ ′
′′ ′ ′′ ′ ′= = =− =− =− =− =− + ∆ =

∑∑ ∑ ∑ ∑ ∑ ∑ = 

     =  

( )

1 1 1 2 1 2 1 2

1 1 1 2 1 2 4 5 , 2

v v v v

j nm m mk q m m m k q

m m m k q v v j n n

A
ν ν ν ν

ν ν ν ν ν ν

β
+

′′ ′ ′′ ′ ′′ ′ ′′ ′
′′ ′ ′′ ′=− =− =− =− =− + = = ∆ =

 
 
 

∑ ∑ ∑ ∑ ∑ ∑ ∑ ,      (27) 

where                                          

( )4 2
max , , ,m m m q vν ′′ ′ ′= − , 

  ,5 νν = if ( ) ( )2modqj ′≡+ν , else 15 +=νν  ;                                (28) 

( )max ,k q jν ′′ ′= −  

Theorem. It is true the next equality: 

( )

1 2

0 0 , 2

v v j j j j nn n n

j nm m m k k k q m m m k k k q

j n m j m j m j k n k n k n q j n q

A β
+

′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′
′′ ′ ′′ ′ ′ ′= = =− =− =− =− =− =− =− + ∆ =

∑∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ =

( )

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1 2

v v v v

m m m k k k q v v

ν ν ν ν

ν ν ν ν ν ν

+

′′ ′ ′′ ′ ′=− =− =− =− =− =− =− +

= ∑ ∑ ∑ ∑ ∑ ∑ ∑
1 2

4 5 , 2

j nm m m k k k q m m m k k k q

j n n

A
ν ν

ν ν

β′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′

= = ∆ =

 
 
 
∑ ∑    (29) 

where 

( )4 2
max , , ,m m m q vν ′′ ′ ′= − ; 

,5 νν =  if  ( ) ( )2modqj ′≡+ν , else 15 +=νν  ;                             (30) 

here   ( )max , , ,k k k q jν ′′ ′ ′= − . 

 

5. Converting the force function to the mind when for one fixed set of coefficients of 

angle variables we have the only one function of cosine and the only one function of 

sin with summarized multipliers before them. 

       

It should be noted that for our purpose we can grouping the terms in force function in 

the various ways beginning and continuing from any index of summation. We will point 

out only the general method beginning on the example of k ′′ index (we remark if some 

subscript is equal zero, it is absent in the corresponding expression and there is not 

summation on it).  

    Formula (19) can be rewritten in the following way:       

   U=

( )

31 1 1 2 2 2 1 2

1 1 1 2 2 3 1 21

vv v v v v v v v

m m mk k k q q

m m v m v k k v k v q v q v v

Y
ν

+

′′ ′ ′′ ′ ′
′′ ′ ′′ ′ ′=− =− =− = =− =− =− =− +

+∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  U
0k ′′= ,     (31) 

where 
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U
0k ′′= =

( )

31 1 1 2 2 1 2

1 1 1 2 2 3 1 2

vv v v v v v v

m m m k k q q

m m v m v k v k v q v q v v

Y
ν

+

′′ ′ ′ ′
′′ ′ ′ ′=− =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑ . 

     The first expression in (31) gives us the needed expression because for one fixed set 

of coefficients of angle variables we have the only one function of cosine and the only 

one function of sin with summarized multipliers before them.  

      Then we’ll transform the second expression with this aim. U
0k ′′=  we can present as 

the sum of three expressions: 

                 U
0k ′′= =

( )

31 1 2 2 1 2

1 1 1 2 2 3 1 2

1 vv v v v v v

m m m k k qq

m m v m v k v k v q v q v v

Y
ν

+−

′′ ′ ′ ′
′′ ′ ′ ′=− =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑ + 

              +

( )

31 1 1 2 2 1 2

1 1 2 2 3 1 21

vv v v v v v v

m m m k k q q

m m v m v k v k v q v q v v

Y
+

′′ ′ ′ ′
′′ ′ ′ ′= =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑ + U
0k m′′ ′′= = ,                (32) 

where 

U
0k m′′ ′′= = =

( )

31 1 2 2 1 2

1 1 2 2 3 1 2

vv v v v v v

m m k k qq

m v m v k v k v q v q v v

Y
+

′ ′ ′
′ ′ ′=− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ .                        (33) 

Transform the first expression in (32), using (20) for 
m m mk k k q q

Y ′′ ′ ′′ ′ ′ : 

( )

31 1 2 2 1 2

1 1 1 2 2 3 1 2

1 vv v v v v v

m m m k k qq

m m v m v k v k v q v q v v

Y
ν

+−

′′ ′ ′ ′
′′ ′ ′ ′=− =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑ = 

=

( )

31 1 2 2 1 2

1 1 1 2 2 3 1 2

1 vv v v v v v

m m v m v k v k v q v q v vν

+−

′′ ′ ′ ′=− =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑  

( ) ( )
1 2 1 2

4 5 4 5, 2 , 2

cos sin
j n m m m k k q q m m m k k q q j nm m m k k q q m m m k k qq

j n n j n n

A A
ν ν ν ν

ν ν ν ν

α α′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′

= = ∆ = = = ∆ =

    
′ ′ ′′ ′+ =    

     
∑ ∑ ∑ ∑  

=

( )

31 1 2 2 1 2

1 1 1 2 2 3 1 2

1 vv v v v v v

m m v m v k v k v q v q v vν

+−

′′ ′ ′ ′=− =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑  

( ) ( )
1 2 1 2

4 5 4 5, 2 , 2

cos sin
j n m m m k k q q m m m k k q q j nm m m k k q q m m m k k q q

j n n j n n

A A
ν ν ν ν

ν ν ν ν

α α′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′− − − − − − − − − − − − − −
= = ∆ = = = ∆ =

    
′ ′ ′′ ′− + − =    

     
∑ ∑ ∑ ∑

 

=

( )

31 1 2 2 1 2

1 1 1 2 2 3 1 2

1 vv v v v v v

m m v m v k v k v q v q v vν

+−

′′ ′ ′ ′=− =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑

( ) ( )
1 2 1 2

4 5 4 5, 2 , 2

cos sin
j n m m m k k q q m m m k k q q j nm m m k k q q m m m k k q q

j n n j n n

A A
ν ν ν ν

ν ν ν ν

α α′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′− − − − − − − − − − − − − −
= = ∆ = = = ∆ =

    
′ ′ ′′ ′− =    

     
∑ ∑ ∑ ∑  

                   =

( )

31 1 1 2 2 1 2

1 1 2 2 3 1 21

vv v v v v v v

m m v m v k v k v q v q v v

+

′′ ′ ′ ′= =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑                             (34) 

( ) ( )
1 2 1 2

4 5 4 5, 2 , 2

cos sinj n m m m k k q q m m m k k q q j n m m m k k q q m m m k k qq

j n n j n n

A A
ν ν ν ν

ν ν ν ν

α α′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′− − − − − − − − − − − − − −
= = ∆ = = = ∆ =

    
′ ′ ′′ ′−    

     
∑ ∑ ∑ ∑  
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Using (34) we write (32) in the new form: 

U
0k ′′= =

( )

31 1 1 2 2 1 2

1 1 2 2 3 1 21

vv v v v v v v

m m v m v k v k v q v q v v

+

′′ ′ ′ ′= =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑

( ) ( )
, ,

cos sin
jnm m mk kqq jn m m m k k q q m m mk kqq jnm m mk kqq jn m m m k k q q m m mk kqq

j n j n

A A A Aα α′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′− − − − − − − − − − − − − −

 
′ ′ ′ ′′ ′′ ′+ + − + 

 
∑ ∑                                                  

                                     + U
0k m′′ ′′= =

,                                                           (35) 

where notation 

            ∑
n,j

means ∑ ∑
= =∆=

1

4

2

5 2,

ν

ν

ν

νj nn

.                                                                   (36)   

In the first expression of (35) we have for one fixed set of coefficients of angle variables 

the only one function of cosine and the only one function of sin with summarized 

multipliers before them. Thus from (31) and (35) it follows: 

U=

( )

31 1 1 2 2 2 1 2

1 1 1 2 2 3 1 21

vv v v v v v v v

m m v m v k k v k v q v q v vν

+

′′ ′ ′′ ′ ′=− =− =− = =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

, ,

cos sinj n m m m k k k q q m m m k k k q q j n m m m k k k q q m m m k k k q q

j n j n

A Aα α′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′

    
′ ′ ′′ ′+ +    

     
∑ ∑  

+

( )

31 1 1 2 2 1 2

1 1 2 2 3 1 21

vv v v v v v v

m m v m v k v k v q v q v v

+

′′ ′ ′ ′= =− =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑ ∑  

( ) ( )
, ,

cos sin
jnm m mk kqq jn m m m k k q q m m mk kqq jnm m mk kqq jn m m m k k q q m m mk kqq

j n j n

A A A Aα α′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′ ′ ′− − − − − − − − − − − − − −

 
′ ′ ′ ′′ ′′ ′+ + − + 

 
∑ ∑                                                  

+ U
0k m′′ ′′= =

.                                                         (37) 

    Making the same procedure for U
0k m′′ ′′= = (33) with index m′  as we did for m′′  given 

by formulas (32)-(35) and so on sequentially with other indexes of summation we’ll get:  

U
0k m′′ ′′= = =

31 1 2 2 1 2

1 2 2 3 1 21 ( )

vv v v v v v

m m v k v k v q v q v v

+

′ ′ ′= =− =− =− =− =− +

∑ ∑ ∑ ∑ ∑ ∑  

( ) ( )
, ,

cos sin
j n m mk k qq jn m m k k q q m m m k k q q jnm mk k q q jn m m k k q q m mk k q q

j n j n

A A A Aα α′ ′ ′ ′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − − − − − − −

 
′ ′ ′ ′′ ′′ ′+ + − + 

 
∑ ∑  

+

( )

31 2 2 1 2

2 2 3 1 21

vv v v v

m k v k v q v q v v

ν +

′ ′= =− =− =− =− +

∑ ∑ ∑ ∑ ∑

( ) ( )
, ,

cos sin
j n mk k qq jn m k k q q m k k qq jnmk k q q jn m k k q q mk k q q

j n j n

A A A Aα α′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − − − − −

 
′ ′ ′ ′′ ′′ ′+ + − + 

 
∑ ∑  

+

( )

32 2 1 2

2 3 1 21

vv v v v

k k v q v q v v

+

′ ′= =− =− =− +

∑ ∑ ∑ ∑  
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( ) ( )
, ,

cos sin
j n k k qq jn k k q q k k q q jnk k q q jn k k q q k k qq

j n j n

A A A Aα α′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − − −

 
′ ′ ′ ′′ ′′ ′+ + − + 

 
∑ ∑  

+ ( ) ( )
32 1 2

3 1 21 ( ) , ,

cos sin

vv v v

j nk qq j n k q q k q q j n k q q j n k q q k qq

k q v q v v j n j n

A A A Aα α
+

′ ′ ′ ′ ′ ′− − − − − −
′= =− =− +

 
′ ′ ′ ′′ ′′ ′+ + − 

 
∑ ∑ ∑ ∑ ∑ + 

+ ( ) ( )
3 1 2

1 21 ( ) , ,

cos sin

v v v

j n q q j n q q q q j nqq j n q q qq

q q v v j n j n

A A A Aα α
+

′ ′ ′ ′ ′ ′− − − −
′= =− +

 
′ ′ ′ ′′ ′′ ′+ + − 

 
∑ ∑ ∑ ∑ + 

+ ( ) ( )
1 2

1 , ,

cos sin

v v

j nq j n q q j nq j n q q

q j n j n

A A A Aα α
+

′ ′ ′ ′ ′ ′− −
′=

 
′ ′ ′ ′′ ′′ ′+ + − 

 
∑ ∑ ∑ +

,

j n

j n

A′∑ .                     (38)                                                                  

The formulas (37) and (38) give us the desired representation of force function. It should 

be emphasize that this representation is not the only one. It depends on what short 

periodic, resonant or long periodic terms we want to extract using the method offered 

above. 

    From mechanical meaning of angular variables it is follows that variables 

l,g,l,g,l 2211
′′′′  are fast, but g,h,h 21

′′′ are slow. The term 
,

j n

j n

A′∑  is the secular term.  

 

6. CONCLUSION 

The presentation of force function of two rigid bodies given in [3] is improved in 

modified  angle variables of Delaunay and Andoyer: 1. instead of nine angle variables of 

Delaunay and Andoyer we have only eight  modified  angle variables; 2. one fixed set of 

coefficients of angle variables is only in one function cosine and sin; 3. all multipliers, 

consisting of Kepler’s  elements, before cosine and sin are summarized; 4. we can easy 

to take the terms of needed accuracy.  

     The new form of force function is more convenient for elimination of the short 

periodic perturbations and for solving evolutional and resonant problems in celestial 

mechanics and astrodynamics. 
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Abstract. In the hydrodynamic theory and finite elements method the bird 

body was modeled as porous water-air material in the shape of flat or hemi-

spherically ended cylinder. Finite elements bird modeling was carried out by 

the use of the SPH method for material of different porosity. In this way, the 

dependence of sound speed and bulk modulus on porosity in equation of state 

was developed. The Lagrangian target was considered as simple flat rigid 

steel or elastic Al alloy plate. The comparative analysis of numerical results of 

bird impact for Hugoniot shock theory and SPH method was given. As well, 

some results of experimental data were included. 

 

 

1. Introduction 

 

One of possible and very dangerous accident is a bird strike into the aircraft in the flight. 

This case is characterized by the high speed impact of the bird onto aircraft structure, 

causing large dynamic deformations of the elements which may lead to disintegration of 

the construction. Assuming the variables of target (flat rigid or elastic panel) as 

constant, the number of variables, the bird strike analysis deals with, is high. This 

makes the bird strike analysis relatively complex. The various parameters include bird 

material and density, impact velocity, bird mass, bird material configuration, bird aspect 

ratio, material porosity, obliquity of impact and contact properties.  

 

Most of the initial models of bird impact was developed on the basis of the classical 

impact theory and used force-impulse equation. Unfortunately, these models failed to 

predict the damage to its details. Further, the elementary one-dimensional theory of 

hydrodynamics was used to study bird impact. The mass-momentum-energy 

conservation equations and simple pressure-density-energy equation of state were used 

to describe the material behavior [1,2]. More appropriate interpretation of bird impact 

was carried out by involving the shock wave theory. 

Regarding the finite elements methods, actually, three approaches have been 

successfully employed to simulate this phenomenon. These are the Lagrangian [3,4], 

Arbitrary Lagrangian-Eulerian (ALE) [4-7] and Smooth Particle Hydrodynamics (SPH) 
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formulations. The SPH formulation is a more recently developed finite element method 

that uses particles of mass rather than an element mesh to represent the bird [4,8,9].  

 

The basic goals of researching presented in this work can be summarized as follows: 

- brief retrospective of bird impact hydrodynamic theory coupled with shock wave 

equations and the definition of the elastic bulk modulus and sound speed of porous 

medium depending on its proper porosity, 

- numerical simulation of various cases of bird impact including the variation of 

material density, shape and impact velocity, impact angle and parameters of target 

plate, and 

- comparing some results of the numerical simulation and the experimental testing. 

2. Elementary shock theory of bird strike 

2.1 DESCRIPTION OF IMPACT  
 

Fig. 1 depicts four phases of the impact of a cylindrical body of fluid on a rigid target at 

an oblique angle of 90º. More complex geometries, such as hemi-spherically ended 

cylinders, complicate the theory but behave in the same broad manner.  

 

 

Figure 1. Bird impact phases given by numerical simulation of impact. 

The four phases (Fig. 1) can be described as follows: 

a) The cylinder of fluid approaches the flat target at an oblique angle and with a purely 

axial velocity. Its internal pressure is equal to that of the ambient atmosphere. 

b) The leading face of the cylinder impacts the target and its constituent particles are 

instantaneously stopped, creating a violent shock wave - the Hugoniot shock - that 

travels back along the length of the cylinder as adjacent particles are brought to rest. 

The shocked region behind the wave is subject to transient shock pressure of high 

magnitude. 

c) The huge pressure gradient between the radially unconfined free surface of the 
shocked region and its interior causes the generation of release waves, which trigger 
rapid radial expansion at the shocked end. The release or decompression waves travel 

at the speed of sound back towards the centre of the cylinder, reducing the strength of 

the shock wave as they progress. 
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d) The transient period ends when the release waves meet at the cylinder’s central axis 

[10]. Steady flow is established as the cylinder flows onto the surface of the target. A 

steady stagnation pressure is reached, which is maximum at the centre of impact. 

2.2 EOS OF WATER AND AIR  
 

Additional useful information resulting from associating the bird to water is the equation 

of state (EOS) used to describe the pressure-density (p-ρ) relationship in the bird 

medium. A few equations are available and the one most commonly used for water-bird 

is a polynomial of degree 3 [1]. This polynomial EOS for the bird model corresponds to 

a hydrodynamic, isotropic, and non-viscous constitutive law and is given as follows: 

 
2 3 2

0 1 2 3 4 5 6( )p C C C C C C C Eµ µ µ µ µ= + + + + + +  (1) 

 

0

1
ρ

µ
ρ

= −  (2) 

where is: E - internal energy and  - change in density during the impact.  

The coefficients C0-C6 of polynomial equation are given by expressions based on the 

initial density, the speed of sound in the medium and an experimental constant k: 

 
2

1 0 0C cρ=  (3) 

 2 1(2 1)C k C= −  (4) 

 3 1( 1)(3 1)C k k C= − −  (5) 

 0 4 5 6 0C C C C= = = =  (6) 

where is: ρ0 - density of medium (for the water ρ0,w = 1000 kg/m
3
 and for the air ρ0,a = 

1.225 kg/m
3
), c0 - speed of the sound in the medium (for the water c0,w = 1483 m/s and 

for the air c0,a= 342 m/s) and k - experimental constant (for the water kw= 2.0 and for the 

air ka = 1.03). 

2.3 EOS OF POROUS MATERIAL 
 

The EOS of porous material is based on the thermodynamic equation that describes the 

state of matter under a given set of physical conditions p = p(ρ,E) = p(V,E) = p(ρ,T). 

Further development of the theory for porous medium requires the elastic bulk modulus 

and sound speed of porous to be defined. Sound speed calculates assuming: 

 0, 0,(1 )= − +m
por w ac z c zc  (7) 

The Fig. 2 illustrates developed distribution for exponent values m =1-5, and m = 10. 

Using well-known sound speed - elasticity relation for fluid medium, the distribution of 
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bulk modulus K depending on porosity (K = ρpor cpor
2
) was calculated and shown in Fig. 

3. 

  

Figure 2. Sound speed distribution depending on porosity.      Figure 3. Bulk modulus depending on porosity. 

2.4 SHOCK PRESSURE AND SHOCK VELOCITY  
 

A bird undergoing impact at high velocity behaves as a highly deformable projectile 

where the yield stress is much lower than the sustained stress. Accordingly, the impact 

can be qualified as a hydrodynamic impact. In the case of law impact velocities, i.e. at 

the loads below Hugoniot limit, the single elastic wave propagates through bird material. 

At higher impact velocities the Hugoniot shock wave appears. The pressure of the initial 

shock, so-called Hugoniot pressure, for incompressible and compressible bird material is 

given by following equations, respectively: 

 0'sh imp c vρ=  (8) 

 sh sh imp v vρ=  (9) 

where is: psh
 
- shock pressure, c0 = cE - sound speed in the fluid, vsh - shock velocity of 

the generated shock wave, vim - the translational particle velocity or simply projectile 

velocity and ρ0 - initial density. 

 

The pressure of steady flow pstag (stagnation pressure) is calculated according to 

Bernoulli and is given by equation:  

 
21

2
stag imp vρ=  (10) 

The equations given below apply to the bird-body with an amount of air mixed in, also 

called porosity, since experience has shown that porosity has a non-negligible effect on 

the overall results and is closer to the behavior of a bird upon impact [1,3] are given as 

follows: 
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 ( )1 2sh sh imv v vρ ρ= −  (11) 

 
2 2

1 1 2 2 ( )sh sh imp v p v vρ ρ+ = + −  (12) 

 ( ) ( )

1

4 1
1 2

2

1 1 1
kp

z z q
A

ρ

ρ

−

− 
= − + + − 

 
 (13) 

 

2
1 0

4 1

c
A

k

ρ
=

−
 (14) 

 2

1

1

1 q

ρ

ρ
=

−
 (15) 

where is: ρ1 and 
 
ρ2 - density of the medium before and after the impact, p1 and

  
p2 - 

pressure before and after the impact (p1
 
is negligible) and z - amount of the material 

porosity. 

Parameter q is defined as: 

 1
1 2

2

1q q q
ρ

ρ
= − = −  (16) 

where is: 
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    + −
  
   = 2
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=
p
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p

 (17) 

Utilizing mixture theory [1] the EOS for the shock compression phase of the porous 

material was derived as follows: 

 

 ( )1 1 1

2 2 2

1

porous water air

z z
ρ ρ ρ

ρ ρ ρ

     
= − +     

     
 (18) 

The solution for the shock velocity in the porous is found by isolating p2 and ρ2 after the 

shock and by the simultaneous solution of equations (9), (17) and (18). Once the shock 

velocity is known, the Hugoniot pressure can be found from Eq. (11). Fig. 4 and Fig. 5 

show the shock velocity and the shock pressure for impact velocities ranging from 0 to 

500 m/s. The shock velocity and shock pressure are plotted for four different porosities 

(z = 0.1 to 0.4) in order to illustrate the influence of that parameter. 
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Figure 4. Theoretical dependence of shock velocity on 

porosity. 

Figure 5. Theoretical dependence of shock pressure 

on porosity. 

2.5 STAGNATION PRESSURE IN STEADY FLOW REGIME  
 

For an uncompressible fluid like water the Eq. 10 is valuable. But for compressible 

materials density increases with pressure and produces higher values of stagnation 

pressure. In the case of compressible porous material we assume increasing factor equals 

(1-z)
-1

: 

 

2

,

1

1 2

im
stag z porous

v
p

z
ρ=

−
 (19) 

 ( )1porous water airz zρ ρ ρ= − +  (20) 

When the fluid flow reaches a steady state, it is also possible to calculate the pressure 

distribution along the radius, assuming exponential dependence: 

 

2
1

2

r

R

stagp p e

   −  
   =  (21) 

where is: r - radial position and R - radius of the bird body.  

 

The Fig. 6 and Fig. 7 illustrate the stagnation pressure depending on porosity and 

impact velocity, and the stagnation pressure distribution along the radius. 
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Figure 6. Stagnation pressure vs. impact velocity and 

porosity. 

Figure 7. Stagnation pressure distribution along the 

radius vs. impact velocity and porosity. 

 

Involving Eq. 19 in Eq. 20 we would get normalized diagram of stagnation pressure 

distribution with reduced number of curves in Fig. 7. In this case, the stagnation 

pressure for the same impact velocity would be identical and represented by solid line.  

 

 

3. FEM modeling 

3.1 BIRD MODEL  
 

For bird material a homogeneous mixture of water and air was used. The porosity 

(volume presence of the air) was varied from z = 0.0 to z = 0.4. The effect of porosity 

with the P-alpha EOS [4] for porous material was investigated. The appropriate 

mechanical parameters of the water and water-air mixture depending on porosity are 

given in Table 1. 

 
Table 1. Mechanical parameters of the water and water-air mixture  

Porosity  

z 

Density 

ρ 
Sound speed 

cp (for m=1) 

Bulk modulus 

K (for m=1) 

- kg/m
3 

m/s MPa 

0.0 1000.0 1483 2200 

0.1 900.12 1368 1668 

0.2 800.25 1256 1260 

0.3 700.37 1142 907 

0.4 600.49 1026 632 

For the purpose of this research, two typical bird shapes that are generally used in bird 

strike analysis: flat and hemispherical cylinder, were considered. In each case, the 

height and diameter of the bird was assumed to be 200 mm and 100 mm, respectively. 
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The length-to-diameter ratio of 2 for each bird shape was identical. Two types of the 

numerical models of body shapes based on the SPH particles distributions along the 

symmetry axis are presented in Fig. 8.  

 

      

Figure 8. The SPH particles distribution along the symmetry axis of hemi-

spherically ended cylinder: axial (left) and radial (right). 

 

The cylindrical projectile model had a total of 12640 SPH particles and the cylinder with 

the hemi-spherical ends model had a total of 10512 SPH particles. The numerical 

models of bird body were built such that the nodal density of each body was 

approximately the same.  

3.2 TARGET MODEL  
 

For simplicity, the target structure was initially assumed to be rigid for comparative 

analysis of the shock pressures and shock wave velocities in the porous material. In 

addition, the impact velocity was assumed to be normal to the target. To simulate a rigid 

target, the target structure was modeled as a steel plate, with the dimensions 800 ˟ 800 

mm and thickness of 10 mm. All degrees of freedom of the target structure were 

constrained. The target structure was modeled using Belytschko-Tsay shell elements 

(Fig. 9) [4]. 

 

        

Figure 9. Lagrangian model of rigid target and SPH model of cylindrical bird projectile. 
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The target flexibility was introduced into the analysis, and the inherent coupling 

between the impact loads and the target deflection was explored. The appropriate 

mechanical parameters of the Al alloy are given in Table 2. 

Table 2. Mechanical parameters of Al alloy target structure 

Density 

ρ 
Poisson's ratio 

 
Young's modulus 

E 

Shear modulus 

G 

Tensile yield strength  

ReH 

kg/m
3 

- GPa GPa MPa 

2.785 0.33 71.00 28.60 280.00 

Besides the frontal impact, the effects of oblique impact were considered on the flexible 

target. Specifically, the bird projectile direction of 45 degrees was simulated. 

 

 

Figure 10. Deformations of cylindrical SPH body at different times during 

impact with rigid flat target (t= 0.0, 0.5, 1.0, 1.5, 2.0 ms). 

 

 

Figure 11. Deformations of hemispherical cylinder SPH body at different 

times during impact with rigid flat target (t= 0.0, 0.5, 1.0, 1.5, 2.0 ms). 
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4. Results and discussion 

4.1 EFFECT OF PROJECTILE SHAPE ON A RIGID TARGET  
 

Body deformations of artificial bird at different stages of the impact process are 

presented for various projectile shapes investigated in Figs. 10 and 11.  

4.2  SHOCK PRESSURE AND SHOCK VELOCITY  
 

The impact velocity for all bird projectiles was varied from 100 m/s to 500 m/s and 

normal to the rigid target. In addition, all the projectiles were assumed to have a 

porosity z of 0.4. Typical history diagram of the shock pressure distribution in the frontal 

plane of cylindrical body for velocities of 200 and 300 m/s impact are shown in Fig. 12. 

 

  

Figure 12. Shock pressure distribution along the radius for different impact velocities: 

vim = 200 m/s (left) and vim = 300 m/s (right). 

 

The history diagrams in Fig. 12 are similar and show appearances of two peaks on each 

shock pressure curve that is typical for two-phase materials such is the porous. 

The SPH computed shock pressures for the cylindrical bird shape are presented in Fig. 

13 and Fig. 14, for an appropriate range of projectile velocities and porosity. This last 

one, also, displays the experimental results from [3] for medium size birds. The exact 

weights of the test specimens were not given, however, it is stated that the specimens 

weighed between 0.5 kg to 1 kg. In addition, these figures display the computed shock 

pressures based on Wilbeck's theory [1]. 
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Figure 13. Comparison of Hydrodynamic theory and 

SPH calculated data for shock pressure distribution vs. 

impact velocity and porosity. 

Figure 14. Computed and experimental data for shock 

pressure distribution vs. impact velocity and porosity. 

Analysis of shock pressures calculated based on the Hydrodynamic theory and SPH 

method (Fig. 13) shows good correlation of computed data, specially for lower values of 

impact velocities (vim < 300 m/s). Further increasing of impact velocity causes higher 

deviation of computed shock pressures. As well, the distribution of computed and 

experimental data in Fig. 14, for shock pressure in the porous, confirms validity of the 

predictive principle that assumes the bird body as porous medium. 

4.3  STAGNATION PRESSURE IN STEADY FLOW REGIME  
 

The steady-state flow pressure stage is considered to be more critical for bird impact 

events. Simplified shock pressure distribution is used to determine the stagnation 

pressure in steady flow regime. This diagram, implemented in the pressure history 

record given for 100 m/s impact velocity, will take appearance shown in Fig. 15 (smooth 

thick line). 

 

Figure 15. Simplified shock pressure distribution with typical stages. 
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Typical stages of pressure-time response are: t1,0 - stage before impact, t2,1 - shock 

wave stage; t3,2 pressure release stage and t4,3 - steady-state flow regime. Stagnation 

pressure calculates based on the equations: 

 
4,3 4,1 3,1

3,1

= = =
∆ ∆ − ∆

− ∆

sp sp sp

stag

im

I I I
p

Lt t t
t

v

 (22) 

 

4

3

= ∫
t

sp

t

I pdt  (23) 

where is: Isp - specific impulse of shock pressure during stagnation stage, t4,1 - impact 

duration or so-called bird "squash-up" time, L - length of bird body and t3,1 - time 

sequence of shock wave stage (up to 30% of impact time).  

Stagnation pressure computed for the case of cylindrical bird shape is presented in Fig. 

16, for a range of projectile velocities at z = 0.4. This figure displays the experimental 

results from [3,10] for medium size birds. 

 

Figure 16. Stagnation pressure distribution vs. impact velocity for z = 0.4. 

 

From Fig. 16, it can be seen that the computed steady state pressure from the cylindrical 

projectile shape match well with the experimental results. Most previous analyses 

[1,3,10] were capable of predicting the steady state stagnation pressures with good 

accuracy. In fact, Wilbeck's one-dimensional theory provides a quick way of checking 

the steady state pressure before performing a full numerical three-dimensional analysis. 

4.4  EFFECT OF TARGET FLEXIBILITY ON THE IMPACT LOADS AND DEFORMATIONS   
 

The shell model of Al alloy plate, 3 mm of thickness and the mechanical parameters 
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given in Table 2, was used to show the effect of target flexibility on the impact loads and 

plate deformations. The boundary conditions assumed all edges of the plate were fixed 

against displacement in any directions. Besides the frontal impact, the effects of oblique 

impact (α = 45º) were considered on the flexible target. Pressure and von Mises stress 

distributions for in Al plate at impact velocity 300 m/s are shown in Fig. 17.  

    
a) Orthogonal bird impact (α=90º; z=0.2; t=0.3 ms) b) Oblique bird impact (α=45º; z=0.2; t=0.5 ms) 

Figure 17. Pressure and von Mises stress distributions in the metallic plate at cylinder impact velocity 300 m/s. 

 

Regarding the pressure distribution (Fig. 17), for time that provide the full contact 

surface will be reached in both orthogonal and oblique impact, the appearance of lower 

pressures characterizes the oblique impact caused by enlarged contact surface at α = 45º. 

Although, the comparative analysis of von Mises stress distributions in the metallic plate 

shows no difference between stress values for orthogonal and oblique impact. 

Effective strain distributions along 3 mm thick Al alloy plate for orthogonal and oblique 

impact depending on impact velocity are shown in Fig. 18 and 19, respectively. 

 

      
a) vim = 100 m/s, z = 0.2; t=T = 2 ms; 60º view direction (left); side 

view (right) 
     b) vim = 300 m/s; z = 0.2; t=T = 1 ms; 60º view direction (left); 

side view (right) 

Figure 18. Effective strain distribution along 3 mm thick Al alloy plate for orthogonal cylinder impact depending 

on impact velocity. 
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Figure 19. Effective strain distribution along 3 mm thick Al alloy plate for oblique cylinder impact (vim = 300 m/s; 

z = 0.2; T = 1.5 ms). 

From Figs. 18 and 19, it can be seen that the predicted effective strain for cylindrical 

bird body decreases with obliquity of impact velocity.  

Finally, the pressure, von Mises stress and effective strain distributions are tested at 

same above mentioned impact conditions for hemispherical cylinder bird body. The 

relevant results of numerical simulations are given in Figs. 20, 21 and 22, respectively. 

 

    
a) Orthogonal bird impact (α = 90º; z = 0.2; t = 0.3 ms) b) Oblique bird impact (α = 45º; z = 0.2; t = 0.5 ms) 

Figure 20. Pressure and von Mises stress distributions in the metallic plate at hemispherical cylinder impact 

velocity 300 m/s. 

 

    
a) vim = 100 m/s, z = 0.2; t=T = 2 ms; 60º view direction 

(left); side view (right) 
b) vim = 300 m/s; z = 0.2; t=T = 1 ms; 60º view direction  

(left); side view (right) 

Figure 21. Effective strain distribution in 3 mm thick Al alloy plate for orthogonal hemispherical cylinder impact 

depending on impact velocity. 
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Figure 22. Effective strain distribution along 3 mm thick Al alloy plate for oblique hemispherical cylinder impact 

(vim = 300 m/s; z = 0.2; T = 1.5 ms). 

Comparing the results of numerical simulations of bird impact on deformable target for 

flat cylinder and hemispherical cylinder shape of bird body it can be seen as follows: 

- In the case of orthogonal impact maximum pressures distributions of the flat cylinder 

impact (Figs. 17 and 20) show for 26% higher values of pressures than for 

hemispherical cylinder impact, and for 38% higher values of pressures in the case of 

oblique impact;  

- Von Mises stress distributions in the elastic metallic plate (Figs. 17 and 20) are 

practically identical relative to the stress values for orthogonal and oblique impact; 

and 

- Effective strain distributions (Figs. 18, 19, 21 and 22) show generally that reduction of 

impact angle produces strain decreasing, and regarding the body shape that would be 

for 44% lower values of maximum strain in the case of orthogonal hemispherical 

cylinder impact and for 14% lower values of maximum strain in the case of oblique 

hemispherical cylinder impact, all at vim = 300 m/s. 

 

 

5. Conclusion 

Brief retrospective of bird impact hydrodynamic theory coupled with Hugoniot shock 

wave equations was given. For bird material the homogeneous mixture of water-air 

mixture was used and the equation for elastic bulk modulus and sound speed of porous 

medium depending on porosity was involved in the analysis. Finite elements numerical 

simulations of bird impact were carried out by the use SPH method to represent bird 

body. Based on the mechanical parameters, determined by proposed equation, the effect 

of porosity with the P-alpha EOS for porous material was tested. 

Numerical simulation of various cases of bird impact including the variation of bird 

material density, shape and impact velocity, impact angle and parameters of target plate 

was successfully performed. Comparing some results of the numerical simulation and 

the experimental testing, it appears that increasing the porosity might produce a better 

match of predicted Hugoniot shock and the FEM pressures with those observed in 

experiments. As well, the computed stagnation pressures in steady state regime, 

calculated by proposed method, match well with the experimental results. Regarding the 

shape, it can be seen that the predicted shock pressures associated with all of the bird 
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shapes produced a good correlation with the experimental results. 
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Abstract. This work is concerned with generalized van der Pol oscillators, the 

damping-like force of which depends nonlinearly on the displacement and 

velocity with the powers that can be any positive real numbers. The amplitude 

and frequency of free limit cycle oscillations are determined first. Then, 

harmonically forced generalized van der Pol oscillators are considered with 

the aim of determining the region of entrainment, when the force is said to 

have entrained the limit cycle oscillations. 

 

 

1. Introduction 

 

The classical van der Pol oscillator is one of archetypal models in science and 

engineering. Its governing equation of motion is given by 

 ( ) ,1
2 xxxx  −=+ ε   (1) 

where x is a generalized coordinate, dots denote differentiation with respect to time t and 

the coefficient ε  is a positive real number (all these variables and the constant are non-

dimensional). The damping-like force on the right-hand side of Eq. (1) is of a 

changeable sign: it is positive for smaller displacements ( )1<x  and then feeds energy 

into the system; however, it becomes negative for larger displacements ( )1>x  and, 

thus, it dissipates energy. This behaviour gives rise to self-exciting oscillations. For 

small values of the coefficient ε ( )1<<ε , a stable limit cycle occurs with the steady-

state amplitude 2
LC

=a , which represents its distinctive characteristic [1, 2]. When the 

classical van der Pol oscillator is harmonically excited, the entrainment (locking, 

quenching) phenomenon can occur. It corresponds to the case when the limit cycle 

oscillations synchronise with the forcing frequency. Then, the force is said to have 

entrained the limit cycle oscillations or the limit cycle oscillations are said to have been 

locked/quenched [2]. 
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This study is concerned with the investigations of the limit cycle oscillations 

and the entrainment phenomenon in the generalized van der Pol oscillators governed by 

the following equation 

 ( ) ( ) ( ) ,cossgn1sgn tFxxxxxx Ω+−=+ εε
γβα

  (2) 

where the powers α , β and γ  are positive real constants, while F  and
 
Ω

 
are related 

to the magnitude and frequency of harmonic excitation, respectively. Here, the restoring 

force and the damping-like force have a general power form: the former is an odd 

function in the displacement, while the latter is an even function in the displacement 

and an odd function in the velocity. The sign and absolute value functions are used to 

assure that these terms have the properties as in the classical van der Pol oscillator given 

by Eq. (1).  

There have been few investigations concerned with the generalisation of the 

classical forced van der Pol equation with respect to different powers of the restoring 

and the damping-like force. The van der Pol oscillator with a pure cubic restoring force 

was investigated in [3] and [4], where the first-order harmonic balance method was 

applied to obtain periodic solutions, their stability was discussed and the regions of 

entrainment were found. Obi [5] considered a generalized version of the van der Pol 

equation (1a,b) in which the power of the restoring force is 2n+1, where n is an integer, 

and the geometric non-linearity in the damping-like term is raised to the power 2n+2. 

He showed the differences between quantitative and qualitative properties of the periodic 

oscillations corresponding to a linear and non-linear restoring force. He also obtained 

the number of periodic oscillations, their stationary amplitudes and discussed the way 

how they depend on the magnitude and the frequency of harmonic excitation. 

In this paper, the influence of the powers of nonlinearity on the system response 

in studied first for small values of the coefficient ε . By applying the averaging method, 

the amplitude of the limit cycle is determined and its properties analysed with respect to 

the limit cycle amplitude of the classical van der Pol oscillator. Then, harmonically 

excited generalized van der Pol oscillators are investigated from the viewpoint of the 

occurrence of harmonic entrainment. Locked periodic motion is obtained by adjusting 

the averaging method. The steady-state amplitude is related to the amplitude of the limit 

cycle. Effects of the powers of the restoring and damping-like forces on the occurrence 

of this phenomenon are determined.  

 

2. Free generalized van der Pol oscillators: Limit cycle oscillations 

 

In this Section, the approximate analytical solution for motion of the oscillator modelled 

by Eqs. (2) with F=0 is found. To that end, the generalized Krylov-Bogoliubov method, 

recently extended to free purely nonlinear oscillators [6] is used. The form of the 

solution is taken in the form: 

 ,sin,cos ψωψ axax −==    (3a,b) 

where  
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 ( ) ( ),
0

tdta
t

θωψ += ∫   (4) 

while the frequency ω is dependent both on the amplitude a and the power α [6] 

 ( ) ( ) ( )
,

1

1

12

3

2

1
,

1









+
Γ









+

+
Γ

+
==

−

α

α

α

απ
ω

α
caca  (5a,b) 

where Γ  is the Euler gamma function. 

 Differentiating Eq. (3a) with respect to time, one obtains 

 ,sinsincos ψθψωψ  aaax −−=   (6) 

which owing to Eq. (3b) implies that the following constraint needs to be satisfied 

 .0sincos =− ψθψ  aa   (7) 

Finding the second time derivative of Eq. (3b) and substituting it together with Eq. 

(3a) into Eq. (2), one obtains 

( ) ( ).sinsgnsincos1

cos)cossgn(coscossinsin
2

ψωψωψε

ψψψωψθωψ
ω

ψω

γβ

α

aaa

aaaaa
da

d
aa

−−−−

=+−−−− 
 (8) 

It should be noted that the last term on the left-hand side of Eq. (8) can be approximated 

by the first term from the corresponding Fourier series expansion 

 .

2

3

2
1

2
,coscos)cossgn(

11







 +

Γ









+Γ

=≈
α

α

π
ψψψ

αα

αα
bbaaa   (9) 

Now, this term can be cancelled by the term in front of it  

 ,0coscos 1

2 =+− ψψω
α

α
baa  (10) 

i.e. it is assumed that  
1

1

2 −
≈

α

α
ω ab , although ω is given by Eqs. (5a,b)  It should be 

noted that this approximation holds for a certain range of the values of the parameter 

α only (for more details, see [7] and [8]). 

Further, the second term on the left-hand side of Eq. (8) contains the 

derivative of the frequency with respect to the amplitude, which can be obtained 

from Eq. (5a) [6] 

 .
2

1
ω

αω

ada

d −
=   (11) 
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Substituting Eqs. (10) and (11) into Eq. (9) and combining it with Eq. (7), one 

derives 

 ( ) ( ) ,sinsinsgnsincos1sin
2

1
1

2 ψψωψωψεψ
α γβ

aaaa −−−=





 −

+  (12) 

 ( ) ( ) .cossinsgnsincos1cossin
2

1
ψψωψωψεψψ

α
θ

γβ
aaaaa −−−=

−
+   (13) 

After averaging Eqs. (12) and (13), it follows that the amplitude a and the phase 

shift θ  are defined by the following first-order differential equations  

 

( )
( ) ( ) ,sinsinsgnsincos1

3

2 2

0
2

1
ψψψωψωψ

απ

ε π
γβ

α
daaa

ac

a ∫ −−−

+

−=
−

     (14) 

 ( ) ( ) .cossinsgnsincos1

2

2

02

1 ∫ −−−−=
−

π
γβ

α
ψψψωψωψ

π

ε
θ daaa

ac

a   (15) 

By integrating them, one can derive: 

 
( )

,

2

3

2

3

2

3

2

1

2

3

2
1

3

4
2

1

2

1

1







 ++

Γ





 +

Γ















 +

Γ





 +

Γ−





 ++

Γ







+Γ

+
=

−
−

+

−

γβγ

γβγβ
π

γ

απ

ε

β
αα

γ

γ
aa

c
a      (16) 

 .0=θ   (17) 

Equation (17) implies that in all generalized van der Pol type oscillators modelled by 

Eqs. (2), the phase shift is constant to terms of order ε.  

The steady-state amplitude, i.e. the amplitude of the limit cycle 
LC

a , 

corresponds to 0=a  and is found to be  

 
,

2

3

2

1

2

3
/1

LC

β

γβ

γβ
π

























 +

Γ





 +

Γ







 ++

Γ

=a   (18) 

while Eqs. (5a,b) define the corresponding frequency 

 .
1

LCLC

−
=

α
ω ac   (19) 

The expression (18) is also found in [9], and indicates that the first approximation for 

the amplitude of the limit cycle depends on the values of the parameters β and γ, i.e. on 

the parameters appearing in the model of the damping-like force. However, in general, 

the amplitude of the limit-cycle actually depends on all parameters appearing in the 

differential equation of motion, but the ε-dependence is expected to be weak, except for 

the larger values of this parameter. 
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Equation (18) is used to plot how the amplitude of the limit cycle changes with 

the parameter β  for two different values of the power γ  (Figure 1a, b). In addition, 

numerically obtained amplitudes of the limit cycle are also presented in this figure for 

three different values of the parameter α corresponding to the linear α=1, under-linear 

α=2/3 and over-linear restoring forces α=2. It is seen that the analytical and numerical 

result agree reasonably well for all the range of the powers considered, although the 

analytically obtained amplitude of the limit cycle can be considered as slightly under-

estimated for α=2/3 and slightly over-estimated for α=2. These numerical results lead to 

the conclusion that as the power α increases, the amplitude of the limit cycle decreases 

and this is in general agreement with the result given in [10] for 2=β , where an 

elliptic Krylov-Bogoliubov method is used to find the amplitude of the limit cycle. In all 

cases, as β  increases, the amplitude of the limit cycle decreases. 

 

 
 

Figure 1. Amplitude of the limit cycle obtained analytically Eq. (18) (solid line) and numerically 

for ε=0.1, α=2/3 (stars), α=1 (circles) and α=2 (triangles): a) γ=0.8; b) γ=1.2. 

 

2.1 Special case: γ=1 

If the velocity term in the damping force is linear, the amplitude of the limit cycle is 

 .

2

1

2

4
/1

LC

β

β

β
π

























 +

Γ







 +

Γ

=a   (20) 

The change of this amplitude with the parameter β  is plotted in Figure 2. Besides this, 

numerically obtained amplitudes of the limit cycle are also shown in this figure for 

different values of the parameter α.  

The expression (20) is used, together with Eqs. (3a,b) and Eqs. (5a,b), to compare the 

analytically found phase trajectories with those calculated numerically. Figure 3 shows 

this for three different values of the power α corresponding (as in Figures 1 and 2) to 

the linear α=1, under-linear α=2/3 and over-linear restoring forces α=2 (note that the 

case given in Figure 3a corresponds to the classical van der Pol oscillator, which is 
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given here to see the similarities and differences with respect to other cases considered). 

It is seen that the approximate analytical results obtained agree reasonably well with the 

numerical solutions. 

 

 

Figure 2. Amplitude of the limit cycle for γ=1, ε=0.1 obtained analytically Eq. (20) (solid line) and 

numerically:  α=2/3 (stars), α=1 (circles) and α=2 (triangles) 

 

 

Figure 3. a) Phase trajectories calculated numerically by carrying out direct integration of the 

equation of motion (2) with F=0 (black dotted line) and the analytically obtained limit cycle (red 

solid line) for ε=0.1, β=2, x(0)=3, 0)0( =x  and: a) α=1; b) α=2/3; c)  α=2. 

 

It should also be pointed out that Eq. (20) implies that when 0→β , 

ea 2LC →  as well as when ∞→β , 1
LC

→a . When 2=β , as is in the classical van 

der Pol oscillator, the amplitude is  2
LC

=a , which is the well-known result [1, 2] also 

seen in Figure 3b. 
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3. Forced generalized van der Pol oscillator: Entrainment 

 

In order to derive the approximation for motion for the forced generalized van der Pol 

oscillator (2), the method presented in the previous section is adjusted. Thus, following 

the methodology defined by Eqs. (3a)-(7), the equation of motion (2) becomes  

 

( ) ( ) ,cossinsgnsincos1

cos)cossgn(coscossinsin
2

tFaaa

aaaaa
da

d
aa

Ω+−−−

=+−−−−

εψωψωψε

ψψψωψθωψ
ω

ψω

γβ

α
     (21) 

which due to Eqs. (10) and (11), transforms to 

 

( ) ( ) ,cossinsgnsincos1

cossin
2

1
1

ϕεψωψωψε

ψθωψω
α

γβ
Faaa

aa

+−−−

=−





 −

+− 
 (22) 

where tΩ=ϕ . 

The case investigated here is the one when the frequency of excitation Ω is close 

to the frequency ω, i.e. εσω +=Ω , where σ  is the detuning parameter. It should be 

noted that this implies .εσωϕ +=  

By solving the system formed by Eqs. (7) and (22), one obtains 

 

( ) ( ) ,sincossinsinsgnsincos1

sin
2

1
1

2

ψϕεψψωψωψε

ψ
α

ω

γβ
Faaa

a

−−−−−

=





 −

+
 (23) 

 
( )

( ) ( ) .coscoscossinsgnsincos1

cossin
2

1

ψϕεψψωψωψε

ωψωψψ
α

ω

γβ
Faaa

aa

+−−−

=−−
−

− 
 (24) 

At this point, the phase difference ϕψφ −=  can be introduced and ψ  replaced by 

ϕφψ += . The phase ϕ  can be considered as an independent variable and the 

transformed Eqs. (23), (24) can be averaged with respect to it. This leads to 

        ( )

( )
,sin

3

2

2

3

2

3

2

3

2

1

2

3

2
1

3

4

2

1
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1

φ
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ε
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γ
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ε
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β
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γ
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−
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Γ
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



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+Γ

+
=

a
c

F

aa
c

a
 (25) 

 .cos
2

2

1

φ
ε

εσφ
α−

−−= a
c

F
aa    (26) 
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The steady-state motion characterised by 
0

a ,
0

φ  of the forced oscillators (2) is obtained 

by equating the left-hand sides of Eqs. (25) and (26) with zero 

         ,sin
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c

F
a   (28) 

For 0==Ω= σF , Eqs. (27) and (28) turn into Eqs. (16) and (17) for the first-order 

differential equations in the amplitude of the limit cycle oscillations. 

 

3.1 Special case: γ=1 

When the damping-like force depends on the velocity linearly, Eqs. (25) and (26) give 
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where the notation for the absolute value has been omitted. The corresponding steady-

state response 
0

a ,
0

φ  is defined by 
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These equations can be combined to derive the amplitude-frequency equation 
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Stability of this steady-state response is checked by introducing small perturbations 
1

a  

and 
1

φ  into the steady-state amplitude 
0

a  and phase 
0

φ  satisfying Eqs. (31) and (32) 
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with 2

1−

−Ω=
α

εσ ca . So, by using 
10

aaa +=  and 
10

φφφ += , Eqs. (31) and (32) give 

the following constant coefficient system 

 ,
3

4

2

4

2

1

3

21

3

1
2

1

0

0

1

0

11 







−Ω
+

+

























 +

Γ







 +

Γ

+

++
−

+

+
=

−αβ

α
φ

β

β

πα

βα

α

α
ε ca

aa
aa  (34) 

 .

2

4

2

1

22

1

2

1

2

1 0

1

0

2

1

0
2

3

011

























 +

Γ







 +

Γ

−+













−Ω+

−
−

=

−
−

β

β

π
εφ

αα
φ

β
α

α a

a

ca
aca  (35) 

The corresponding eigenvalues λ  satisfy [2] 

 ,0dettr
2 =+⋅− λλ   (36) 

with the trace (tr) being: 
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while the determinant (det) is 
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By using Eqs. (33), (37) and (38), the frequency-response curves are plotted first in Fig. 

4 for the classical van der Pol oscillator (α = 1, β = 2). They are given for the 

convenience of the reader and also as a reference point for the comparison with other 

cases studied subsequently. As seen from Fig. 4, frequency-response curves can be 

continuous or consisting of two parts: the former corresponds to the oscillations with 

smaller amplitude and the latter is closed and surrounds the point corresponding to the 

limit cycle amplitude, Eq. (20) (this point is labelled by a star in this paper) and is 

located on a backbone curve 
( ) 21

bc

−=Ω α
ca , which is 1

bc
=Ω  for the linear restoring 

force (the backbone curve is labelled by ‘bc’ and depicted by a double dotted-dashed 

line). All frequency-response curves of the classical van der Pol oscillator are 

symmetrical with respect to the vertical backbone curve. The line corresponding to the 

trace is plotted as a dashed-dotted line. It is horizontal as Eq. (37) indicates that it does 

not depend on the frequency. Curves defined by Eq. (38), i.e. det=0, are plotted as dotted 
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lines and the gray region corresponds to det<0. The boundary of the region det=0, which 

separates qualitatively different types of solutions, is plotted as thicker dotted line. For 

the stability, one requires tr<0, which is above the line corresponding to tr=0, and det>0 

[2]. The parts of the frequency-response curves satisfying det>0 and tr<0 are shown as 

thicker lines. Thus, the entrainment can occur either between the intersection of 

frequency-response curves with the curve det=0 when tr<0 for smaller F or with the 

curve tr=0 when det>0 for higher values of F, which is confirmed numerically by 

solving directly the equation of motion and these numerical results are shown as black 

dots.  
  

 

Figure 4. Frequency-response curves defined by Eq. (33) for ε = 0.1, α = 1, β = 2, different values of 

the magnitude of the force F=0.75 (smaller dashes), F=1 (longer dashes) and F=2 (solid line). 

Numerical results are shown as black dots. The star stands for the characteristics of the limit cycle. 

 

 
Figure 5. Entrainment regions (shaded areas) for ε = 0.1, α = 1 and different values of the power β. 

Dotted lines depict the solutions of det=0 for which tr<0 and dashed-dotted lines the solutions of tr=0 

for which det>0.  

 

Further, the bifurcation analysis is conducted to construct the regions of 

entrainment. The locus of saddle-node bifurcation points is found by solving the system 

formed by det=0, Eq. (38) and the amplitude-frequency equation (33) and shown in the 

F-Ω parametric plane. This is presented in Figure 5 as a dotted line. In addition, the 

locus of the points along which Hopf bifurcation occurs when tr=0 and det>0 is also 
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presented as a dashed-dotted line. So, by considering these bifurcation curves, it turns 

out that stable entrainment solutions exist in the shaded region. Outside this region, 

beating oscillations occur [1]. Figures 5a-c show how the size of the entrainment region 

is affected by the change of the power β.  

The case 1≠α  is investigated now in the same manner. First, an under-linear 

restoring force (α = 2/3) is considered. The corresponding frequency-response curves are 

given in Figure 6. It is seen that this curves as well as the backbone curve are bent to the 

left. The curves corresponding to det=0 and tr=0 are also shown, so is the gray region 

det<0 (the same legend is used as in Fig. 4). For smaller forcing amplitudes, when the 

part of the frequency-response curve is closed surrounding a limit-cycle point, the region 

of entrainment can occur between the intersection of the frequency-response curve with 

det=0, which is the same situation as for the oscillator with a linear restoring force. 

However, for larger forcing amplitudes, when the frequency-response curve is a one-part 

continuous line, the entrainment occurs between the intersection of the frequency-

response curve with the curve det=0 when tr<0 and the intersection with tr=0 when 

det>0. Note that this is the mixture of the cases existing for a linear restoring case, 

discussed previously.   

 

 

Figure 6. Frequency-response curves defined by Eq. (33) for ε = 0.1, α = 2/3, β = 2, different values 

of the magnitude of the force F=0.75 (smaller dashes), F=1 (longer dashes) and F=2 (solid line) 

Numerical results are shown as black dots. The star stands for the characteristics of the limit cycle. 

 
Figure 7. Entrainment regions (shaded areas) for ε = 0.1, α = 2/3 and different values of the power β. 

Dotted lines depict the solutions of det=0 for which tr<0 and dashed-dotted lines the solutions of tr=0 

for which det>0. 
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Figure 7a-c show how the position and the size of the entrainment region change 

in the F-Ω parametric plane as the power α is fixed to α = 2/3 and β is varied. The 

entrainment region is shifted to lower frequencies and is wider for a lower geometric 

non-linearity in the damping-like force. 

The frequency-response curves corresponding to a over-linear restoring force α=2 

are shown in Figure 8, while the entrainment regions are plotted in Figure 9. It is seen 

that the frequency-response curves are bent to the right. The entrainment region, which 

is wider for a lower geometric non-linearity in the damping-like force, is shifted to 

higher frequencies. 

 

 

Figure 8. Frequency-response curves defined by Eq. (33) for ε = 0.1, α = 2, β = 2, different values of 

the magnitude of the force F=1 (longer dashes) and F=2 (solid line). Numerical results are shown as 

black dots. 

 

 
Figure 9. Entrainment regions (shaded areas) for ε = 0.1, α = 2 and different values of the power β. 

Dotted lines depict the solutions of det=0 for which tr<0 and dashed-dotted lines the solutions of tr=0 

for which det>0.  
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4. Conclusions 

 

In this work, generalized van der Pol type oscillators have been considered. Both the 

restoring force and the damping-like force have a nonlinear power form: the former with 

respect to the displacement, and the latter with respect to the displacement and velocity. 

The investigations have been conducted with a view to determining the limit cycle in 

free generalized van der Pol oscillators and defining the entrainment region in forced 

generalized van der Pol oscillators. 

The first approximation for the amplitude of the limit cycle is seen to be 

dependent on the parameters appearing in the damping-like force. The accuracy of the 

analytically obtained results has been confirmed numerically. In all the cases considered, 

it has been found that as the power of the displacement nonlinearity in the damping-like 

force increases, the limit cycle amplitude decreases. Further numerical results have 

showed that for fixed values of the power of the displacement in the damping-like force, 

the power of the restoring force has certain influence on the limit cycle amplitude. In the 

case of linear viscous damping, the higher the power of the restoring force, the smaller 

the limit cycle amplitude. 

The forced generalized van der Pol oscillators have been studied by deriving the 

corresponding frequency-response equation and by performing its stability analysis. 

Analytical approximations for the trace and the determinant of the corresponding 

eigenvalue equation have been derived, on the basis of which the regions of harmonic 

entrainment have been obtained in the parameter plane formed by the forcing frequency 

and its magnitude. It has been shown that for a fixed forcing magnitude, the region of 

frequency in which entrainment occurs is the narrowest for the linear restoring force and 

is wider for non-linear restoring forces. When the restoring force is under-linear, this 

region is shifted towards lower frequencies and when it is over-linear, towards higher 

frequencies. 
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Abstract

Nonlinear oscillatory convective regimes developed under the joint action of buoyant and ther-
mocapillary effects in the 47v2 silicone oil - water system, are investigated. Transitions between
nonlinear flows with various spatial structures have been studied. Specific types of oscillatory flows
with different symmetry properties have been found. It is shown that the region of convective oscil-
lations is observed in a finite interval of the Grashof number values bounded from below and from
above.

1 Introduction

Stability of convective flows in systems with an interface has been a subject of an extensive investigation
at the past few decades (for a review, see [1], [2]). Several classes of instabilities have been found.

There are two basic physical phenomena that produce convective instability in systems with an
interface: buoyancy and thermocapillary effect. When heating is from below, the buoyancy instability
generates Rayleigh - Bénard convection [3], while the thermocapillary effect is the origin of Marangoni -
Bénard convection [4], [1]. The situation when both mechanisms of instability act simultaneously is the
most typical.

It is known that the stability problem for the mechanical equilibrium in a system with an inter-
face is not self-adjoint (see, e.g., [1], [5]), thus an oscillatory instability is possible. The mechanism
of oscillations, which takes place without interfacial deformations due to the hydrodynamic and ther-
mal interaction between convective flows on both sides of the interface, was found by Gershuni and
Zhukhovitsky [6] in the case of transformer oil - formic acid system. The nonlinear oscillatory convective
structures near the instability threshold for some model systems have been studied in [7], [8].

An oscillatory instability of the mechanical equilibrium can be caused by the joint action of buoyancy
and thermocapillary effect in a two-layer system heated from below. This phenomenon was first discov-
ered in [9], [1], [10]. Oscillations just above the instability threshold have been observed in experiments
of Degen et. al. (see [11]). It should be noted that the linear stability theory for the onset of the
buoyancy convection has predicted a monotonic instability [12]. In our opinion, oscillations observed in
experiments [11] can be caused by the influence of the thermocapillary effect [13].

In the present paper, nonlinear oscillatory convective flows, developed under the joint action of
buoyant and thermocapillary effects in the 47v2 silicone oil - water system filling the closed cavity,
are studied. Specific oscillatory regimes with different symmetry properties, have been observed. New
consequence of bifurcations has been found.

The paper is organized as follows. In Section 2, the mathematical formulation of the problem in the
two-layer system is presented. The nonlinear approach is described in Section 3. Nonlinear simulations of
the finite-amplitude convective regimes are considered in Section 4. Section 5 contains some concluding
remarks.

1
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2 Formulation of the Problem

We consider a system of two horizontal layers of immiscible viscous fluids with different physical proper-
ties. The system is bounded from above and from below by two isothermal rigid plates kept at constant
different temperatures (the system is heated from below; the total temperature drop is θ). It is assumed
that the interfacial tension σ decreases linearly with the increasing of the temperature: σ = σ0 − αT,
where α > 0. The variables referring to the top layer are marked by subscript 1, and the variables
referring to the bottom layer are marked by subscript 2.

Assume that ρm, νm, ηm, κm, χm, βm and am are, respectively, density, kinematic and dynamic
viscosity, heat conductivity, thermal diffusivity, thermal expansion coefficient and the thickness of the
m - th layer (m = 1, 2). Let us introduce the following non-dimensional parameters, corresponding to
parameters ratios of different fluids,

ρ = ρ1/ρ2, ν = ν1/ν2, η = η1/η2,

κ = κ1/κ2, χ = χ1/χ2, β = β1/β2,

and to the ratio of layers thicknesses,
a = a2/a1.

As the units of length, time, velocity, pressure and temperature we choose a1, a2
1/ν1, ν1/a1, ρ1ν

2
1/a2

1 and
θ, respectively.

The nonlinear equations of convection in the framework of the Boussinesq approximation for both
fluids have the following form (see Simanovskii & Nepomnyashchy 1993):

∂�vm

∂t
+ (�vm · ∇)�vm = −em∇pm + cm∇2�vm + bmGTm�γ,

∂Tm

∂t
+ �vm · ∇Tm =

dm

P
∇2Tm, (1)

∇ · �vm = 0.

Here, �vm = (vmx, vmy, vmz) is the velocity vector, Tm is the temperature and pm is the pressure in
the m - th fluid; �γ is the unit vector directed upwards; b1 = c1 = d1 = e1 = 1; b2 = 1/β, c2 = 1/ν,
d2 = 1/χ, e2 = ρ; G = gβ1θa

3
1/ν2

1 is the Grashof number, which characterizes the buoyancy force, and
P = ν1/χ1 is the Prandtl number for the liquid in layer 1. The conditions on the isothermal rigid
horizontal boundaries are:

z = 1 : �v1 = 0; T1 = 0, (2)

z = −a : �v2 = 0; T2 = 1. (3)

The boundary conditions on the interface include relations for the tangential stresses:

z = 0 : η
∂v1x

∂z
=

∂v2x

∂z
+

ηM

P

∂T1

∂x
, η

∂v1y

∂z
=

∂v2y

∂z
+

ηM

P

∂T2

∂x
; (4)

the continuity of the velocity field:

v1 = v2; (5)

the continuity of the temperature field:

T1 = T2; (6)

and the continuity of the heat flux normal components:

κ
∂T1

∂z
− ∂T2

∂z
= 0. (7)

Here M = αθa1/η1χ1 is the Marangoni number, which is the basic non-dimensional parameter
characterizing the thermocapillary effect.

The conditions on the solid lateral boundaries, which are assumed to be thermally insulated, are
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x = 0, L : vm = 0,
∂Tm

∂x
= 0, m = 1, 2, (8)

where L = l/a1.
The problem (1) − (8) for any choice of parameters has the solution:

�v0
m = 0, pm = p0

m(z), Tm = T 0
m(z), m = 1, 2, (9)

corresponding to the quiescent state. The temperature gradients in the quiescent state are:

A1 = dT 0
1 /dz = − 1

(1 + κa)
, A2 = dT 0

2 /dz = − κ

(1 + κa)
. (10)

The boundary-value problem (1) - (8) contains eight thermophysical (M , G, P , η, ν, κ, χ, β) and
two geometrical (L, a) non-dimensional parameters.

3 Nonlinear approach

In order to investigate the flow regimes generated by the convective instabilities, we perform nonlinear
simulations of two-dimensional flows (vmy = 0 (m = 1, 2); the fields of physical variables do not depend
on y). In this case, we can introduce the stream function ψ

vmx =
∂ψm

∂z
, vmz = −∂ψm

∂x
, (m = 1, 2).

Eliminating the pressure and defining the vorticity

φm =
∂vmz

∂x
− ∂vmx

∂z
,

we can rewrite the boundary value problem (1) − (8) in the following form:

∂φm

∂t
+

∂ψm

∂z
· ∂φm

∂x
− ∂ψm

∂x
· ∂φm

∂z
= cm∇2φm + bmG

∂Tm

∂t
, (11)

∇2ψm = −φm, (12)

∂Tm

∂t
+

∂ψm

∂z
· ∂Tm

∂x
− ∂ψm

∂x
· ∂Tm

∂z
=

dm

P
∇2Tm (13)

(m = 1, 2).

z = 1 : ψ1 =
∂ψ1

∂z
= 0; T1 = 0; (14)

z = −a : ψ2 =
∂ψ2

∂z
= 0; T2 = 1; (15)

z = 0 : ψ1 = ψ2 = 0,
∂ψ1

∂z
=

∂ψ2

∂z
, φ2 = ηφ1 +

ηM

P

∂T1

∂x
; (16)

T1 = T2, κ
∂T1

∂z
=

∂T2

∂z
. (17)

The calculations were performed in a finite region 0 ≤ x ≤ L, −a ≤ z ≤ 1 with the rigid heat-insulated
boundaries:

x = 0, L : ψm =
∂ψm

∂x
=

∂Tm

∂x
= 0; (18)

m = 1, 2.

The boundary conditions (18) correspond to a closed cavity. The problem (11) - (18) is integrated
in time with some initial conditions for ψm and Tm (m = 1, 2) by means of a finite-difference method.
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In order to investigate the flow regimes generated by the convective instabilities, we perform nonlinear
simulations of two-dimensional flows (vmy = 0 (m = 1, 2); the fields of physical variables do not depend
on y). In this case, we can introduce the stream function ψ
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The calculations were performed in a finite region 0 ≤ x ≤ L, −a ≤ z ≤ 1 with the rigid heat-insulated
boundaries:
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m = 1, 2.

The boundary conditions (18) correspond to a closed cavity. The problem (11) - (18) is integrated
in time with some initial conditions for ψm and Tm (m = 1, 2) by means of a finite-difference method.

3

x = 0, L : vm = 0,
∂Tm

∂x
= 0, m = 1, 2, (8)

where L = l/a1.
The problem (1) − (8) for any choice of parameters has the solution:

�v0
m = 0, pm = p0

m(z), Tm = T 0
m(z), m = 1, 2, (9)

corresponding to the quiescent state. The temperature gradients in the quiescent state are:

A1 = dT 0
1 /dz = − 1

(1 + κa)
, A2 = dT 0

2 /dz = − κ

(1 + κa)
. (10)

The boundary-value problem (1) - (8) contains eight thermophysical (M , G, P , η, ν, κ, χ, β) and
two geometrical (L, a) non-dimensional parameters.

3 Nonlinear approach

In order to investigate the flow regimes generated by the convective instabilities, we perform nonlinear
simulations of two-dimensional flows (vmy = 0 (m = 1, 2); the fields of physical variables do not depend
on y). In this case, we can introduce the stream function ψ

vmx =
∂ψm

∂z
, vmz = −∂ψm

∂x
, (m = 1, 2).

Eliminating the pressure and defining the vorticity

φm =
∂vmz

∂x
− ∂vmx

∂z
,

we can rewrite the boundary value problem (1) − (8) in the following form:

∂φm

∂t
+

∂ψm

∂z
· ∂φm

∂x
− ∂ψm

∂x
· ∂φm

∂z
= cm∇2φm + bmG

∂Tm

∂t
, (11)

∇2ψm = −φm, (12)

∂Tm

∂t
+

∂ψm

∂z
· ∂Tm

∂x
− ∂ψm

∂x
· ∂Tm

∂z
=

dm

P
∇2Tm (13)

(m = 1, 2).

z = 1 : ψ1 =
∂ψ1

∂z
= 0; T1 = 0; (14)

z = −a : ψ2 =
∂ψ2

∂z
= 0; T2 = 1; (15)

z = 0 : ψ1 = ψ2 = 0,
∂ψ1

∂z
=

∂ψ2

∂z
, φ2 = ηφ1 +

ηM

P

∂T1

∂x
; (16)

T1 = T2, κ
∂T1

∂z
=

∂T2

∂z
. (17)

The calculations were performed in a finite region 0 ≤ x ≤ L, −a ≤ z ≤ 1 with the rigid heat-insulated
boundaries:

x = 0, L : ψm =
∂ψm

∂x
=

∂Tm

∂x
= 0; (18)

m = 1, 2.

The boundary conditions (18) correspond to a closed cavity. The problem (11) - (18) is integrated
in time with some initial conditions for ψm and Tm (m = 1, 2) by means of a finite-difference method.

3



240

 ILYA B. SIMANOVSKII 

 

Equations and boundary conditions are approximated on a uniform mesh using a second order approx-
imation for the spatial coordinates. The nonlinear equations are solved using an explicit scheme on a
rectangular uniform mesh 112×112. The Poisson equation is solved by the iterative Liebman successive
overrelaxation method on each time step. The accuracy of the solution is 10−5.

The details of the numerical method can been found in the book by Simanovskii and Nepomnyashchy
[1].

4 Numerical results

We investigate the nonlinear regimes of convection in the 47v2 silicone oil - water system with the
following set of parameters: ν = 2.0; η = 1.7375; κ = 0.184; χ = 0.778; β = 5.66; P = 25.7. This system
was used in experiments carried out by Degen et. al. (see [11]).

To simulate the motions in a closed cavity, we used rigid heat insulated boundary conditions (18) for
L = 2.74. Let us take the ratio of the layers thicknesses a = 1.

Under the conditions of the experiment, when the geometric configuration of the system is fixed
while the temperature difference θ is changed, the Marangoni number M and the Grashof number G are
proportional. We define the inverse dynamic Bond number

K =
M

GP
=

α

gβ1ρ1a2
1

.

Let us fix K = 0.027. When the Grashof number is sufficiently small, disturbances decay in an oscillatory
way and the system keeps the mechanical equilibrium. With an increase of the Grashof number (G ≥
G∗ = 97), the mechanical equilibrium state becomes unstable and perfectly symmetric standing waves
(type 1) satisfying symmetry conditions

ψm(L − x, z, t) = −ψm(x, z, t), Tm(L − x, z, t) = Tm(x, z, t), m = 1, 2 (19)

develop near the instability threshold [13]. The snapshots of streamlines during one period of oscillations
are presented in Fig. 1.

With an increase of G, the period of oscillations grows (see line 1 in Fig. 2). This prediction coincides
with the observations of Degen et. al [11].

With a further increase of G, the oscillations disappear. For G close to G∗ = 193.8, the period of
oscillations τ satisfies the relation τ−2 ∼ G∗ − G, which is characteristic for a saddle-node bifurcation.
When G > G∗, the steady symmetric four-vortex motion takes place in the system. Thus, the region
of the Grashof number values, where symmetric oscillations take place, is bounded from below by the
mechanical equilibrium state and from above by the steady state.

Now, let us take the inverse dynamic Bond number K = 0.024. The decrease of the inverse dynamic
Bond number (weakening of the thermocapillary effect) changes the situation significantly. With an
increase of the Grashof number, the mechanical equilibrium state becomes unstable and the steady flow,
satisfying symmetry conditions (19) develops in the system. For G ≥ 151.5, the steady flow becomes
unstable, and the system make a transition through the homoclinic bifurcation to a specific asymmetric
oscillatory flow (type 2) with an extremely high value of the period (see the left end of line 2 in Fig.
2). The snapshots of streamlines for the asymmetric oscillations (type 2) are presented in Fig. 3. The
solution has a following property:

ψm(x, z, t + T/2) = −ψm(−x, z, t), m = 1, 2. (20)

The period of asymmetric oscillations (type 2) changes in a non-monotonic way (line 2 in Fig. 2).
For G > 180, the inverse period doubling bifurcation takes place - the symmetry is restored and the
oscillatory flow (type 1) develops in the system (line 3 in Fig. 2). At G > 185, the period of oscillations
grows rapidly (line 3 in Fig. 2). With a further increase of G, the oscillations disappear. For G close to
G∗ = 188.2, the period of oscillations τ satisfies the relation τ−2 ∼ G∗ −G, (a saddle-node bifurcation).
When G > G∗, the steady symmetric four-vortex flow develops in the system. Thus, for K = 0.024,
the regions of asymmetric and symmetric oscillations are restricted by the Grashof number values from
below and from above by the regions of the steady states.

Let us note, that the dependence of the period of oscillations on the Grashof number for K = 0.025
(lines 4 and 5 in figure 2) is similar to that described above for the case K = 0.024.
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grows rapidly (line 3 in Fig. 2). With a further increase of G, the oscillations disappear. For G close to
G∗ = 188.2, the period of oscillations τ satisfies the relation τ−2 ∼ G∗ −G, (a saddle-node bifurcation).
When G > G∗, the steady symmetric four-vortex flow develops in the system. Thus, for K = 0.024,
the regions of asymmetric and symmetric oscillations are restricted by the Grashof number values from
below and from above by the regions of the steady states.

Let us note, that the dependence of the period of oscillations on the Grashof number for K = 0.025
(lines 4 and 5 in figure 2) is similar to that described above for the case K = 0.024.
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Equations and boundary conditions are approximated on a uniform mesh using a second order approx-
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overrelaxation method on each time step. The accuracy of the solution is 10−5.

The details of the numerical method can been found in the book by Simanovskii and Nepomnyashchy
[1].

4 Numerical results

We investigate the nonlinear regimes of convection in the 47v2 silicone oil - water system with the
following set of parameters: ν = 2.0; η = 1.7375; κ = 0.184; χ = 0.778; β = 5.66; P = 25.7. This system
was used in experiments carried out by Degen et. al. (see [11]).

To simulate the motions in a closed cavity, we used rigid heat insulated boundary conditions (18) for
L = 2.74. Let us take the ratio of the layers thicknesses a = 1.

Under the conditions of the experiment, when the geometric configuration of the system is fixed
while the temperature difference θ is changed, the Marangoni number M and the Grashof number G are
proportional. We define the inverse dynamic Bond number

K =
M

GP
=

α

gβ1ρ1a2
1

.

Let us fix K = 0.027. When the Grashof number is sufficiently small, disturbances decay in an oscillatory
way and the system keeps the mechanical equilibrium. With an increase of the Grashof number (G ≥
G∗ = 97), the mechanical equilibrium state becomes unstable and perfectly symmetric standing waves
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ψm(L − x, z, t) = −ψm(x, z, t), Tm(L − x, z, t) = Tm(x, z, t), m = 1, 2 (19)

develop near the instability threshold [13]. The snapshots of streamlines during one period of oscillations
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With an increase of G, the period of oscillations grows (see line 1 in Fig. 2). This prediction coincides
with the observations of Degen et. al [11].

With a further increase of G, the oscillations disappear. For G close to G∗ = 193.8, the period of
oscillations τ satisfies the relation τ−2 ∼ G∗ − G, which is characteristic for a saddle-node bifurcation.
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of the Grashof number values, where symmetric oscillations take place, is bounded from below by the
mechanical equilibrium state and from above by the steady state.
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increase of the Grashof number, the mechanical equilibrium state becomes unstable and the steady flow,
satisfying symmetry conditions (19) develops in the system. For G ≥ 151.5, the steady flow becomes
unstable, and the system make a transition through the homoclinic bifurcation to a specific asymmetric
oscillatory flow (type 2) with an extremely high value of the period (see the left end of line 2 in Fig.
2). The snapshots of streamlines for the asymmetric oscillations (type 2) are presented in Fig. 3. The
solution has a following property:

ψm(x, z, t + T/2) = −ψm(−x, z, t), m = 1, 2. (20)

The period of asymmetric oscillations (type 2) changes in a non-monotonic way (line 2 in Fig. 2).
For G > 180, the inverse period doubling bifurcation takes place - the symmetry is restored and the
oscillatory flow (type 1) develops in the system (line 3 in Fig. 2). At G > 185, the period of oscillations
grows rapidly (line 3 in Fig. 2). With a further increase of G, the oscillations disappear. For G close to
G∗ = 188.2, the period of oscillations τ satisfies the relation τ−2 ∼ G∗ −G, (a saddle-node bifurcation).
When G > G∗, the steady symmetric four-vortex flow develops in the system. Thus, for K = 0.024,
the regions of asymmetric and symmetric oscillations are restricted by the Grashof number values from
below and from above by the regions of the steady states.

Let us note, that the dependence of the period of oscillations on the Grashof number for K = 0.025
(lines 4 and 5 in figure 2) is similar to that described above for the case K = 0.024.

4

Figure 1: (a) - (f) A time sequence of snapshots of streamlines for the symmetric time-periodic motion
at G = 112; K = 0.027; L = 2.74; a = 1.
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Figure 1: (a) - (f) A time sequence of snapshots of streamlines for the symmetric time-periodic motion
at G = 112; K = 0.027; L = 2.74; a = 1.
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Figure 1: (a) - (f) A time sequence of snapshots of streamlines for the symmetric time-periodic motion
at G = 112; K = 0.027; L = 2.74; a = 1.
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Figure 2: The dependence of the period of oscillations τ on the Grashof number G for K = 0.027 (line
1); 0.024 (lines 2,3); 0.025 (lines 4,5); L = 2.74; a = 1.

Figure 3: (a) - (f) A time sequence of snapshots of streamlines for the asymmetric time-periodic motion
at G = 152; K = 0.024; L = 2.74; a = 1.
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5. Conclusion 

The nonlinear development of the oscillatory instability in a two-layer system in 

the presence of buoyancy and the thermocapillary effect, is investigated. The convective 

regimes are studied by the finite-difference method. It is shown that under the joint 

action action of buoyancy and thermocapillary effect, the development of oscillatory 

instability leads to specific types of nonlinear oscillations with different symmetry 

properties. Transitions between the flows with various spatial structures are studied. It is 

shown that the period of oscillations changes in a non-monotonic way for symmetric and 

asymmetric oscillations. It is found that in the course of the evolution of asymmetric 

oscillations, the violation of the symmetry property decreases and the symmetry is 

restored. With an increase of the Grashof number values, the oscillatory flow becomes 

unstable and a steady convective flow develops in the system. The region of nonlinear 

convective oscillations is observed in a finite interval of the Grashof number values 

bounded from below and from above. 
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5 Conclusion

The nonlinear development of the oscillatory instability in a two-layer system in the presence of buoyancy
and the thermocapillary effect, is investigated. The convective regimes are studied by the finite-difference
method.

It is shown that under the joint action action of buoyancy and thermocapillary effect, the develop-
ment of oscillatory instability leads to specific types of nonlinear oscillations with different symmetry
properties. Transitions between the flows with various spatial structures are studied. It is shown that
the period of oscillations changes in a non-monotonic way for symmetric and asymmetric oscillations.
It is found that in the course of the evolution of asymmetric oscillations, the violation of the symmetry
property decreases and the symmetry is restored. With an increase of the Grashof number values, the
oscillatory flow becomes unstable and a steady convective flow develops in the system. The region of
nonlinear convective oscillations is observed in a finite interval of the Grashof number values bounded
from below and from above.
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Abstract. To determine the vibration characteristics (natural frequencies and 

mode shapes) of a mouse embryo the modal analysis is used. The spherical 

mouse embryo 60 µm in diameter is modeled as elastic finite elements 

biostructure consisting of 6µm thick micromembrane and 38 µm in diameter 

nucleus. The modal analysis was carried out for first six modes of embryo 

natural frequencies by using the finite elements method and ANSYS software. 

The numerical analysis of dependence of embryo own frequencies on the 

boundary conditions are presented. The relevant illustrations of the typical 

variations of the shape, deformation and particle velocities of vibrating 

embryo are discussed. 

 

 

1. Introduction 

 

Although papers on mechanical properties of the oocyte exist (Liu et al, 2010, [1] and on 

structural parts of mouse embryo (Murayama et al, 2008 [2], 2006) [3], there are very 

few papers that regard this structure as an oscillatory system Hedrih A. (2011) [4]). 

Embryo vibrational characterization represents very important researching subject of 

modern biomechanical engineering.  

Measurement of elastic properties of the biomembrane of the embryo can be done by 

using different techniques (Murayama et al, 2008 [2], 2006) [3], Sun et al, 2003, [5]). 

When fine glass micro-needle connected with force sensor, is used in experimental setup 

for probing the mechanical characteristics of the mouse embryo (Sun et al, 2003, [5]), 

embryo is placed in a liquid medium –eg HTF (human tubal fluid), in dish. Dish is 

placed on a heating plate of a special microscope that maintains the body temperature of 

the mouse. These are typical conditions (adequate liquid medium and temperature) to 
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keep the embryo alive. Embryo is fixed with vacuum micropipette on one side. On the 

opposite side is a fine glass micro-needle. See fig.1.  

A finite elements method was used in computer-based biological training system to 

simulate intracytoplasmic sperm injection (ICSI) procedures in virtual environments 

(See ref Ladjaly et al, 2011 [6]). 

The vibration properties (natural frequencies and mode shapes) of a bio structure such as 

an embryo could be determined by modal analysis. Results of modal analysis can also 

serve as a starting point for another, more detailed, dynamic analysis, such as a transient 

dynamic analysis in different scenarios, e.g. artificial insemination of human embryo. 

The natural frequencies and mode shapes are important parameters in the design of a 

micro-robotic cell manipulation system for dynamic loading conditions [5].  

Due to the nature of modal analyses any nonlinearity in material behavior are ignored. 

Optionally, orthotropic and temperature-dependent material properties may be used. The 

critical requirement is to define stiffness as well as mass in some form. Stiffness may be 

specified using isotropic and orthotropic elastic material models (for example, Young's 

modulus and Poisson's ratio), using hyper-elastic material models (they are linearized to 

an equivalent combination of initial bulk and shear module), or using spring constants, 

for example. Mass may derive from material density or from remote masses. 

 

The goal activities of researching presented in this paper includes: 

 

- Create robust finite elements model of mouse embryo and basic parts of micro-

robotic cell manipulation system (holding pipette, micropipette and liquid 

environmental medium –human tubal fluid-HTF), 

- Set the contacts and boundary conditions that affect the mouse embryo 

vibrations, 

- Run step modal analysis to simulate vibrations of embryo alone and embryo as 

a part assembly with other components together, 

- Determine the vibrational characteristics of mouse embryo free oscillations and 

 embryo oscillations affected by boundary conditions. 

 

Embryo modeling and modal analysis were based on the use of the finite elements 

method in the modal analysis system of ANSYS WORKBENCH
®
 products [7]. 

Two cases were considered: free oscillations in the frame of the abovementioned 

experimental setup (holding pipette, micropipette and liquid environmental medium – 

human tubal fluid-HTF, mouse body temperature) at in vitro conditions and in vacuum 

instead of liquid environmental medium. Micro-needle only touches, but exerts no 

pressure upon the biomembrane of the mouse embryo. 
  

2. Theory of modal analysis applied in FEM 

 

The equations of elastic structural systems without external excitation can be written in 

the following form:  

 [ ]{ } [ ]{ } [ ]{ } { }M u C u K u 0+ + =   (1) 
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where is: [M] - structural mass matrix, [C] - structural damping matrix, [K] - structural 

stiffness matrix, { u } - nodal acceleration vector, { u } - nodal velocity vector, and { u } 

- nodal displacement vector. 

It has been recognized that performing computations in the modal subspace is more 

efficient than in the full eigen space. The stiffness matrix [K] can be symmetrized by 

rearranging the asymmetric contributions; that is, the original stiffness matrix [K] can 

be divided into symmetric and asymmetric parts. By dropping the damping matrix [C] 

and the asymmetric contributions of [K], the symmetric Block Lanczos eigen value 

problem is first solved to find real eigen values and the corresponding eigen vectors. In 

the present implementation, the asymmetric element stiffness matrix is zeroed out for 

Block Lanczos eigen value extraction. Following is the coordinate transformation used 

to transform the full eigen problem into modal subspace:  

 { } [ ]{ }u y= Φ  (2) 

where is: [Φ] – eigen vector matrix normalized with respect to the mass matrix [M] and 

{y} - vector of modal coordinates 

 

By using equation (2) in equation (1), we can write the differential equations of motion 

in the modal subspace as follows:  

 [ ]{ } [ ] [ ][ ]{ } [ ] [ ]( ){ } { }
T T2

asymI y C y K y 0   + Φ Φ + Λ + Φ Φ =     (3) 

where is: [Λ2
] - a diagonal matrix containing the first n eigen frequencies ωi. 

For classically damped systems, the modal damping matrix [Φ]
T
[C][Φ] is a diagonal 

matrix with the diagonal terms being 2ξiωi, where ξi is the damping ratio of the i-th 

mode. For non-classically damped systems, the modal damping matrix is either 

symmetric or asymmetric. Asymmetric stiffness contributions of the original stiffness are 

projected onto the modal subspace to compute the reduced asymmetric modal stiffness 

matrix [Φ]
T
 [Kasym] [Φ].  

Introducing the 2n-dimensional state variable vector approach, equation (3) can be 

written in reduced form as follows:  

 [ ]{ } [ ]{ }I z D z=  (4) 

where is: 

 { }
{ }

{ }

y
z

y

  
=  
  




 (5) 

and 

 [ ]
[ ] [ ] [ ] [ ][ ]T T2

asym

0 I

D
K C

 
 =    − Λ − Φ Φ − Φ Φ    

 (6) 

The 2n eigen values of Equation (4) are calculated using the QR algorithm (Press et al., 

1993 [7]). The inverse iteration method (Wilkinson and Reinsch, 1971 [8]) is used to 

calculate the complex modal subspace eigen vectors. The full complex eigen vectors, 

{ψ}, of original system is recovered using the following equation:  
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 { } [ ]{ }zψ = Φ  (7) 

 

3. FEM modeling 

 

In modal analysis the embryo model was considered as three-dimensional axis-

symmetric problem. The mouse embryo with basic parts of micro-robotic cell 

manipulation system described in [9] and shown in Fig. 1 (left) is simplified according 

the model setup shown in the same figure (right). 
 

 

 

 

 

 

 

Figure 1. Photograph of cell (left) and simplified model setup of mouse embryo (right). 

3.1. Embryo model  

 

The full model setup (Fig. 2) used in the work is consisted of embryo (micromembrane 

with nucleus and cytoplasm) plunged into the control volume filled with liquid medium 

HTF. One side of embryo is connected to the holding pipette and the second is in contact 

with micropipette. For all time the vacuum inside the holding pipette takes the embryo 

fixed independently on the way of gravity and facilitates embryo manipulation.  
 

 

Figure 2. Axial cross-section of 3D model setup for embryo modal analysis. 

 

The review of model setup parts with used materials and basic physical characteristics is 

presented in Table 1. As well, the table contains statistic data related to the number of 

1- Ambient (Liquid HTF) 

2- Micropipette 
3- Micromembrane 

4- Cytoplasm 

5 - Nucleus 

6- Holding pipette 

7- Vacuum 

2 3 4 5 6 1 

7 
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nodes and elements for each component after medium quality meshing procedure (Fig. 

3). 
 

 

Figure 3. Details of finite elements mesh in the axial cross-section of model. 

 
Table 1. Basic mechanical characteristics of model components with FE statistic data. 

The initial contact regions and types of supports determine the boundary conditions of 

the model. All contacts regions of liquid medium HTF with micromembrane, vacuum 

pipette and micropipette are considered as frictional. For this kind of so-called wet 

friction the value 0.1 of frictional coefficient is accepted. The identical contact 

conditions are assumed on the contact surfaces of cytoplasm with nucleus and 

micromembrane. 

From point of view of support boundary conditions, illustrated in Fig. 4, two types: fixed 

and frictionless supports, are used. 

The dimensions of boundary box, represented as rectangle surface colored in dark blue 

in Fig. 4, filled by liquid medium HTF are 1.6E-4×7.7E-5×7.7E-5 m. Here, of shore, let 

to emphasize that its dimensions affect significantly the natural frequencies of embryo. 

All outer free faces of box are bonded by frictionless supports (E). As well, free surface 

of vacuum inside the holding pipette is bounded by frictionless support (D). Both the 

holding pipette and micropipette are constrained (fixed supports A and B) from 

movement in axial directions (z-axis).  

 

 Name Assignment Volume Mass Nodes Elements 

- - - m
3
 kg - - 

1 Micromembrene Biomembrene 5.3732E-14 5.4000E-11 7409 4288 

2 Nucleus Nucleus 2.8731E-14 2.9880E-11 685 350 

3 Cytoplasm Cytoplasm 3.0635E-14 3.1033E-11 1287 669 

4 Holding pipette Glass  1.0978E-13 2.7773E-10 3117 1776 

5 Micropipette Glass 1.4847E-15 3.7563E-12 3879 726 

6 Vacuum Air 2.8280E-14 3.4643E-14 1426 276 

7 Liquid ambient HTF 6.9430E-13 7.0333E-10 6953 3825 
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Figure 4. Details of support boundary conditions of model. 

 

External loads of the embryo include conservative gravity force and surface force 

produced by 733.1 Pa vacuum on the air-micromembrane contact region. But in the 

modal analysis external loads make to be equal zero, so that the embryo is connected to 

holding pipette along initial contact edge (C). 

3.2. Material data  

According to the requirements of modal analysis, all materials, including bio materials 

(biomembrane, nucleus and cytoplasm), then medium materials (air and liquid medium 

HTF) and, finally, mechanical equipments materials (special glass for medical 

instruments) are considered as isotropic elasticity features materials.  

The accepted temperature of each part of the model is same and equal to the mice body 

temperature of 37 ºC. Although the temperature is included in the modal analysis, it 

doesn’t take any repercussions on the final results because of the absence of thermal 

loads or variations of mechanical parameters that would affect the model vibrational 

behavior.  

Mechanical characteristics of the above mentioned materials are given in Table 2. 

Table 2. Mechanical characteristics of materials 

Material Density 
Reference 

temperature 

Young's 

modulus 

Poisson's 

ratio 

Bulk  

modulus 

Shear  

modulus 

- kg /m
3
 K Pa - Pa Pa 

Biomembran

e 
1005 310 42400 0.499 7.067E+6 14143 

Nucleus 1040 310 7200 0.250 4800 2880 

Cytoplasm 1013 310 17200 0.490 2.867E+5 5771,8 

Liquid HTF 1013 310 1.32E+8 0.490 2.20e+9 4.430E+7 

Air (vacuum) 1.225 310 3.102E+6
1 

0.490
*
 5.17E+7

*
 1.041E+6

*
 

Glass 2530 310 5.448E+7 0.300 4.54E+7 2.095E+7 

                                                        
1
 Given mechanical parameters of air represents the fictive values, adapted to solver requirements. It means, 

instead adiabatic law the linear pressure-volume dependence was assumed for small variations of air pressure 

up to 2E+5 Pa. 
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4. Results and discussion 

 

4.1. Natural frequences of embrio 

 

The numerical integration of Eq. 4 facilitates the solutions for elements of diagonal 

matrix [Λ] containing the first n eigen frequencies ωi. Computed natural (own) 

frequences of embryo are given in Table 7.  

 

Table 3. Natural frequencies of free and bonded embryo for first six modes. 

 

The modal distribution of natural frequencies of embryo in liquid medium HTF is 

presented in Figs. 5. It is based  on tabular data. 

 

 

Figure 5. Modal distribution of natural frequencies of embryo vs. boundary conditions  

(osillations in liquid medium HTF). 

 

Analysis of calculated results in Table 3 and represented in Figs. 5 confirms nature of 

boundary conditions influence on the natural frequency of embryo. In other words, the 

M
o

d
e
 n

 

Natural frequences of embrio ωi, Hz 

Free 

oscillations  

in vacuum 

Free oscillations 

in liquid HTF 

Connection with 

holding pipette in 

vacuum 

Connection with 

holding pipette in 

liquid HTF 

Full connection 

in liquid HTF 

1 0 52733 2924.2 52778 52782 

2 0.0282 52839 2945.7 52882 52886 

3 0.0462 53321 5868.6 53486 53491 

4 600.32 54242 11888 54315 54317 

5 931.50 55083 19333 55113 55116 

6 940.79 55112 19353 55177 55180 
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natural frequency of embryo increases continually by involving each further boundary 

condition. So, In the case of contact of the embryo and liquid medium HTF the highest 

jump of frequency (over 52 KHz) appears and the relevant curves of frequency 

distribution are very close to each other (Fig. 5). Maximum frequency of 55180 Hz was 

reached for the embryo plunged into liquid medium and connected to micropipette and 

vacuum, holding pipette. Besides the abovementioned, the computed results show that 

oscillations of free embryo first mode are practically almost immeasurable (ωi ≈ 0). 

4.2. Typical variations of the vibrating embryo structural parameters  

 

3D animations of the embryo movement relative to the corresponding mode can be 

describes as follows: 

- Mode 1: perpendicular oscillations along y-axis. Due to initial connections it looks   

lake rolling in yz-plane; 

- Mode 2 - perpendicular oscillations along x-axis. Due to initial connections it looks   

lake rolling in xz-plane; -presentation of this mode is very similar to mode 1 

- Mode 3 - rotation, i.e. torsion (due to initial connections) about z-axis;  

- Mode 4 - longitudinal oscillations along z-axis;  

- Mode 5 - rotation in yz-plane; presentation of this mode is very similar to mode 5, 

and  

- Mode 6 - rotation in xz-plane. 

The appearance of scaled shape and fictive velocities distribution for typical modes 1, 4 

and 6 of natural embryo oscillations are shown in Figs. 6-8. 

 

  

Figure 6.  Shape and particle velocities distribution in extreme points of embryo vibrations in mode 1. 

 

  

 Figure 7. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 4. 
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Figure 8. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 6. 

 

Real rate of total  are varying from zero up to maximum 3.348 µm (Max 1.5107E+5 × 

2.15E-11 m = 3.348E-6 m) in mode 4. In mode 4 micro-needle only taches the surface 

of embryo biomembrane.  

Ladjaly et al, 2011[5], used the method of finite elements in modelling the Microrobotic 

Simulator for Assisted Biological Cell Injection, but they regarded the cell as a unified 

structure. Our model approximates the real phenomenon better as the cell is modelled as 

a three layer structure (biomembrane, cytoplasm, nucleus). 

5. Conclusion 

 

Based on the results of numerical analysis given in the paper it is shown that the robust 

finite elements model of mouse embryo with basic parts of ICSI system (holding pipette 

and micropipette) were correctly created. All necessary contacts and boundary 

conditions were regularly involved facilitating the modal analysis and numerical 

simulation of all situations of the embryo vibrations. As well, the determinations of the 

vibrational characteristics of mouse embryo free oscillations and embryo oscillations 

affected by boundary conditions for first six modes were successfully carried out. 

To summarize, the work presented in the paper confirms possibility to use of the finite 

elements method coupled with numerical modal analysis as a powerful tools in the 

vibrational characterization of bio structures such as the mouse embryo. This method 

can be used to analyze vibrational properties of embryos of both mice and humans, and 

not only in physiological conditions, but also under pathological conditions, for example 

when artifical insemination is unsucessful, or when the implantation of the embryo does 

not occur. We are free to suggest that vibration properties of normal, healthy embryo 

differs from unhealthy embryo and vibration properties in these two cases may be 

distinguished. This opens new possibilities for developing an oscillation theory of 

reproducation in reproductive biology.  
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Abstract. In the present study the nonlinear vibrations of laminated plates 

and shallow shells are investigated. The proposed method is based on the R-

functions theory and variational methods. Formulation of the problem is 

carried out in classical shell theory (CST). New solution structures for 

symmetric shallow shells with complex planform are constructed. These 

solution structures satisfy the boundary conditions corresponding to simply 

supported immovable and movable edge exactly. The nonlinear system of 

differential equations of motion is reduced to nonlinear system of ordinary 

differential equations (ODEs) by developed approach. Nonlinear forced 

vibrations of five-layered cross-ply plates and shallow shells with complex 

planform are investigated by proposed method. 

 

 

1. Introduction 

 

Research of geometrically nonlinear vibrations of the laminated plates and open shallow 

shells is one of important issues of nonlinear dynamics. In general case this problem 

may be only solved by numerical methods. Many researchers are studying this problem 

[1–5]. Some review of achievements in this field is presented in works [1,6,7]. The main 

approach which is applied to solve this problem is based on finite elements method 

(FEM) combined with method of harmonic balance, Bubnov-Galerkin, multiscales 

method and others. 

One of alternatives to FEM is the effective numerically-analytical approach based on  

R-functions theory and variational methods (RFM). This method is a meshless one 

because it allows all prescribed boundary conditions to be satisfied exactly and present 

unknown functions in analytical form. RFM has been successfully applied to linear and 

nonlinear vibrations problems of plates and shallow shells [8,9,10]. In particular 

laminated shallow shells have been investigated in Refs. [9,10,11]. It should be observed 

that original approach has been proposed in Refs.[9,11] to solve geometrically nonlinear 

vibration problem. This approach consists of some steps. First a linear analysis is 

fulfilled to find natural frequencies and corresponding natural modes to be applied at 
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solving nonlinear problem. The second step is solving sequences of auxiliary problems 

like elasticity problems. The developed method uses the results of linear vibration 

problem essentially. The right-hand side of these equations is some functions of linear 

modes. The natural modes and solutions of auxiliary elasticity problems are used in the 

third step as a basis for expanding the nonlinear displacements. Finally the procedure by 

Bubnov-Galerkin is applied to reduce initial motion equations to system of ordinary 

differential equations (ODEs). In studies [11] single mode and solution of one auxiliary 

elasticity problem have been used.  

First multi-mode expansion combined with R-functions theory has been proposed in 

paper [9]. Nonlinear free vibrations of symmetrically laminated shallow shells were 

investigated. First-order shell theory has been used. The analytical expressions of 

coefficients have been obtained for system of nonlinear ordinary differential equations. 

But numerical results were obtained applying single-mode. Recently in Ref. [12] multi-

mode approach combined with R-functions theory for clamped isotropic shallow shells 

subjected to a radial harmonic excitation has been proposed. Lagrange approach is 

applied to obtain a system of ODEs. Numerical results were obtained by application 

multimode expansions. It should be noted, that systems of the basic functions satisfying 

only kinematic boundary conditions have been applied in Refs. [8,9]. 

In the present study geometrically nonlinear forced vibrations of the laminated shallow 

shells are investigated. New solutions structures satisfying all boundary conditions 

(static and kinematic) corresponding to simply supported shallow shells (movable and 

immovable edge) are constructed by RFM. In the present study classical non-linear shell 

Donnel’s theory (CST) is used. Application of R-functions theory allows to study 

geometrically nonlinear dynamic response of the laminated shallow shells and plates 

with complex shape. 

 

2. Problem formulation 

 

Laminated shallow shells of M layers of the constant thickness ih  with radii of curvature 

yx RR ,  are considered. It is supposed that shells have the symmetrical structures in 

thickness. The principal lines of curvatures of the middle surface coincide with the 

coordinates x, y of the Cartesian coordinate system, and z is directed along normal to the 

middle surface of the shell. According to Donnel’s theory it is assumed that the tangent 

displacements are linear functions of coordinate z and the transverse displacement w is 

constant through the thickness of the shell. This theory is based on Kirchhoff-Love 

assumptions. It means that the normal to the middle surface remains normal after 

deformation.  

Motion equations may be represented in operator form [13]: 

 










∂++−=++

∂+−=++

∂+−=++

.)(),,(

,)(

,)(

2
13333231

2
12232221

2
11131211

wmtFwvuNlwLvLuL

vmwNlwLvLuL

umwNlwLvLuL

 (1) 
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Here u , v  and w  are displacements in directions of Ox , Oy  and Oz  axes relatively. 

Values 1m , linear differential operators ijL , 3,1, =ji , and nonlinear differential 

operators iNl , 3,1=i are defined so as in Ref. [14]. The function )(tF  is lateral force. 

Later we will consider force periodic in time. 

The system (1) is supplemented by corresponding boundary conditions. In this study the 

following boundary conditions are considered: 

a) Movable simply supported on all edges: 

 0,0,0,0 ==== wMNv nnn , (2) 

b) Immovable simply supported on all edges: 

 0,0,0,0 ==== nMwvu . (3) 

Expressions of nN , nM , and nv are defined by known formulas [13]: 

 lmNmNlNNn 12
2

22
2

11 2++= , (4) 

 lmMmMlMMn 12
2

22
2

11 2++= , (5) 

 vlumvn +−= , (6) 

where αcos=l , βcos=m  are directional cosines of normal vector to boundary of the 

shell. 

The initial conditions are taken in the form: 

 0,
0max0

=∂=
== ttt

www . (7) 

Components of ijN  and ijM , ( )2,1, =ji  of forces { }N  and moments { }M  vectors in 

case of shell with symmetrical structure can be presented as follows: 

 { } { } [ ] { }ε⋅== CNNNN
T

122211 ;; , (8) 

 { } { } [ ]{ }χDMMMM
T

== 122211 ;; . (9) 

Here: 

 { } { }T
122211 ;; εεεε = ,  { } { } ,;; 122211

Tχχχχ =  (10) 

 ( )2111
2

1
wwku xx ∂++∂=ε , ( )2222

2

1
wwkv yy ∂++∂=ε ,  

 ( )wwvu yxxy ∂⋅∂+∂+∂=12ε , (11) 

 wx
2

11 −∂=χ , wy
2

22 −∂=χ , wxy
2

12 2∂−=χ , (12) 



258

 L. KURPA, N. BUDNIKOV, T. SHMATKO 

where 21, kk  are curvatures of the shell. 

Stiffness matrices [ ]C  and [ ]D  are: 

 [ ]















=

662616

262212

161211

CCC

CCC

CCC

C ,  [ ]















=

662616

262212

161211

DDD

DDD

DDD

D . (13) 

Constants ijC  and ijD  are the stiffness coefficients of the shell, which are defined by 

the following expressions [2,13]: 

 ( ) ( )( ) ( ).66,26,16,12,22,11,,1,

1

2

1

==∑ ∫
=

−

ijdzzBDC
n

s

h

h

s
ijijij

s

s

 (14) 

Here 
( )s
ijB  are stiffness coefficients of the s-th layer. 

 

3. Method of solution 

 

3.1. Linear vibration problem 

 

The first step is studying the linear problem in order to find the natural frequencies and 

eigen functions { } { }Tcccc
wvuU

)()()()(
,,=  satisfying the given boundary conditions. Note 

that at solving this problem we will not ignore inertia forces. Solution of linear problems 

has been widely discussed in [10]. Let us note that in generic case this problem can be 

solved by RFM [15]. We will use the Ritz’s method. To obtain admissible functions, 

which satisfy the given boundary conditions exactly we will apply R-functions theory.  

The main idea of the R-functions method is using so called solution structure of 

boundary value problem. These structures are basis for construction of basic functions 

set. The way of construction of the appropriate solution structures was proposed by V.L. 

Rvachev [15]. Let us construct new solution structure for the boundary conditions (2) 

and (3). 

 

Movable simply supported edge. In this case the boundary conditions are described by 

relations (2). In order to satisfy the first boundary condition ( 0=nv ) let us search for 

unknown functions u  and v  as follows: 

 






Φ+∂Φ=

Φ+∂Φ=

.

,

31

21

ωω

ωω

y

x

v

u
 (15) 

Here iΦ  ( )3,1=i  are indefinite components of the solution structure. From definition of 

the solution structure [15], satisfying the given boundary condition it follows that 

indefinite components included in structure can be chosen by an arbitrary way, because 

the given boundary condition will be satisfied regardless of this choice. It is natural 
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these components should be chosen in such manner that the governing differential 

equations must be satisfied by the best way. 

In equations (15) function ),( yxω  is normalized up to the first order, that is, it satisfies 

the following conditions [15]: 

 ( ) ( ) ( ) .1,0,,,,0, −=∂=Ω∈∀
Ω∂Ω∂

ωωω nyxyxyx   (16) 

If we substitute (15) into expression (6) taking into account equalities 

 ωxl −∂= , ωym −∂= , (17) 

then it is easy to show that condition 0=nv  is fulfilled.  

In order to satisfy the second condition 

 0=nN  (18) 

let us use the expression (4) for nN . Normal forces 
( )L
nN  for linear problem are defined 

by formulas: 

 
( )

lmNmNlNN
LLLL

n
)(

12

2)(

22

2)(

11 2++= . (19) 

Taking into account the boundary condition for deflection function ( )0=w  components 

ijN  we can write down as: 

 { } [ ]{ }Txyyx

TLLL
vuyuСNNN ∂+∂∂∂= ;;;;

)(

12

)(

22

)(

11 . (20) 

Let us transform the expression (19) for 
( )L
nN  and write it in normal and tangent 

derivatives. It may be shown that relation (19) takes the following form: 

 
( ) vLvKuBuAN nn
L

n ττ ∂+∂+∂+∂= 0
1

0
1

0
1

0
1 , (21) 

where 

 
3

26

2

6612

2

16

3

11

0

1 )2(3 mClmCCmlClCA ++++= , (22) 

 
3

12

2

1626

2

1166

3

16

0

1 )2()2( mClmCCmlCClCB −−+−+= , (23) 

 
3

22

2

26

2

6612

3

16

0

1 3)2( mClmCmlCClCK ++++= , (24) 

 
3

26
2

6622
2

1166
3

12
0
1 )2()2( mClmCCmlCClCL −−+−+= . (25) 

So the second boundary condition (18) may be written as: 

 ,0
0
1

0
1

0
1

0
1 =∂+∂+∂+∂ vLvKuBuA nn ττ  (26) 

Like Ref. [10] let us construct the extension of a functions
0

1A , 
0

1B , 
0

1K , 
0

1L  inside of 

the domain with help of the formulas: 
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 )(
0

ii AECA = , )(
0

ii BECB = , )(
0

ii KECK = , )(
0

ii LECL = , 2,1=i . (27) 

Derivatives with respect to normal and tangent can be extended to inside of the domain 

due to application of the specific differential operators mD  and mT , at 1=m . 

These operators are [15]: 

 ( ) ffyxfD
m

yyxx
m

m ∂⋅∂+∂⋅∂=∇∇= ωωω ),(),( , (28) 

 ( ) .),( fyxfT
m

xyyxm ∂⋅∂−∂⋅∂= ωω  (29) 

So extension of the boundary condition (18) takes the following form: 

 ( ) 11111 Ψ=∂+∂+∂+∂ ωττ vLvKuBuA nn . (30) 

Substituting relation (15) into (30), one can obtain: 

 ( ) ( ) ( )+Φ+∂Φ+Φ+∂Φ+Φ+∂Φ 311121112111 ωωωωωω yxx DKTBDA   

 ( ) 13111 Ψ=Φ+∂Φ+ ωωωyTL . (31) 

Using properties of operators 1D  and 1T , we get 

 ( ) ( ) ( ) ( )( )+∂+∂+∂+∂Φ ωωωω yyxx TLDKTBDA 111111111   

 ( ) ( ) −Φ∂+∂+Φ∂+∂+ 11111111 TLBDKA yxyx ωωωω   

 23121 Ψ=Φ−Φ− ωKA . (32) 

Let us solve the last equation in function 3Φ : 

 ( ) ( )(( +∂+∂Φ−Ψ
+

=Φ ωωω
ω

xx TBDA
K

K
11111222

1

1
3   

 ( ) ( )) ( ) −Φ∂+∂−∂+∂+ 11111111 DKATLDK yxyy ωωωω   

 ( ) )211111 Φ−Φ∂+∂− ATLB yx ωω . (33) 

Then 

 21 Φ+∂Φ= ωωxu , (34) 

 ( ) ( )(( +∂+∂Φ−Ψ
+

= ωωω
ω

ω
xx TBDA

K

K
v 11111222

1

1
  

 ( ) ( )) ( ) −Φ∂+∂−∂+∂+ 11111111 DKATLDK yxyy ωωωω   

 ( ) ) ωωω yyx ATLB ∂Φ+Φ−Φ∂+∂− 1211111 . (35) 
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In similar fashion we can construct the solution structure for function w that satisfies 

the third and fourth boundary conditions ( 0,0 == wM n ). Let us write down the final 

form of this solution structures: 

 [ +Φ+Φ
+

−Φ= )2(
)(2

2331122
1

1
2

3 ω
ω

ω
ω DDS

S

S
w   

 ]32333122 Ψ−Φ+Φ+ ωωTSTS . (36) 

Here 

 ( ) ( ) ( ) ( ) −∂∂+−∂∂−∂−=
22

6612

3

16

4

111 )2(24 ωωωωω yxyxx DDDDS ,  

 ( ) ( )422

3

164 ωωω yyx DD ∂−∂∂− , (37) 

 ( ) ( ) +∂∂−−+∂−= ωωω yxx DDDDS
3

661211

4

162 )2(   

 ( ) ( ) ( ) +∂+∂∂−+
4

26

22

2616 )(3 ωωω yyx DDD   

 ( )3262212 )2( ωω yxDDD ∂∂+−+ , (38) 

 ( ) ( ) −∂∂−+∂−= ωωω yxx DDDS
3

2616

4

123 )(2   

 ( ) ( ) −∂∂−+− 22

662211 )4( ωω yxDDD   

 ( ) ( )412

3

2616 )(2 ωωω yyx DDD ∂−∂∂−− . (39) 

Formulas (36) contain special differential operators 22 , TD  of the second order. These 

ones are defined by formulas (28)–(29) if 2=m . 

 

Immovable simply supported edge. Analogously it may be shown that boundary 

conditions (3) are satisfied exactly by the following solution structure: 

 1Φ= ωu , (40) 

 2Φ= ωv , (41) 

 [ +Φ+Φ
+

−Φ= )2(
)(2

2331122

1

1

2

3 ω
ω

ω
ω DDS

S

S
w   

 ]Ψ−Φ+Φ+ ωω2333122 TSTS . (42) 

Here ( )3,2,1, =iSi  are the same with (37–39). 

In order to construct basic functions indefinite components must be expanded in 

truncated series: 
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( ) ( ) ( )∑

=

=

==Φ
ink

k

i
k

i
ki ia

1

3,1,ϕ , (43) 

where 
( ){ }i
kϕ  are some known complete systems of the functions, for instance, power  or 

Chebyshev’s polynomials, trigonometric functions, splines or other, 
( ){ }i
ka  are unknown 

coefficients that can be determined from the corresponding eigenvalue problem. 

 

3.2. Solving the nonlinear problem 

 

To solve the nonlinear problem unknown functions wvu ,,  are presented as follows: 
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 (44) 

where ),(
)( yxu c

i , ),(
)( yxv c

i  and ),(
)( yxw c

i  are eigenfunctions of linear vibrations. 

Functions ),( yxuij  and ),( yxvij are solutions of the following system: 
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Operators 
)2(

1Nl  and 
)2(

2Nl  are defined by formulas: 
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The system (45) is supplemented by the corresponding boundary conditions. For 

example, in case of movable simply supported edge these boundary conditions are: 

 
( ) 0

1,0 FNv n
n

ij −== , (48) 

where 
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Solution of the problem (45)–(48) will be carried out by Ritz’s method combined with 

RFM. 

So the first two equations of the system (1) are satisfied identically by this choice of 

functions ),( yxuij  and ),( yxvij  provided that inertia forces are ignored. 

Applying procedure by Bubnov-Galerkin to third equations of the system (1) one obtains 

the following system of non-linear ODEs: 
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Here nr ,1= . Coefficients of the system (52) are defined by formulas: 
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Below we present expressions of 
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Obtained system (52) may be investigated by the different approaches. 

In particular case if take only one mode ( 1=r ) we can obtain [16] the simple 

dependence between amplitude hwA max=  and ratio Lω/Ω : 

 ( )
A

P
AAL

122

4

3

3

8
1/ ±++=Ω γβ

π
ω . (60) 

 

4. Numerical results 

 

Let us investigate the forced nonlinear vibrations of the five-layered cross-ply 

( )
0/90/0/90/0  shells shown in fig.1. 

 
Figure 1. The geometric shape of the shell 

 

The dimensionless material properties (typical of graphite-epoxy) are used : 

 40/ 21 =EE , 6.0/ 212 =EG , 25.012 =ν . (61) 

Geometrical parameters are: 

 aRR 1.021 == , ah 01.0= . (62) 

Further we will consider three different values of parameters d  and 0x . 

case A:   bd = , 
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case B:   ,2/bd =  ,5.1/0 =ax  

case C:   ,2/bd =  5/0 =ax . 

The efficacy of the proposed method is tested by studying the nonlinear free flexural 

vibration of immovable simply supported square plate for which numerical results are 

available in the literature. The variation of nonlinear frequency ratio LNL ωω with non-

dimensional maximum amplitude hw /max  is evaluated and shown in Table 1. It is 

observed that present results obtained by using two different of solution structures (40) – 

(42) which satisfy all the boundary conditions and the solution structures: 

 321 ,, Φ=Φ=Φ= ωωω wvu , (63) 

which satisfy only the main (kinematic) boundary conditions are in close agreement with 

available solutions [17]. 

 

Table 1. The non-linear frequency ratio LNL ωω  

of the square composite plate ( )
0/90/0/90/0  

h

wmax  [17] 
RFM 

(63) 

RFM 

(40)–(42) 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.03147 

1.12099 

1.25723 

1.42805 

1.62368 

1.83697 

1.03126 

1.11983 

1.25361 

1.41988 

1.60860 

1.81277 

1.03129 

1.11991 

1.25378 

1.42015 

1.60897 

1.81325 

 

Similar results for shallow spherical shells of the complex planform (Fig. 1) are 

presented in Table 2.  

 

Table 2. The non-linear frequency ratio LNL ωω  of cross-ply spherical shells (Fig. 1) 

h

wmax

 

Case A Case B Case C 

RFM 

(63) 

RFM 

(40)–(42) 

RFM 

(63) 

RFM 

(40)–(42) 

RFM 

(63) 

RFM 

(40)–(42) 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

0.81952 

0.64525 

0.48391 

0.35369 

0.29854 

0.35532 

0.48630 

0.64794 

0.81974 

0.64563 

0.48433 

0.35382 

0.29781 

0.35366 

0.48408 

0.64535 

0.81911 

0.64596 

0.48884 

0.36885 

0.32942 

0.39544 

0.52878 

0.69154 

0.81911 

0.64596 

0.48884 

0.36885 

0.32942 

0.39544 

0.52878 

0.69154 

0.80069 

0.62404 

0.49494 

0.45577 

0.52698 

0.67447 

0.85984 

1.06347 

0.80069 

0.62404 

0.49494 

0.45577 

0.52698 

0.67447 

0.85984 

1.06347 
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Next the nonlinear forced vibration amplitudes hw /max of immovable simply supported 

shells (Fig. 1) under transverse harmonic pressure tPP Ω= cos0  are studied. The 

backbone curves are represented in Fig. 2 by dotted lines. The nonlinear forced vibration 

amplitudes hw /max  under non-dimensional excitation frequency Lω/Ω  and load 

parameter 1.00 =P  are presented as full color lines for varies geometric parameters of 

the given shells corresponding to cases A and C. 

 

            
a) b) 

Figure 2. Resonance curves of forced vibrations of spherical shallow shells 

a) Case A, b) Case C. 

 

It should be noted that for solving the problem a single-mode approximation of the 

unknown functions is used. Therefore obtained results we can consider as the first 

approximation to real results. To clarify these results it is needed to continue research 

using multi-mode approximation. 

 

5. Conclusions 

 

New solution structures satisfying exactly all boundary conditions corresponding to 

simply supported (immovable and movable edge) of the symmetric laminated shallow 

shell with complex planform are constructed. The obtained solution structures are 

needed to construct a system of basic functions which are applied to reduce nonlinear 

motion equation of laminated shallow shells to system of ODEs. The proposed approach 

and new solution structures are applied to investigate nonlinear forced vibration of 

shallow shells with complex planform. In order to realize the proposed method for 

multimode approximation 

it is assumed to create the corresponding software. 
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Abstract. The objective of this research was a try to provide a new or 

different approach to elaborate the complex phenomena that occur at 

developed liquid-liquid interfaces. Since some phenomena that occur, for 

example, during the processes of breaking of emulsions or double emulsions, 

and coalescence are not well understood the introduction of theoretical models 

known in electrodynamics were needed. A theory of electroviscoelasticity was 

developed and it is shown that the electroviscoelastic droplet, and/or droplet-

film structure, that is emulsion or double emulsion may be considered as the 

particular example of memristive systems. All that means that for a deeper 

elucidation of complex phenomena at developed interfaces, that is at small 

separations, for example in emulsions and/or double emulsions, it is necessary 

to consider the electron transfer phenomenon beside the heat, mass, and 

momentum transfer phenomena commonly used in classical chemical 

engineering. Finally, the probable discussion and/or elucidation of the 

problems in the theoretical and experimental status of decoherence is 

mentioned.  

 

1. Introduction  

 

This presentation contains a recent development in basic and applied science and 

engineering of liquid-liquid finely dispersed systems, that is, in particular the selected 

emulsions and/or double emulsions are discussed. Since the events at the interfaces of 

finely dispersed systems, or at small separations, have to be considered at the molecular, 

atomic, and/or entities level it is inevitable to introduce the electron transfer 

phenomenon beside the heat, mass, and momentum transfer phenomena commonly used 

in classical chemical engineering. 

The objective of this research was a try to provide a new or different approach 

to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. 

Since some phenomena that occur, for example, during the processes of breaking of 

emulsions or double emulsions, and coalescence are not well understood the introduction 

of theoretical models known in electrodynamics are needed. Such an approach can 
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contribute to the deeper elucidation of the complex phenomena that occur at smaller 

separations, because the forces of electrical origin become dominant compared to the 

forces of mechanical origin, for example. the terms electrical forces and electrical 

interfacial potential (EIP) could be more appropriate than the terms mechanical forces 

and interfacial tension. 

 New concepts were introduced, the first is a concept of an entity, and the 

corresponding classification of finely dispersed systems and the second concept consider 

the introduction of an almost forgotten basic electrodynamics element memristor, and 

the corresponding memristive systems. Based on these concepts a theory of 

electroviscoelasticity was proposed and experimentally corroborated using the selected 

representative liquid-liquid system.  

 Three possible mathematical formalisms have been derived and discussed 

related to the proposed physical formalism, that is, to the developed theory of 

electroviscoelasticity. The first is stretching tensor model, where the normal and 

tangential forces are considered, only in mathematical formalism, regardless to their 

origin, mechanical and/or electrical. The second is classical integer order van der Pol 

derivative model. Finally, the third model comprise an effort to generalize the van der 

Pol differential equations, both, linear and nonlinear; where the ordinary time 

derivatives and integrals are replaced by the corresponding fractional-order time 

derivatives and integrals. In order to justify and corroborate more general approach the 

obtained calculated results were compared to those experimentally measured [1-16].  

 Then after, a new idea to consider emulsions and double emulsions as 

memristive systems is suggested. Finally, a probably possible further development 

related to the elucidation of the problems in the theoretical and experimental status of 

decoherence is mentioned [1, 14-16]. 

 

 
 

Figure 1. a) a stereographic projection/mapping from Riemann sphere; b) hierarchy of entities, 

correlation viscosity/impedance Z - characteristic velocity u0, S-slow/demon (superfluid) and F-

fast/electron (superconductor); c) entity as an energetic ellipsoid (at the same time macroscopic 

and microscopic), CTE – center of total energy, motions (translation, rotation, vibration, 

precession, angle rotation). From Ref. [1, 2], p. 8, p. 20, courtesy of CRC Press/Taylor & Francis. 
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2. Previous work 

 

2.1. Classification of finely dispersed systems based on entities 

 

Figure 1a shows a stereographic projection/mapping from Riemann sphere, representing 

the first philosophical breakpoint; Fig. 1b shows a “hierarchy” of entities, which have to 

be understood as a limit value of the ratio u0/Z; this ratio is withdrawn from magnetic 

Reynolds criteria [Rem=4πlGu0/c
2
], where the conductivity G is expressed as a 

reciprocal of the viscosity/impedance Z (G=1/Z), l is the path length that an entity 

“overrides”, u0 is the characteristic velocity, and c is the velocity of light. 

In general, S corresponds to the slow system or superfluid, and F corresponds to 

the fast system or superconductor; now, it is possible to propose that all real dynamic 

systems are situated between these limits. Also, it seems sensible to think about the 

further structure of entities, representing the second philosophical breakpoint, for 

example, the basic entity can be understood as an energetic ellipsoid shown in Figure 1c, 

that is, according to the model of electrons following Maxwell-Dirac isomorphism 

(MDI): an electron is an entity at the same time quantum-mechanical/microscopic N = - 

2 and electrodynamics/macroscopic N=3 [1, 2, and 7]. 

2.2. Physical formalism-the classical approach and a new approach 
 

Formation and rupture processes of the secondary liquid/liquid droplet-film structures 

will be discussed considering mechanical and electrical principles. The analogy 

interfacial tension-interfacial electric potential will be illustrated considering the 

physical model of the processes appearing during the secondary separation of the 

droplet-film structure submerged in the droplet homophase continuum (double 

emulsion) on an inclined plate. Figure 2 shows the physical model of the processes 

involved; approach, rest, disturbance, rupture, and flow up. 

 

 
Figure 2. Physical model of the processes during the secondary separation of the double emulsion 

at an inclined plate; approach, rest, disturbance, rupture, and flow up (heavy phase-phosphoric 

acid H3PO4, light phase-sinergistic mixture D2EHPA-TOPO in dearomatized kerosene).   
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The generator pole is the origin/source of the disturbance, and the rupture pole is the 

point where the electrical and mechanical waves change the direction of traveling (feed 

into feed back). 

 Following a classical deterministic approach, the phases that constitute a 

multiphase dispersed system are assumed to be a continuum, i.e., without discontinuities 

inside the entire phase, that is considered homogenous and isotropic [1-5, 7-9, 14-16]. 

Therefore, the basic laws, e.g., conservation of mass, first and second Cauchy’s laws of 

motion, first and second laws of thermodynamics, are applicable.  

According to the classical approach, the behavior of liquid-liquid interfaces in 

fine dispersed systems is based on an interrelation between three forms of “instabilities”. 

These are sedimentation, flocculation/coagulation, and coalescence. These events can be 

understood as a kind of interaction between the liquid phases involved.  

Furthermore, the forces responsible for sedimentation and flocculation are 

gravity and van der Waals forces of attraction, respectively, and the forces responsible 

for coalescence are not well known, although some suggestions have been made recently 

[1-5, 7-9, 14-16]. 

A new approach discusses the behavior of liquid-liquid interfaces in fine 

dispersed systems as an interrelation between three other forms of “instabilities”. These 

are rigid, elastic, and plastic. Figure 3 show the events that are understood as 

interactions between the internal/immanent and the external/incident periodical physical 

fields.  

 

 
Figure 3.  A new approach, a) “instabilities”, rigid, elastic, plastic; b) the constructive elements 

of phases.  

 

 Since both electric/electromagnetic and mechanical physical fields are present 

in a droplet, they are considered as immanent or internal, and ultrasonic, temperature, 

or any other applied periodical physical fields are considered as incident or external. 

Hereafter, the rigid form of instability comprises the possibility of two-way disturbance 

spreading, or dynamic equilibrium. This form of instability, when all forces involved are 

in equilibrium, permits a two-way disturbance spreading (propagation or transfer) of 

entities either by tunneling (low energy dissipation and occurrence probability) or by 

induction (medium or high energy dissipation and occurrence probability). A classical 
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particle or system could not penetrate region in which its energy would be negative, that 

is, barrier regions in which the potential energy is greater than the system energy. In the 

real world, however, a wave function of significant amplitude may extend into and 

beyond such region. If the wave function extends into another region of positive energy, 

then the barrier is crossed with some probability; this process is termed tunneling (since 

the barrier is penetrated rather than climbed). The elastic form of instability comprises 

the possibility of reversible disturbance spreading, with or without hysteresis. Finally, 

the plastic form of instability comprises the possibility of irreversible disturbance 

spreading with a low or high intensity of influence between two entities. Entity is the 

smallest indivisible element of matter that is related to the particular transfer 

phenomena. The entity can be either differential element of mass/demon, or ion, or 

phonon as quanta of acoustic energy, or infon as quanta of information, or photon, or 

electron.  

Now, a disperse system consists of two phases, “continuous” and “dispersed”. 

The continuous phase is modeled as an infinitely large number of harmonic 

electromechanical oscillators with low strength interactions among them. Furthermore, 

the dispersed phase is a macrocollective consisting of a finite number of 

microcollectives/harmonic electromechanical oscillators (clusters) with strong 

interactions between them. The cluster can be defined as the smallest repetitive unit that 

has a character of integrity. Clusters appear in a micro and nano dispersed systems. The 

microcollective consists of the following elements: rigid elements (atoms or molecules), 

the elastic elements (dipoles or ions that may be recombined), and entities (as the 

smallest elements) [1-5, 7-9, 14-16]. 

 

2.3. Structure – mechanism – dynamics: theory of electroviscoelasticity 

 

If the liquid-liquid interface, e.g. emulsion or double emulsion, is taken as a central and 

representative finely dispersed system it is possible to propose a theory of 

electroviscoelasticity based on a new constitutive model of liquids [1-5, 7-9, 14-16]. 

Thus, a hydrodynamic and electrodynamics motions are considered in the presence of 

both potential (elastic forces) and nonpotential (resistance forces) fields. The elastic 

forces are gravitational, buoyancy, and electrostatic/electrodynamics (Lorentz), and the 

resistance forces are continuum resistance/viscosity and electrical resistance/impedance. 

The principles of conservation of momentum, energy, mass, and charge are used to 

define the state of a real fluid system quantitatively. In addition to the conservation 

equations, which are insufficient to define the system uniquely, statements on the 

material behavior are also required; these statements are termed constitutive relations, 

e.g. Newton’s law, Fourier’s law, Fick’s law, and Ohm’s law. 

 Now, the droplet or droplet-film structure is considered as a macroscopic 

system with internal structure determined by the way the molecules (ions) are tuned 

(structured) into the primary components of a cluster configuration. After rearrangement 

or coupling at resonant/characteristic frequency a probable equivalent circuit is shown in 

Fig. 4. a. and b.. Electrical analogue Fig. 4. a., consists of passive elements (R, L, and 

C), and an active element (emitter-coupled oscillator W). Further on the emitter-coupled 

oscillator is represented by the equivalent circuit as shown in Fig. 4. b.. Figure 4.c. 
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shows the electrical (oscillators) and/or mechanical (structural volumes V
j
) analogues 

when they are coupled   to each other, e.g. in the droplet. Hence, the droplet consists of a 

finite number of structural volumes or spaces/electro-mechanical oscillators (clusters) 

V
j
, and of a finite number of excluded surface volumes or interspaces V

s
, and of a finite 

number of excluded bulk volumes or interspaces V
b

. Furthermore, the 

interoscillator/cluster distance or internal separation S
i 

represents the equilibrium of all 

forces involved (electrostatic, solvation, van der Waals, and steric or fluctuation). The 

external separation S
e 

is introduced as a permitted distance when the droplet is in 

interaction with any external periodical physical field. The rigid droplet boundary R 

presents a form of droplet instability when all forces involved are in equilibrium. 

Nevertheless, two-way disturbance spreading (propagation or transfer) of entities occur, 

either by tunneling mechanism (low energy dissipation and occurrence probability) or by 

induction mechanism (medium or high energy dissipation and occurrence probability). 

The elastic droplet boundary E represents a form of droplet instability when equilibrium 

of all forces involved is disturbed by the action of any external periodical physical field, 

but the droplet still exists as a dispersed phase. In the region between the rigid and 

elastic droplet boundaries, a reversible disturbance spreading occurs with or without 

hysteresis. After the elastic droplet boundary, the plastic form of droplet instability takes 

place, then electro-mechanical oscillators/clusters do not exist any more and the beams 

of entities or atto-clusters appear. Atto-clusters are the entities that appear in the atto-

dispersed systems. In this region one-way propagation of entities occurs.  

 

 
Figure 4. Graphical interpretation of the structural model: a) electrical and mechanical analog of  

the micro collective/cluster; b) equivalent circuit for the emitter coupled oscillator; c) the  

macrocollective: a schematic cross-section of the droplet and its characteristics (Vj – structural 

volumes/clusters; Vs – excluded surface volumes/interspaces; Vb – excluded bulk 

volumes/interspaces; Si – internal separation; Se – external separation; R – rigid droplet 

boundary; E – elastic droplet boundary). 
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3. Mathematical formalisms 

 

3.1. The stretching tensor model 

 

According to Newton’s second law, the general equation of fluid dynamics in diferential 

form is given by  

 ( ) s

i

i FddxdydzF
Dt

uD ~~

~

+=∑ρ                                      (1) 

When a droplet or droplet-film structure rests, for example, on the inclined plate, the 

term on the left-hand side of Eq. (1) becomes equal to zero, furthermore, since the 

droplet or droplet-film structure is in the state of “forced” levitation, and the volume 

forces balance each other, then the volume force term is also equal to zero. It is assumed 

that the surface forces are, for the general case that includes the electroviscoelastic 

fluids, composed of interaction terms expressed by 

(2) 

 

where the tensor Tij
 is given by 

 
kji

k

ijijijij

T ζαζζαδαδα +++−= 210
            (3) 

where Tij
 is composed of four tensors, δδδδij

 is the Kronecker symbol, and ζζζζij
 is the 

stretching tensor, and ζζζζi
kζζζζkj

 is the stretching coupling tensor. In the first isotropic tensor 

the potentiostatic pressure α0=α0(ρ, U) is dominant and the contribution of the other 

elements is neglected. Here U represents hydrostatic or electrostatic potential. In the 

second isotropic tensor, the resistance α1=α1(ρ, U) is dominant and the contribution of 

the other elements is neglected. In the third stretching tensor, its normal elements α2σ 

are due to the interfacial tensions and the tangential elements α2τ are presumed to be of 

the same origin as the dominant physical field involved. In the fourth stretching 

coupling tensor, there are normal, α3σ
i
k, and α3σ

kj 
elements, and tangential α3τi

k and 

α3τ
kj
 elements that are attributed to the first two dominant periodical physical fields 

involved. Now, the general equilibrium condition for the dispersed system with two 

periodical physical fields involved may be derived from Eq. (3), and may be expressed 

by 

 

( )
32

3210

2 αα

σ
α

σ
ααα

τ
+









+







++−

=
dd

d
                         (4) 

where τd are the tangential elements of the same origin as those of the dominant 

periodical physical field involved. Note that for dispersed systems consisting of, or 

behaving as Newtonian fluids, α3=α3(ρ, U) is equal to zero. 

 The processes of formation and destruction of the droplet or droplet-film 

structure are nonlinear. Therefore, the viscosity coefficients are complex functions µi (i 

= 0, 1, 2), where each consists of the real bulk component, and imaginary shear and 

tensile components, when correlated to the tangential tensions of mechanical origin τv 

can be written as 

AdTFd ij

s

~~~
=
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ud

dx

du
v

µµµτ                        (5) 

 

where u is the velocity, and x is one of the space coordinates.  

Using the electrical analog, the impedance coefficients Zi (i = 0, 1, 2), where 

each consists of the real Ohmic component, and imaginary capacitive and inductive 

components, will be correlated with the tangential tensions of electrical origin τe, as 

following: 

 

(6) 

 

where φe is the electron flux density, and t is the time coordinate. 

 

3.2. Integer order van der Pol derivative model 

 

Postulated assumptions for an electrical analogue: 

1. The droplet is a macro system (collective of particles) consisting of structural 

elements that may be considered as electro-mechanical oscillators, named 

clusters. 

2.  Droplets as micro collectives undergo tuning or coupling processes, and so 

build the droplet as a macro collective. 

3. The external physical fields (temperature, ultrasonic, electromagnetic, or 

any  

other periodic) cause the excitation of a macro system through the excitation of 

micro-systems at the resonant/characteristic frequency, where elastic and/or 

plastic deformations may occur. 

 Hence, the study of the electro-mechanical oscillators is based on 

electromechanical and electrodynamics principles. At first, during the droplet formation 

it is possible that the serial analog circuits are more probable, but later, as a consequence 

of tuning and coupling processes the parallel circuitry become dominant. Also, since the 

transfer of entities by tunneling (although with low energy dissipation) is much less 

probable it is sensible to consider the transfer of entities by induction (medium or high 

energy dissipation). Figure 5 presents the resultant equivalent electrical circuit, 

rearranged under the influence of an applied physical field, such as an antenna output 

circuit. 

A nonlinear integral-differential equation of the Van der Pol type is selected as 

the convenient to represent the initial electromagnetic oscillation 
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where v is the overall potential difference at the junction point of the spherical capacitor 

C and the plate, L is the inductance caused by potential difference, and R is the ohm 

resistance (resistance of the energy transformation, electromagnetic into the mechanical 

or damping resistance), t is time; α and γ are constants determining the linear and 
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nonlinear parts of the characteristic current and potential curves. v0, the primary steady-

state solution of this equation is a sinusoid of frequency close to ω0=1/(LC)
0.5

 and 

amplitude A0=[(α-1)/R/3γ/4]
0.5

. 

 

    
 

Figure 5. Definition sketch for easier understanding of the theory of electroviscoelasticity: a) 

rigid droplet; b) incident physical field, e.g., electromagnetic; c) equivalent electrical 

circuit-antenna output circuit. Wd represents the emitter-coupled oscillator, Cd, Ld, and Rd 

are capacitive, inductive, and resistive elements of the equivalent electrical circuit, 

respectively. Subscript d is related to the particular diameter of the droplet under 

consideration. Courtesy of Marcel Dekker, Inc. and CRC Press-Taylor & Francis Group 

(From Ref. 1, 2, 5, 9). 

 

 The noise in this system, due to linear amplification of the source noise (the 

electromagnetic force assumed to be the incident external force, which initiates the 

mechanical disturbance), causes the oscillations of the “continuum” particle (molecule 

surrounding the droplet or droplet-film structure), which can be represented by the 

particular integral  

 

                                                                                                   

(8) 

where ω is the frequency of the incident oscillations. 

Finally, considering the droplet or droplet-film structure formation, 

“breathing”, and/or destruction processes, and taking into account all the noise 

frequency components, which are included in the driving force, the corresponding 

equation is given by 

 

                                                                                                  

             (9) 

where i(t) is the noise current and An(ω) is the spectral distribution of the noise current 

as a function of frequency. 
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In the case of nonlinear oscillators, however, the problem of determining of the 

noise output is complicated by the fact that the output is fed back into the system thus 

modifying in a complicated manner the effective noise input. The noise output appears 

as an induced anisotropic effect.  

Now again, the initial electromagnetic oscillation is represented by the 

differential equations, Eqs. (7) and (8), and when the nonlinear terms are omitted and/or 

superposed, the simpler linear equation is given by 

 

(10) 

 

with a particular solution resulting in the following expression for the amplitude: 
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and for all the noise frequency components, the simpler linear equation is given by 

    

                                                                                                                       (12) 

 

with the particular solution expressed by 
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Now, considering Eqs. (7)-(13) and Fig. 5. after the cluster’s rearrangement the 

resultant equivalent electrical circuit can be represented as shown in Fig. 5c. Figure 6. 

shows, the behavior of the circuit depicted in Fig. 5c, using the correlation impedance-

frequency-arbitrary droplet diameter.  

 

 
 

Figure 6. Impedance of the equivalent electric circuit versus its frequency. (From Ref. 4. 1997, p. 

441, with permission from Academic Press).  
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Since all events occur at the resonant or characteristic frequency, depending on 

the amount of coupling, the shape of the impedance-frequency curve is judged using the 

factor of merit or Q factor [1-5, 7-9, 14-16]. The Q factor primarily determines the 

sharpness of resonance of a tuned circuit, and may be represented as the ratio of the 

reactance to the resistance, as follows: 

  

(14) 

 

Furthermore, the impedance Z can be related to the factor of merit Q as it is given by 

equations 

 

(15) 

 

and 

 

(16) 

From these expressions and Fig. 6. it can be seen that the impedance of a 

circuit is directly proportional to its effective Q at resonance. Also at the resonant 

frequency ω0 the impedance Z is equal to the resistance R, Rc meaning critical, and Rsc 

meaning supercritical, respectively. These resistances and Z-ω curves correspond to the 

various levels of coupling (1) loose coupling and high Q; (2) medium coupling and 

medium Q; (3) critical coupling and low Q; (4) over-coupling and low Q). ωh1 and ωh2 

represent the hump frequencies that appear during the over-coupling, curve (4) in Fig. 6. 

On the right axes of the Fig. 6. the corresponding critical diameters d1, d2, and d3 are 

arbitrary plotted. 

The experimental simulation of the antenna output circuit was performed in the 

Bruker MSL 400 spectrometer; Magnet 9.395 T, H3PO Standard Solution, 
31

P 

Frequency 161.924  MHz, Applied Sweep Witdh 15000 Hz – (Shift - 10 – 90 ppm), Pick 

at 7 ppm D2EHPA, Pick at 63 ppm TOPO [1-5, 9, 15, 16]. The obtained experimental 

results were in a good agreement with the developed and calculated theoretical 

predictions.  

 

3.3. Recent development: van der Pol fractional order derivative model - linearized 

 

In an effort to generalize equations (7 and 8) the ordinary time derivatives and integrals 

are now replaced with corresponding fractional-order time derivatives and integrals [1-

8, 13- 15]. Here, the capacitive and inductive elements, using fractional–order p<2 (p = 

n – δ, n = 1, 2, δ << 1) enable formation of the fractional differential equation, i.e. more 

flexible or general model of liquid-liquid interfaces behaviour. Now, a differ-integral 

form using Riemann-Liouville definition is given by   
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Further on, a linear fractional differential equation with zeros initial conditions is 

obtained 
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Further evaluation and calculation related to the solutions of the linearised, both 

homogeneous and nonhomogeneous, fractional integro-differential equations is 

presented in references [1-9].  

In the case of nonhomogeneous solution obtained result appears as a band 

because the input (cos) is of the fractional order too; and output is in a damped 

oscillatory mode at high frequencies!  

 

3.4. Van der Pol fractional order derivative model - nonlinear case 

 

Nonlinear fractional differential equations have received rather less attention in the 

literature, partly because many of the model equations proposed have been linear. Here, 

both cases a nonlinear homogeneous i(t)=0 and nonhomogeneous i(t) ≠ 0 are 

considered. Equivalent nonlinear problem applying differentiation of Eq. (7) is 

presented by 
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In an effort to generalize the previous equation fractional order van der Pol equation 

become 
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Further evaluation and calculation related to the solutions of the nonlinear, both 

homogeneous and nonhomogeneous, fractional integro-differential equations is 

presented in references [1-9].  

 

4. “Missing” basic element- memristor 

 

Based on the definition of a “missing” basic element memristor for electrical circuit 

analysis, and taking into account four fundamental circuit variables, electric current i, 

electromotive force v, charge q, and magnetic flux φ the set of fundamental functional 

relations is given by [10]: 

Rdidv =                                                       (21) 
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Cdvdq =                         (22) 

Ldid =ϕ          (23) 

Mdqd =ϕ           (24) 

vdtd =ϕ                        (25) 

idtdq =            (26) 

Hence, the memristor as a current-controlled device is defined with the Eqs. (27) and 

(28), where w is the state variable of the device and R is a generalized resistance that 

depends upon the internal state of the device. In 1976 Chua and Kang generalized the 

memristor concept to a much broader class of nonlinear dynamical systems, named 

memristive systems, described by the Eqs. (29) and (30), where w is a set of state 

variables and R and f can, in general, be explicit functions of time [10]. 

 ( )iwRv =              (27)   

and 

 i
dt

dw
=               (28) 

 ( )iiwRv ,=              (29) 

  and  

( )iwf
dt

dw
,=           (30) 

Further on, when an incidental uniform physical field, for example electromagnetic, is 

applied on the system emulsion/droplet or double emulsion/droplet-film-structure, 

causing the motions of both electrons and ions, than the memristance may be obtained 

as: 

the application of an external bias v (t) across the device (droplet or droplet-

film structure) will move the boundary between the two regions (I and II). For the 

simplest case of ohmic electronic conduction and linear ionic drift in a uniform field 

with average ion mobility i,  
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now w (t) is given by 

 ( ) ( )tq
D

R
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intµ=                       (33) 

By inserting Eq. (33) into Eq (31) the memristance for this system, which for Rint << Rbul  

become  
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where Rint is the low resistance at the interface and close to the interface layers (region 

I), Rbul is the much higher resistance in the bulk layers (region II), i is the average ion 

mobility, D is the thickness of the considered fragment/”device”. The q (t) term present 

the most important contribution to the memristance, and it becomes larger in absolute 

value for the higher ion mobilities i and smller device thickness D. This term is 

substantially larger (~10
6 

times) in absolute value at the nanometer scale than it is at the 

micrometer scale, because of the factor of 1/D2, and the memristance is correspondingly 

more significant. 

 

4.1. Emulsions and double emulsions as memristive systems 

 

Now, according to the presented electrohydrodynamic approach, emulsions and double 

emulsions will be considered as the composite system “droplet + film” or “droplet-film 

structure + droplet homophase (S + E)”.  The history of this system consists of the 

initial/formation, intermediate/transition, and final/rigid states. 1. Every stationary state 

(initial, intermediate, and final) is characterized by interaction in the composite system 

that is of the same kind – being able to give rise to the occurrence of decoherence with 

the cluster arrangements as the “pointer basis states”. 2. The nonstationary state is 

characterized by the change in the character of interaction in the composite system. The 

net effect takes the following “phases” each having its own characteristic time: a) under 

the action of an external or incidental physical field a formation, excitation, of the 

droplet-film structure occurs, producing the nonstationary state; b) the transition, 

relaxation, of the electroviscoelastic droplet-film structure into the rigid one, 

establishing the new final stationary state, this transition or relaxation process may be 

considered as a kind of a memory storage process, therefore, the system either 

electroviscoelastic droplet or droplet-film structure submerged into the other immiscible 

liquid phase, could be considered as the particular example of memristive systems; c) 

decoherence process, the final stationary state. 

Based on these statements, and looking at figure 5c, following important 

propositions may be withdrawn: 

 

• for every nonstationary state (excitation and relaxation) the resistor RD        

have to be exchanged with the memristor MD; 

 

•   for every stationary state (initial, intermediate, and final) the nonlinear         

memristance M (the generalized resistance) degenerate into the linear         

resistance R. 

  

5. Probably possible further development: classical limit of quantum mechanics 

 

This part will treat one important question of the classical limit of quantum mechanics, 

that is, is a quantum mechanics applicable at macroscopic level? This question resulted 
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during the research of complex systems by the end of the last century. According to the 

developed strategy, the proposition appeared is: if the macroscopic physical systems are 

only the special case of quantum-mechanical systems than it is possible to observe, 

under specified conditions, their quantum mechanical behavior [11].   

The behavior of a droplet-film structure submerged into the droplet homophase 

or double emulsion, including its formation-existence-destruction states, described in 

this presentation will be considered as a close to the representative open macroscopic 

quantum system (OMQS), under the specified conditions. Hence, OMQS are quantum 

subsystems, that is, open quantum systems that are in inevitable permanent interaction 

with other physical systems, which may be named environment [11]. Does the theory of 

electroviscoelasticity, here presented, may be useful in discussion and/or further 

elucidation related to the problems of the experimental and theoretical status of 

decoherence?  

Some needed definitions [11]: 

 

1. The choice of an OMQS has to be in accordance to the criteria that confirm its 

description by the motion equation in a “classical domain”. 

 

2. It is convenient that the classical motion equation of the OMQS contain 

dissipative term. 

 

3. The motion equation of the OMQS must be related, clearly and unequally, to 

the physical units whose values define distinguishable macroscopic states of the 

system. 

 

4. The choice of a needed conditions for the following of the behavior of one 

OMQS have to be limited by the condition that some of the parameters values 

may correspond to the limit of the correspondence principle, that is, the 

condition n → ∞ is invalid. 

 

5. It is convenient to consider, theoretically, the behavior of the choused OMQS, 

and therefore to prepare possible predictions comparable with experimentally 

attainable situations.      

 

The Leggett’s Program: 

These five points present a Leggett’s task and basis for exploration of the 

macroscopic quantum phenomena of the second kind, that is, the confirmed quantum 

mechanical nature of the OMQS is related to these physical situations where the 

quantum effects are unequally linked to the macroscopically distinguishable states [11]. 

 

5.1. Suggested Problem – The Model 

 

Finely dispersed system, emulsion and double emulsion, discussed, now will be 

considered as the composite system “droplet-film structure + droplet homophase (S + 

E)”.  The equivalent electrical circuits of the composite system are presented in Figures 
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4.a and 4.b and 5c; the history of this system consists of the initial/formation, 

intermediate/transition, and final/rigid states.  

 Keeping in mind all the requirements, the needed definitions and Leggett’s 

program the model assumptions are [11-16]: 

 

1. Every stationary state (initial, intermediate, and final) is characterized by 

interaction in the composite system that is of the same kind – being able to 

give rise to the occurrence of decoherence with the cluster arrangements as 

the “pointer basis states”. 

 

2. The nonstationary state is characterized by the change in the character of 

interaction in the composite system. The net effect takes the following 

“phases” each having its own characteristic time: 

 

a) Under the action of an external or incidental physical field a 

formation of the droplet-film structure occurs, producing the 

nonstationary state, taking time  text = 125 ms. This time was 

measured using developed liquid-liquid contact cell (LLCC) [1-5, 

7-9, 14-16]; the measured variations of the EIP with time, for the 

representative system, are shown in Figure 7. 

 

b) The transition or relaxation of the electroviscoelastic droplet-film 

structure into the rigid one, establishing the new final stationary 

state, taking time trelax = 8 min. This time was measured using 

developed LLCC; measured spontaneous oscillations of the EIP 

with time are shown in Figure 8. Now, this transition or 

relaxation process may be considered as a kind of the memory 

storage process; 

 

 
 

Figure 7. Measured variations of the EIP with time for the examined system: phosphoric 

acid/D2EHPA-TOPO-kerosene at the spherical interface.  
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therefore, the system electroviscoelastic droplet and/or droplet-

film 

structure could be considered as the particular example of 

memristive systems, which is shown in figure 8.  

 

c) Decoherence process, in the final stationary state, taking time tD.,  

(decoherence time). 

 

Therefore, the complete generation of the dispersed system or, for example, a 

double emulsion, takes overall time expressed by: 

Drelaxexto tttt ++=                                    (35) 

 

 

 
Figure 8. Measured spontaneous oscillations of the EIP during the “breathing” period; 

transformation of the electroviscoelastic sphere into the rigid sphere.  

 

 

5.2. Suggested experimental confirmation 

 

Since the equivalent electrical circuit, Fig 5.a may be considered as a kind of 

Superconducting Quantum Interference Device (SQUID), probably, it may be possible to 

couple, at the resonant frequency, where all events occur, one adjusted, sensitive tunnel 

diode oscillator as one detector of Macroscopic Quantum Tunneling Effect (MQTE). 

Also, the circuitry, described in the sections 2.3. and 3.2., Fig. 4. and Fig. 5. may be 

modified, when taking into account definition of a current-controlled memristor, 

sections 3.[1-5, 7-9, 14-16] and 4. [1, 10, 15, 16], by replacement of the linear resistance 

(electro-viscose) with nonlinear memristance (electro-elastic) during the nonstationary 

periods; that is during the formation of electroviscoelastic sphere and its transition or 

relaxation into the rigid one. 
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6. Conclusions and implications 

 

Three possible mathematical formalisms have been developed and discussed related to 

the developed theory of electroviscoelasticity. The first is stretching tensor model where 

the normal and tangential forces are considered, only in mathematical formalism, 

regardless to their origin, mechanical and/or elctricacal. The second is classical integer 

order van der Pol  derivative model. Finally, the third model comprise an effort to 

generalize the previous van der Pol integral-differential equations, both linear and 

nonlinear; where the ordinary time derivatives and integrals are replaced by 

corresponding fractional-order time derivatives and integrals of order p<2 (p = n- δ, n = 

1, 2, δ<<1).  

Each of these mathematical formalisms, although related to the same physical 

formalism, facilitates better understanding of different aspects of a droplet existence, 

that is, its formation, life, and destruction states.  

Stretching tensor model discusses the force equilibrium at the interfaces, either 

deformable or rigid, but its solution is difficult because the tensor contain nonlinear and 

complex elements. 

The van der Pol derivative model is convenient for discussion of the “antenna 

output circuit”, the resulting equivalent electrical circuit; but, since in the case of 

nonlinear oscillators, that is here the realistic one, the problem of determining the noise 

output is complicated by the fact that the output is fed back into the system, thus 

modifying in a complicated manner the effective noise input. The noise output appears 

as an induced anisotropic effect.    

The theory of electroviscoelasticity using generalization of van der Pol 

derivative model applying fractional approach constitutes a new interdisciplinary tool to 

the colloid and interface science. Hence, 1-more degrees of freedom are in the model, 2-

memory storage considerations and hereditary properties are included in the model, and 

3-history or the impact to the present and future is in the game!  

Finally, the electroviscoelastic droplet, and/or droplet-film structure, that is, 

emulsion or double emulsion may be considered as the particular example of memristive 

systems. All that means that for the elucidation of developed interfaces, for example, in 

colloids it is necessary to include the electron transfer phenomenon beside the heat, mass 

and momentum transfer phenomena commonly used in the classical chemical 

engineering. 

All this research may have impact, for example, to the entrainment problems in 

solvent extraction, breaking of emulsions, deeper elucidation of adhesive processes, 

rupture processes, and coalescence; colloid and interface science, chemical and 

biological sensors, electro-analytical methods, biology or biomedicine (hematology, 

genetics, electroneurophysiology), classical limit of quantum mechanics, ionics, 

spintronics, fractional-quantum Hall effect-fluids, decoherence sensitivity, quantum 

computation, entities-quantum particles entanglement, [1-5, 7-9, 14-16]. 
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Abstract. In this paper, finite-time stability problems for a class of singular 

time-delay systems are studied. The concept of finite-time stability is extended 

to singular time-delay systems and some conditions have been derived using 

two approach based on the Lyapunov-like functions: classical and LMI 

approach. The first approach is based on the algebraic matrix transformations, 

while the second approach uses the linear matrix inequalities. LMI approach 

provides a simple numerical solution and does not impose additional restriction 

on the state vector. Numerical example is given to show the effectiveness of the 

proposed approaches. 

 

 

1. Introduction 

 

A singular system describes a natural representation for physical systems. In general, the 

singular representation consists of differential and algebraic equations, and hence it is a 

generalized representation of the state-space system. The class of singular systems is 

more appropriate to describe the behavior of some practical systems like electrical 

systems [1], mechanical systems [2], and chemical systems [3-5]. It is well known that 

study of singular systems is much more complicated than that of regular ones.  

It has been observed that variety of singular systems is characterized by the phenomena 

of time delay. Such systems are called singular systems with time delay. Time delay can 

appear in the input variables, output variables and/or the state space vector. In general, 

the dynamic behavior of continuous-time singular systems with delays is more 

complicated than that of system without any time-delay because the continuous time-

delay system is infinite dimensional. For this reason, over the past decades, there has 

been increasing interest in the stability analysis for singular time-delay systems and 

many results have been reported in the literature [6–11]. 
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Often Lyapunov asymptotic stability is not enough for practical applications, because 

there are some cases where large values of the state are not acceptable, for instance in 

the presence of saturations. For this purposes, the concept of the finite-time stability 

(FTS) and practical stability are used. A system is said to be FTS if, once a time interval 

is fixed, its state does not exceed some bounds during this time interval. A little work 

has been done for the finite-time stability and stabilization of singular time-delay 

systems. Some results on FTS and practical stability can be found in [12-18] (singular 

systems) and [19-20] (singular time-delay systems). However, according to the author's 

knowledge, there is no result available yet on finite-time stability and stabilization for a 

class of linear time-delay systems using linear matrix inequality.  

In this article, we consider the problem of finite-time stability for a class of linear 

singular time-delay systems. The concept of finite-time stability is extended to singular 

time-delay systems. New conditions have been derived using two approach based on the 

Lyapunov-like functions: classical and LMI approach. The first approach is based on the 

algebraic matrix transformations, while the second approach uses the linear matrix 

inequalities. Numerical example is given to show the effectiveness of the proposed 

approaches. 

 

2. Notation and preliminaries 

 

The following notations will be used throughout the paper. 
nℜ denotes the n-

dimensional Euclidean space, C
n

 complex vector space  and 
n m×ℜ  is the set of all real 

matrices of dimension n m× . Superscript “T” stands for matrix transposition. 0X >  

means that X is real symmetric and positive definite and X Y> means that the matrix 

X Y− is positive definite. In symmetric block matrices or long matrix expressions, we 

use an asterisk (*)  to represent a term that is induced by symmetry. I  stands identity 

matrix and ( )Xλ  eigenvalue of matrix X . Matrices, if their dimensions are not 

explicitly stated, are assumed to be compatible for algebraic operations. 

Consider a linear continuous singular system with state delay, described by 

 ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ
d

Ex t Ax t A x t τ= + −  (1) 

with a known compatible vector valued function of the initial conditions 

 ( ) ( )ˆ ˆ , 0x t φ t tτ= − ≤ ≤  (2) 

where ˆ( )
nx t ∈ℜ  is the state vector, τ  is constant time delay, ˆ n nA ×∈ℜ  and ˆ n n

d
A

×∈ ℜ  

are known constant matrices. The matrix ˆ n n
E

×∈ℜ  may be singular, and it is assumed 

that ˆrank( )E r n= ≤ .  

It is known ([12]) that there exist invertible matrices M and N such that 

 

11 12

11 12

21 22

21 22

0
ˆ ˆˆ , ,

0 0

r d d

d d

d d

A AI A A
E MEN A MAN A MA N

A A A A

   
= = = = = =    

     
 (3) 

Then, by the nonsingular transformation  

 1 ˆx N x−=  (4) 
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the system (1) can be described by the following system: 

 
1

( ) ( ) ( )

ˆ( ) ( ), ( ) ( ), [ ,0]

dEx t Ax t A x t

x t t t N t t

τ

ϕ ϕ ϕ τ−

= + −

= = ∈ −


 (5) 

The following definition will be used in the proof of the main results. 

Definition 1. Matrix pair ( , )E A  is said to be regular if det( )sE A−  is not identically 

zero [6]. 

Definition 2. The matrix pair ( , )E A  is said to be impulse-free if 

det ( )deg sE A rank E− =  [6]. 

The linear continuous singular time delay system (5) may have an impulsive solution. 

However, the regularity and the absence of impulses of the matrix pair ( , )E A  ensure the 

existence and uniqueness of an impulse-free solution of the system. The existence of the 

solutions is defined in the following Lemma. 

Lemma 1. Suppose that the matrix pair ( , )E A  ( ˆˆ( , )E A ) is regular and impulsive free, 

then the solution to (5) ((1)) exists and is impulse-free and unique on [0, ∞) [6]. 

In view of this, we introduce the following definition for singular time-delay system (5) 

or (1). 

Definition 3. The singular continuous system with state delay (5) ((1)) is said to be 

regular and impulse-free, if the matrix pair ( , )E A  ( ˆˆ( , )E A ) is regular and impulse-free 

[6]. 

Then, based on Definition 3, the singular continuous time-delay systems (1) and (5) are 

regular and impulse-free.  

Lemma 2. For any symmetric, positive definite matrix 0
TΞ = Ξ >  the following 

condition is satisfied: 

 ( ) ( ) ( ) ( ) ( ) ( )1
2

T T Tu t v t u t u t v t v t−≤ Γ + Γ  (6) 

 

3. Main results 

 

Lemma 3. Continuous singular time-delay systems (1) and (5) are regular and impulse-

free if matrix 
22

A , which is defined by (3), is invertible. 

Proof. Let 
22

A  is invertible. Then 

 

1 1

11 121 1

21 22

11 121 1

1

22 2121 22

1

1 11 12 22 21 12

2

ˆˆdet( ) det( )det( )det( )

det( )det det( )

0
det( )det det( )

det( )det
0

r

rr

n r

r

sE A M sE A N

sI A A
M N

A A

IsI A A
M N

A A IA A

sI A A A A A
M

A

− −

− −

− −

−
−

−
−

− = −

 − −  
=   − −  

 − −   
=     −− −    

− + −
=

−

( )

1

2

1 1 1

22 11 12 22 21

det( )

ˆdet( )det( )det ( ) det( )
r

N

M A sI A A A A N

−

− − −

  
     

= − − −

  (7) 
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which implies 

ˆ ˆˆ ˆdet( ) 0, deg det( ) , det( ) 0, deg det( ) sE A sE A r sE A sE A r− ≡ − = − ≡ − =   (8) 

Definition 4. Singular time delayed system (5) is finite-time stable with respect to 

{ }, , ,Tα β α β< , if 

 
[ ]

( ) ( )
, 0

sup
T

t

φ t φ t
τ

α
∈ −

≤  (9) 

implies 

 ( ) ( ) [ ], 0,
T Tx t E E x t t Tβ ∀ ∈<  (10) 

2.1. Classical approach 

 

The classical approach is based on Lyapunov-like functions using algebraic matrix 

transformations. 

Theorem 1. Consider a singular time-delay system (5) with 

 ( ) ( ) ( ) ( ) [ ] [ ], 0, ,0 , 0,
T Tx t x t qx t x t q t Tθ θ θ τ− − < > ∈ − ∀ ∈  (11) 

If the matrix 
22

A  is invertible and if there exists a positive scalar ℘ ,  matrix P  and 

positive define symmetric matrices Q  and R ,  such that the following conditions hold: 

 0
T TPE E P= ≥   (12) 

 
TPE E RE=   (13) 

 [ ]min max max
( ) ( ) ( ) 0mT

e R PE Qβ λ α λ τ λ−Λ − + <   (14) 

where: 

 ( ) ( ) ( ) ( )m
max : 1

T T
x t x t x t PE x t Λ = Ξ =    (15) 

 { }1

max

T T T T

d d
A P PA Q PA A P q I Q Iλ−Ξ = + + + ℘ + ℘ −  (16) 

then system (1) is regular, impulse free and finite-time stable with respect to 

{ }, , ,Tα β α β<  for all 0T > .  

Proof. Based on Lemma 3, the condition 
22

0A ≠  provides that the system (5) is regular 

and impulse free.  

Next, we show the stability. Let us consider the following Lyapunov-like function: 

 ( )( ) ( ) ( ) ( ) ( )

t

T T

t

V x t x t PE x t x s Qx s ds
τ−

= + ∫  (17) 

Total derivative ( )( )V x t along the trajectories of the system (5) is: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

T T T T T T

T T T T

d

T T

T T T T T

d

V x t x t E P x t x t PE x t x t Qx t x t Qx t

x t A P PA x t x t PA x t

x t Qx t x t Qx t

x t A P PA Q x t x t PA x t x t Qx t

τ τ

τ

τ τ

τ τ τ

= + + − − −

= + + −

+ − − −

= + + + − − − −

  

 (18) 

Based on Lemma 2, we get: 

 ( ) ( ) ( ) ( ) ( ) ( )1
2

T T T T T

d d d
x t PA x t x t PA A P x t x t x tτ τ τ−− ≤ ℘ + − ℘ −  (19) 
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so 

 
( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( )

1T T T T T T

d d

T

V x t x t A P PA Q x t x t PA A P x t

x t I Q x tτ τ

−≤ + + + ℘

+ − ℘ − −


 (20) 

Using (11), it is clear that (20) is reduced to: 

 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )

{ } ( ) ( )

( )( ) ( ) { } ( ) ( )

( ) { }( ) ( )

( ) ( )

1

1

max

1

max

1

max

1

T T T

T T T T

d d

T T T T T

d d

T

T T T T T T

d d

T T T T T

d d

T

T T

d

V x t x t A P PA Q x t

x t PA A P x t x t I Q x t

x t A P PA Q PA A P x t

I Q x t x t

x t A P PA Q PA A P x t q I Q x t x t

x t A P PA Q PA A P q I Q I x t

x t x t

A P PA Q PA

τ τ

λ τ τ

λ

λ

−

−

−

−

−

≤ + +

+ ℘ + − ℘ − −

≤ + + + ℘

+ ℘ − − −

< + + + ℘ + ℘ −

= + + + ℘ + ℘ −

= Ξ

Ξ = + + + ℘



{ }max

T T

dA P q I Q Iλ+ ℘ −

 (21) 

From (21) we have 

( )( )
( )( )

( ) ( )
( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) m

max

T T T

T T

dV x t x t x t x t x t x t x t
dt dt dt dt

x t PE x t x t PE x tV x t V x t

 Ξ Ξ Ξ 
< < ≤ = Λ 

  
 (22) 

where:  

 ( ) ( ) ( ) ( )m
max : 1

T T
x t x t x t PE x t Λ = Ξ =   (23) 

After integrating the previous inequality we get: 

 ( ) ( )( ) (0) mt
V x t V x e

Λ<  (24) 

Then: 

 

( )

[ ]

0

0

max max

0

max max

max max

(0) (0) (0) ( ) ( )

( ) (0) (0) ( ) ( ) ( )

( ) ( )

( ) ( )

T T

T T

V x x PEx x s Qx s ds

PE x x Q x s x s ds

PE Q d

PE Q

τ

τ

τ

λ λ

αλ αλ θ

α λ τλ

−

−

−

= +

≤ +

≤ +

≤ +

∫

∫

∫

 (25) 

On the other hand, 

 
( )

min min

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t

T T T T

t

T T T

V x t x t PEx t x s Qx s ds x t E REx t

R x t E E x t R

τ

λ β λ

−

= + ≥

> >

∫
 (26) 

Combining (24)-(26) we get: 

 [ ]min max max
( ) ( ) ( ) ( ) ( ) mtT T TR x t E E x t PE Q eλ α λ τλ Λ< + ⋅  (27) 

If the following condition is satisfied: 
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 [ ] [ ]max max min
( ) ( ) ( ), 0,mt
PE Q e R t Tα λ τλ βλΛ+ ⋅ < ∀ ∈  (28) 

then: 

 ( ) ( )
T Tx t E Ex t β< , for all [0, ]t T∈  (29) 

From (28) follows (14). This completes the proof. 

In order to improve the previous result, we formulate the following theorem. 

Theorem 2. Consider a singular time-delay system (5) with 

 ( ) ( ) ( ) ( ) [ ] [ ], 0, ,0 , 0,
T Tx t x t qx t x t q t Tθ θ θ τ− − < > ∈ − ∀ ∈  (30) 

If the matrix 
22

A  is invertible and if there exists a positive scalar ℘ ,  matrix P ,  

positive define block diagonal matrix { }1 2
,Q diag Q Q=  and positive define matrix R ,  

such that the following conditions hold: 

 0
T TPE E P= ≥   (31) 

 
TPE E RE=   (32) 

 [ ] [ ]min min max max
( ) ( ) ( ) ( ) 0mT
R Q e PE Qβ λ ρλ α λ ρλ−Λ+ − + <   (33) 

where: 

 ( ) ( ) ( ) ( )m
max : 1

T T
x t x t x t PE x t Λ = Ξ =    (34) 

 { }1

max

T T T T

d d
A P PA Q PA A P q I Q Iλ−Ξ = + + + ℘ + ℘ −  (35) 

then system (1) is regular, impulse free and finite-time stable with respect to 

{ }, , ,Tα β α β<  for all 0T > .  

Proof. From (17), based on properties of matrices { },0
r

E diag I=   and 

{ }1 2
,Q diag Q Q=  ,  we have: 

 

( )

min min

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t

T T T T

t

t

T T

t

t

T T T T T

t

V x t x t PEx t x Qx d x t E REx t

x E QEx d

R x t E E x t Q x E Ex d

τ

τ

τ

θ θ θ

θ θ θ

λ λ θ θ θ

−

−

−

= + ≥

+

> +

∫

∫

∫

  (36) 

Combining (24), (25) and (36) we get: 

[ ]min min max max
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m

t

tT T T T T

t

R x t E E x t Q x E Ex d e PE Q
τ

λ λ θ θ θ α λ ρ λΛ

−

+ < +∫  (37) 

If the following condition is satisfied: 

 [ ] [ ] [ ]max max min min
( ) ( ) ( ) ( ) , 0,mt
PE Q e R Q t Tα λ ρλ β λ ρλΛ+ < + ∀ ∈  (38) 

then: 

 ( ) ( )
T Tx t E Ex t β< , for all [0, ]t T∈  (39) 

From (38) follows: 

 [ ] [ ]max max min min
( ) ( ) ( ) ( )mT
PE Q e R Qα λ ρλ β λ ρλΛ+ < +  (40) 



295

On stability of syngular time delay systemsover the finite time interval: Classical and LMI criteria 

and (33). 

 

Remark 1. Expressions (15) and (34) are known as Rayleigh quotient which minimum 

can be determined using appropriate standard numerical methods.  

 

Remark 2. Conditions (11) and (30) are main sources of the conservatism in Theorem 1 

and 2. Namely, it is difficult to determine the parameter q  so that (11) or (30) are 

satisfied because it is considered that the solution of the system (1) is not known. One 

way to estimate the parameter q  is the simulation of system (5) for known initial 

conditions.  

Furthermore, it is very difficult to numerically solve the inequality (12)-(16) (Theorem 

1) and (31)-(35) (Theorem 2). Therefore, the above mentioned theorems have more 

theoretical than practical significance. 

 

2.1. LMI approach 

 

Finally, by using linear matrix inequalities, we give the sufficient conditions under 

which the system (5) will be regular, impulse free and finite time stable. LMI approach 

has been applied in order to get less conservative conditions and to easier solve 

numerically this problem. These stability conditions have a great practical importance 

because they are based on standard numerical optimization methods.  

 

Theorem 3. Singular time delayed system (5) is regular, impulse free and finite time 

stable with respect to { }, ,Tα β , α β<  if there exist a positive scalar ℘ , nonsingular 

matrix P   and two positive definite matrices R  and Q , such that the following 

conditions hold: 

 0
T TPE E P= ≥  (41) 

 
TPE E R E=  (42) 

 0

T T

d

T T

d

A P PA Q PE PA

A P Q

 + + −℘
Ξ = < 

− 
 (43) 

 
1 2 3

, ,I R I PE I Qλ λ λ< > >   (44) 

 

1 2 3

2

3

* 0 0

* *

T
eβ λ αλ ατ λ

λ

λ

−℘ −
 

− < 
 − 

 (45) 

Proof. The proof of this theorem is divided into two parts. First, we deal with the 

regularity and impulse-free properties. Second, we treat the finite-time stability property.  

First we show that the singular delay system (1) is regular and impulse-free. Using (43), 

it is easy to see that the following holds: 

 0
T TA P PA PE+ −℘ <  (46) 

By (41)-(42) we have 
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11 11 1111 21

21 21

0 0 0
,

0 0 0 00 0

T T

T T T
P P RP P

PE E P PE E RE
P P

      
= = = = = =      

     
 (47) 

i.e. 

 
11 11 21 11 11

, 0,
TP P P R P= = =  (48) 

Based on (46) and (48) we have 

 

22 22 22 22

0
T T

A P P A

 
< + 

� �

�
 (49) 

where the symbol " "� stands for a matrix irrelevant to the following development. 

From (49) we deduce that  

 
22 22 22 22

0
T TA P P A+ <  (50) 

i.e. 
22

0A ≠ , because 
22

0P ≠  ( P  is regular matrix). Therefore, based on Lemma 3, we 

conclude that the system (5) is regular and impulse-free. 

Next, we show the stability. Let us consider the Lyapunov-like function (17). Total 

derivative ( )( )V x t along the trajectories of the system (5) is 

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

t

T T T

t

T T T T

d

T T

T T

d
V x t x t PE x t x t PE x t x s Qx s d

dt

x t A P PA x t x t PA x t

x t Qx t x t Qx t

ζ t ζ t

τ

ϑ

τ

τ τ

−

= + +

= + + −

+ − − −

= Γ

∫  

 (51) 

where: 

 ( ) ( ) ( ) ,

T T

T T T d

T T

d

A P PA Q PA
ζ t x t x t

A P Q
τ

 + +
 = − Γ =    − 

 (52) 

From (43) and (51), one can have: 

 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( )

0

0 0

0

0 0

T T

T T

t

T T T

t

PE
V x t ζ t ζ t ζ t ζ t

PE
ζ t ζ t ζ t ζ t

x t PE x x t PE x t x Q x d

V x t

τ

ϑ ϑ ϑ
−

 ℘  
= Γ = Ξ +  

  
℘ 

= Ξ +  
 

 
<℘ <℘ +℘ 

 
=℘

∫



 (53) 

Integrating (53) from 0  to t T≤ , follows: 

 ( )( ) ( )( )0
t

V x t e V x
℘<  (54) 

Then: 
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( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

0

0

max max

0

max max max max

0 0 0

0 0

T T

T T

V x x PE x x Q x d

PE x x Q φ φ d

PE Q d PE Q

τ

τ

τ

ϑ ϑ ϑ

λ λ ϑ ϑ ϑ

λ α λ α ϑ α λ τ λ

−

−

−

= +

≤ +

≤ ⋅ + ⋅ ≤ + ⋅

∫

∫

∫

 (55) 

On the other hand, we have: 

 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )min min

t

T T

t

t

T T T

t

t

T T T

t

V x t x t PE x t x s Q x s ds

x t E R Ex t x s Q x s ds

R x t E Ex t Q x s x s ds

τ

τ

τ

λ λ

−

−

−

= +

= +

> +

∫

∫

∫

 (56) 

Combining (25), (26) and (54) leads to: 

 [ ]min max max
( ) ( ) ( ) ( ) ( )

T T T tR x t E E x t PE Q eλ α λ τλ ℘< + ⋅  (57) 

If the following condition is satisfied: 

 [ ] [ ]max max min
( ) ( ) ( ), 0,

tPE Q e R t Tα λ τλ βλ℘+ ⋅ < ∀ ∈   (58) 

then: 

 ( ) ( ) [ ], 0,
T Tx t E E x t t Tβ< ∀ ∈  (59) 

From (58) follows: 

 [ ]min max max
( ) ( ) ( ) 0

tR e PE Qβλ α λ τλ−℘− + + <   (60) 

Let 

 ( ) ( ) ( )1 min 2 max 3 max
0 , ,R PE Qλ λ λ λ λ λ< < > >  (61) 

then 

 
1 2 3

, ,I R I PE I Qλ λ λ< > >  (62) 

 
1 2 3

0
Te αβ λ αλ ατλ−− + + <  (63) 

From (63) we have: 

 ( )
1

1 3 2 2 2
0

T
eβ λ ατλ α λ λ αλ

−−℘− + − − <  (64) 

and using Schur complement: 

 
1 3 2

2 2

0

T
eβ λ ατγ α λ

αλ λ

−℘ − +
< 

−  
 (65) 

 ( )
11 3 3

3 3

2

0 0
0

T
eβ λ ατλ α ατ λ

λ ατ λ
α λ

−℘
−

   − +  − − <     
−    

 (66) 

we get (45). This completes the proof. 
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In order to improve the previous result, we formulate the following theorem. 

 

Theorem 4. Singular time delayed system (5) is regular, impulse free and finite time 

stable with respect to { }, ,Tα β , α β<  if there exist a positive scalar ℘ , nonsingular 

matrix P , positive definite matrix R  and positive definite block diagonal matrix 

{ }1 2
,Q diag Q Q= , such that the following conditions hold: 

 0
T TPE E P= ≥  (67) 

 
TPE E R E=  (68) 

 0

T T

d

T T

d

A P PA Q PE PA

A P Q

 + + −℘
Ξ = < 

− 
 (69) 

 
1 2 3 4

, ,I R I PE I Q Iλ λ λ λ< > < <   (70) 

 

[ ]1 3 2 4

2

4

0 0

T
e

γβ λ τλ α λ ατ λ

λ

λ

− − +
 

∗ − < 
 ∗ ∗ − 

 (71) 

Proof. Combining, (54), (55) and (36) we get: 

[ ]min min max max
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

T T T T T t

t

R x t E E x t Q x E Ex d e PE Q
τ

λ λ θ θ θ α λ τλ℘

−

+ < +∫   (72) 

If the following condition is satisfied: 

 [ ] [ ] [ ]max max min min
( ) ( ) ( ) ( ) , 0,

t
PE Q e R Q t Tα λ τλ β λ τλ℘+ < + ∀ ∈  (73) 

then: 

 ( ) ( )
T Tx t E Ex t β< , for all [0, ]t T∈  (74) 

From (73) follows: 

 [ ] [ ]min min max max
( ) ( ) ( ) ( ) 0

tR Q e PE Qβ λ τλ α λ τλ−℘− + + + <   (75) 

Let 

 ( ) ( )1 min 2 max 3 min 4 max
0 , , ( ), ( )R PE Q Qλ λ λ λ λ λ λ λ< < > < >  (76) 

then 

 
1 2 3 4

, ,I R I PE I Q Iλ λ λ λ< > > >  (77) 

 [ ] [ ]1 3 2 4
0

Te γβ λ τλ α λ τλ−− + + + <  (78) 

Finally, using a complement, from (78) we get (71). 

 

Remark 3. According to our knowledge, there are no results available yet on finite-time 

stability in the sense of Definition 4 for a class of linear continuous time-delay systems 

which use linear matrix inequality and therefore we cannot to compare our results with 

existing ones.  

4. Numerical example 

 

The effectiveness of the results presented in the previous section is now shown by means 

of numerical example. Due to numerical problems, Theorem 1 and Theorem 2 have 
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more theoretical than practical significance (Remark 2). For this reason, in the following 

example, we only consider the stability conditions derived in Theorems 3 and 4. 

 

Example 1. Consider following singular continuous time-delay system:  

 

( ) ( ) ( )

1 0 0 2 1 0 1 1 1

0 1 0 , 0 2 0 , 1 1 1 , 1

0 0 0 1 0 2 1 1 1

d

d

Ex t Ax t A x t

E A A

τ

τ

= + −

−     
     = = − = =     
     − −     



 (79) 

In order to verify stability properties of the system (79), the system operation is 

simulated under the conditions [ ] [ ]( ) 1 1 1 , ,0
T

t tφ τ= ∈ − . Figures 1-2 show the 

initial state response and the norm of initial state response of the system (79). It is 

observed that the values of state variables ix → ∞ , 1, 2,3i =  when t → ∞ , which proves 

that the system (79) is not asymptotically stable. 

Now we seek the maximum allowed upper bound of T , mT , for  the time interval [ ]0,T  

so system (79) is regular, impulse free and FTS with respect ( , , )Tα β , 3α = , 100β =
 

using Theorem 3 and Theorem 4.  

Based on Theorem 3, for fixed 2.93℘= , we can obtain the following feasible solutions: 

1366.3 210.6 479.4

210.6 1808.0 1131.8

0.0 0.0 1394.6

P

 − −
 

= − 
 
 

, 
2699.7 137.2 1636.7

137.2 3070.4 1265.7

1636.7 1265.7 1556.9

Q

 
 =  
  

, 

1 2

3

1281.9, 1892.8,1366.3 210.6 0.0

4469.1,210.6 1808.0 0.0 ,

0.0 0.0 4133.3 0.65
m

R

T

λ λ

λ

  = =−
 

== − 
  = 
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Fig. 1 The initial state response ( )( )x t  of the 

system (79). 

Fig. 2 The norm of initial state response 

( ( ) ( ))
T T

x t E Ex t of the system (79). 

 

 

Using Theorem 4, for fixed 2.68℘=  we get: 

1.88 5.85

1.88 27.27

14.00

0.0 0

12.78

30.13.0

P

 
 

= 



−



−



− 


, 

69.24 0.13 0.00

0.13 71.65 0.00

0.00 0.00 71.54

Q

 −
 

= − 
 
 

, 
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1 2

3 4

13.67, 27.61,14.00 0.00

69.16, 71.790.00 ,

0.00 0.00 52

1.88

1.88 27

.37 1.24

.27

m

R

T

λ λ

λ λ

  = =
 

= ==  
 = 

−

−



 

Further, based on simulation of the system (79), the parameter m
T  is estimated ( estT ) 

from the norm of initial state response ( ( ) ( ))
T T

x t E Ex t  and the following value is 

obtained: 6.8
est

T = . 

According to data, it can be seen that the condition of Theorem 4 is less conservative 

( 1.24
m

T = ) than the condition of Theorem 3 ( 0.65
m

T = ), because it gives m
T  that is 

nearer to the estimated value, 6.8estT = . 

 

5. CONCLUSION 

 

This paper extends some of the basic results in the area of the non-Lyapunov stability to 

the particular class of linear singular time-delay systems. The finite-time stability 

problems of linear singular time-delay systems are studied. Using classical and LMI 

approaches novel sufficient conditions for finite-time stability are presented. The 

obtained LMI conditions can be checked by using the standard numerical optimization 

methods. Finally, numerical example is given to show the effectiveness of the proposed 

approaches. 
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Abstract. The aim of this paper is a detailed synthesis and analysis Cable-

suspended Parallel Robot – CPR (aerial robot), which should enable their 

strong progress. This would be reflected in the implementation of highly-

automated system that would lead the camera precisely in space with minimum 

participation of human labor. Setting and achieving this goal provides a much 

wider possibilities for its future use. The unique general type of the CPR-B 

mathematical model is defined. Kinematic model is generated for the system 

via Jacobi matrix. An adequate choice of generalized coordinates (in this 

paper, the internal coordinates), provides a mathematical model that 

illuminates the mapping of internal (resultant forces acting on the shaft of 

each motor) and external forces (acting on a camera carrier) by the Jacobi 

matrix on motion dynamics of each motors. Such an operation of this system 

can provide only with application of his high-fidelity mathematical model 

during the synthesis and analysis, which would further enable the development 

and application of modern control law. Several numerical examples are used 

for the CPR model validation. 

Nomenclature 

DOF  degree of freedom 

CPR  Cable-suspended Parallel Robot 

)(st  time 

][0001.0 sdt =  sample time 

]/[81.9
2smg =  gravitational acceleration 

][][ mzyxp
T=  position of camera carrier in space of Cartesian coordinates 

(external coordinate) 

...3,2,1=i  total number of DOF 

][][ 321 radTθθθφ =  vector of internal coordinates 

][][ 321 NFFFF T
b =  vector resultant force acting on the shaft of each motor (motor 

force load) 
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][][ NFFFF T
p zyx=  force acting on the camera carrier 

][][ NPPPP T
p pzpypx=  perturbation force acting on the camera carrier 

 

])[( NPFF pp +=  whole forces acting on a camera carrier 

][][ 321 NmMMMM T
b =  motor moment load 

])[( rad
o

ii θθ  
rotation angle of the motor shaft after the reducer (desired 

value) 

][15.0 mRi =  winch radius (it is assumed that all 3 winch have the same 

radius, than in Example 3) 

bJ  Jacobi matrix 

)(917.0 Ω=riR  rotor circuit resistance 

][Vui  voltage 

][Aii  rotor current 

)]//(3.3942[ sradVCEi =  proportionality constant of electromotive force 

]/2.5194[ ANmCMi =  proportionality constant of the moment 

)]//([0.0670 sradNmBCi =  coefficient of viscous friction 

][1.5859
2kgmJri =  inertia moment of the rotor and reducer 

0.1787=
⋅

=

Mi

riri
vi

C

RJ
G  

characteristic of motor inertia  

3.4186=+
⋅

= Ei

Mi

Ciri
vi C

C

BR
L

 

characteristic of motor damping  

0.364==

Mi

ri
vi

C

R
S  

geometric characteristic of the motor 

][1 kgm =  mass of the camera carrier  

][2.3 md =  length of the recorded field 

][2.2 ms =  width of the recorded field 

 

][0.2 mv =  height of the recorded field 

]/[0)(),(0)( sradtradt oioi == θδθδ   initial deviation of motor rotating angle 

]30003500800[diagK
lp

=

]11012060[diagKlv =  

positional, velocity amplification for motion control  

5.0=◊  factor that characterizes two parallel guided ropes  
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1. Introduction  

 

The goal of this research is to show modeling and control of the Cable-suspended Parallel 

Robot (CPR). Similar systems were analyzed and modeled as presented by the following 

publications. 

In paper [1], the design of a planar three-degree-of- freedom parallel manipulator is 

considered from a kinematic viewpoint. Four different design criteria are established and 

used to produce designs having optimum characteristics. 

The paper [2] presents the first and second order kinematic analysis of a three-degree-of- 

freedom 3-RPS parallel robot mechanism. The position and orientation parameters of 

the moving platform of this mechanism are six. 

In paper [3] authors present algorithms that enable precise trajectory control of 

NIMS3D, an under constrained, three-dimensional cabled robot intended for use in 

actuated sensing. They begin by offering a brief system overview and then describe 

methods to determine the range of operation of the robot. Next, a discrete-time model of 

the system is resented. 

In paper [4] author presents several prototypes of wire-driven parallel robots, recently 

designed and which use two different actuation schemes. Two of them have been 

completed and submitted to extensive tests. These tests have allowed determining 

interesting open problems related to kinematics that are presented. 

The wrench-closure workspace of parallel cable-driven mechanisms is the set poses of 

their mobile platform for which the cables can balance any external wrench. The 

determination of this workspace is an important issue in [5] since the cables can only 

pull and not push on the mobile platform. 

Parallel cable-driven Stewart-Gough platforms consist of an end-effector which is 

connected to the machine frame by motor driven cables. Since cables can transmit only 

tension forces, at least m = n + 1 cables are needed to tense a system having n degrees-

of-freedom. This results in a kinematical redundancy and leads to a (m – n)-dimensional 

solution space for the cable force distribution presented in [6]. 

This paper presents the recent results from a newly designed parallel wire robot which is 

currently under construction. Firstly, an overview of the system architecture is given and 

technically relevant requirements for the realization are identified. A technique to 

compute and transfer an estimation of the workspace to CAD tools is presented in [7]. 

The paper [8] presents an auto-calibration method for over constrained cable-driven 

parallel robots using internal position sensors located in the motors. A calibration 

workflow is proposed and implemented including pose selection, measurement, and 

parameter adjustment.  

Wire-driven parallel robot has attracted the interest of researchers since the very 

beginning of the study of parallel robots [9]. This type of robot has the advantage of 

having light mobile mass, simple linear actuators with possibly relatively large stroke 

and less risk of interference between the legs. On the other hand their major drawback is 

that wire actuator can only pull and not push. 

A nonlinear dynamic analysis of the suspended cable system is carried out with some 

sensible results presented in [10] that could be useful to the real engineering of LSRT. 
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Integrated mechanical, electronic, optic and automatic control technologies are 

employed to make considerable improvement upon the same system. 

For the requirement of trajectory tracking of large spherical radio telescopes, a large fine 

tuning platform based on the Stewart platform is presented in papers [11] and [12]. The 

mathematical model for kinematic control is developed with coordinate transformation, 

and a dynamic analysis is carried out using the Jacobi matrix, which, with a singularity 

analysis, built a solid base for the tracking control. 

This work was done for the suspension system in four points, i.e. to be hung on all four 

edges of the workspace shape parallelepiped. It is a necessary geometric condition so as 

to provide camera motion through the entire space. See Fig. 1.  

Camera’s carrier moves in space freely allowing the capture of objects from above. It gives 

a unique feeling to the event viewer to follow smoothly from an unusual proximity, and 

that is very close to the action regardless of the size of observed space. Free motion in 

space opens up completely new and unique perspective. The commands for the 

synchronized motion of each winch are provided, with control of motion of each motor, 

which ultimately provides three-dimensional continuous camera motion.  

The gyro sensor, which is installed in the carrier, is stabilized towards the horizon.  

The CPR system should fly over the audience without being able to be off and fall to the 

ground. The whole system is very reliable in the physical sense, because there is only 

minimal possibility that the camera carrier falls to the shot ground.  

This would happen only if both ropes broke at the same time. Two parallel guided ropes 

through the system are inevitable for the physical functioning of the system in Fig. 1. 

Winch 4 is driven by a motor that generates the angular displacement
4

θ for winding or 

unwinding fiber-optic cable, depending on the position of the camera carrier in the space. 

The purpose of the motor angular displacement 
4

θ  is used to ensure that the fiber-optic 

cable is never too tight or too loose and it is used to control the position of the camera 

relative to the moving objects.  

The CPR system has different areas of applications and promising research future. Our 

goal is to implement this system with maximum precision.  

The Section II represents a detailed description of the CPR-B system. The same Section 

describes the mathematical model for the CPR-B. The samples of the system responses are 

analyzed for different conditions in section III. In the section IV there are concluding 

remarks. 

 

2. Mathematical Model of the Cable-suspended Parallel Robot – CPR-B  

 

In this paper, a new original CPR-B has been developed. Over the pulley system, ropes 

are run on the winches (reel) 1, 2, 3, powered by motors.  

First and second motors are used to wind up the ropes about the coils. During the rotation 

one side is winding while another side is unwinding. See Fig. 2. 

The third motor is used to wind up the two ropes about the coil only in one direction. 

Those motion produce winding or unwinding of both ropes at the same time. This can be 

seen in Figure 1. Ropes coil on winches has radius R . 

Synchronous motion of the motors produces camera carrier to move in the x , y , z  
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Cartesian space.  
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                                                                  Figure 1. CPR-B, a) in 3D, b) top view. 

 

The desired motion trajectory of the camera is defined in x , y , z , Cartesian coordinates, 

and it is generated by motion of three motors 1θ , 2θ , 3θ . The kinematic model of the 

CPR-B has been developed as essential part for solving the CPR-B dynamics. See Figure 

1. 

The relation between the camera motion in the Cartesian space x , y , z  and angular 

positions of each motor 1θ , 2θ , 3θ  is solved by the Jacobi matrix bJ , which connects 

velocities of external coordinates changes T
zyxp ][  = with velocities of internal 

coordinates changes T
][ 321 θθθφ  = . For generation of any trajectory in x , y , z  

space, it is necessary to provide very precise and mutually coordinated motion of all three 

motors 1θ , 2θ , 3θ .  
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The geometrical relationship between the lengths k , h , m , n , and Cartesian 

coordinates x , y , z , is defined by the following equations: 

 
222

zyxk ++= . (1) 

 
222

)( zyxdh ++−= . (2) 

 
222

)()( zysxdm +−+−= . (3) 

 
222

)( zysxn +−+= . (4) 

For every sampling time the relations are defined: 

 
t

n

t

k
R

t ∆

∆
+

∆

∆
=⋅

∆

∆
1

θ
. (5) 

 
t

h

t

k
R

t ∆

∆
+

∆

∆
=⋅

∆

∆
2

θ
. (6) 

 

R
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h
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R

t

R
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R
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⋅
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∆
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∆

∆
+
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∆
=⋅
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∆

⋅
∆

∆
+

∆

∆
+

∆

∆
=⋅

∆

∆

13

23

θθ

θθ

. (7) 

The equation (8) is obtained by substituting (5) and (6) into the (7): 

 
t

n

t

m

t

h

t

k
R

t ∆

∆
+

∆

∆
+

∆

∆
+

∆

∆
+=⋅

∆

∆
3

θ
. (8) 

If the sampling time t∆  is small enough it follows that: 

 nkR  +=⋅1θ . (9) 

 hkR  +=⋅2θ . (10) 

 nmhkR  +++=⋅3θ . (11) 

By differentiating (1)-(4) and substituting them into the (9)-(11), the relationship 

between velocities of external coordinates changes 
T

zyxp ][  =  and velocities of 

internal coordinates changes 
T

][ 321 θθθφ  = has been obtained: 

 pJb  ⋅=φ . (12) 
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















=

333231

232221

131211

bbb

bbb

bbb

b

JJJ

JJJ

JJJ

J . (13) 

It is evident that Jacobi matrix bJ  in (13) is not diagonal but full matrix. The elements of 

this matrix beyond diagonal show the strong coupling between the external and internal 

coordinates.  

The kinetic energy kE  and potential pE  energy of the camera carrier motion with mass 

m  are given in the following equations: 

 
222

2
1

2
1

2
1 zmymxmEk  ⋅⋅+⋅⋅+⋅⋅= . (14) 

 zgmE p ⋅⋅= . (15) 

First the analysis was done where the ropes are rigid. In that case a system mathematical 

model has the following form: 

 bvvv MSLGu ⋅+⋅+⋅= φφ  . (16) 

Vector equation (16) is given by applying Lagrange’s equation on generalized 

coordinates 1θ , 2θ , 3θ .  
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Figure 2. a) The ropes forces before motor 1, motor 2 and motor 3 and after motor 1 and motor 2 , b) the ropes 

forces which carry a camera. 

 

Where: T
uuuu ][ 321= , vixv GdiagG =)33( , vixv LdiagL =)33( , vixv SdiagS =)33( ,

[ ]Tcc ga −= 00 .  

 RFM bb ⋅= . (17) 

 
( )

F
R

J

F

T
b

b ⋅







=

−

◊

1

. (18) 
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 




 +=

pp
PFF . (19) 

 )( ccp apmF +⋅=  . (20) 

 
( )

R

J

C

T

b

b

1−

◊ 






= . (21) 

 ),( bb JfJ ◊=◊ . (22) 

Since the CPR-B has two parallel ropes, suspending cameras in all four directions, then 

(22) has the following form: 

 bb JJ ⋅◊=◊ . (23) 

The presence of factors ◊  is a consequence of structural systems with Fig. 1.  

2
1=◊  is a factor which multiplies only the direction of two parallel ropes. In this 

direction, a force in each rope is a half of the force impact F  that is acting on the 

camera carrier. Observed CPR-B model has two ropes from a camera carrier to all four-

point suspension (line k , h , m , n ). 

The relation between the resultant forces bF  and total force F  acting on a camera 

carrier in Cartesian space is given by (18). This is a geometrical relationship, which is 

uniquely defined. 

In order to obtain the relationship between internal and external forces, the virtual work 

principle can be applied. Equation (18) is particularly important because it participates 

in the configuration of the CPR-B dynamic model. 

Vector resultant force acting on the shaft of each motor is T
FFFFb ][ 321= . 

Substituting (17)-(23) into the (16) produce a dynamic model of CPR-B which is 

expressed in (24): 

 FCRSLGu bvvv ⋅⋅⋅+⋅+⋅= φφ  . (24) 

Matrix bC  describes a strong coupling between the presented motors. 

Control law is selected by the local feedback loop for position and velocity of the motor 

shaft in the following form: 

 )()(
i

o

i
lvi

i

o

i
lpii KKu θθθθ  −⋅+−⋅= . (25) 

 

3. Simulation Examples 

 

The example CPR-B from Fig. 1 is analyzed. In order to make results comparable, they 

are made for the same desired trajectory and the same all other system parameters, as 

defined in the Nomenclature. 
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Camera carrier has the starting point ]][2.01.04.0[ mp
o

start
−= , and the end point 

]][2.07.16.2[ mp
o

end
−= . See Fig. 3a).  
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Figure 3. Reference frame a) position 
o

x , 
o

y , 
o

z , b) velocity of camera carrier )/(0.417
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o

p = . 

 

The level of control signals is given in Fig. 4f) and does not exceed the limits of 

][24 V± . In Fig. 4c) there are three resultant forces that are not exceeding ][34 N . 
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Figure 4. a) Reference frame and real coordinate x , y , z of camera carrier, b) reference and real coordinate 
1

θ , 

2
θ , 

3
θ  of motor shaft, c) reference frame and real resultant forces 

i
F  , d) deviation real from the reference frame 

values of a motion trajectory of camera carrier, e) deviation real from the reference frame values of a motion 

trajectory of motor shaft, f) reference frame and real control signal 
i

u , (for CPR-B, Example 1). 

 

The camera moves in x  and y  directions, whiles the coordinate z  is constant. Camera 

motion velocity has a trapezoid form and ]/[0.417
max

smp
o = , as shown in Fig. 3b).  

The motors are of Heinzman SL100F type and gears are HFUC14-50-2A-GR+belt. 
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Example 1: The mathematical model of the system, at the reference frame, is defined by 

(12)-(24). The radius of motorized pulley is )(15.0321 mRRR === , in this Example. 

All three motor’s angular positions 
1θ , 2θ , and 

3
θ  are involved in the coordinated task 

generation. This is clearly shown in Fig. 4b), and it is a proof that all these motions are 

mutually coupled. There is a good tracking of a desired trajectory at the level of motor 

motions (in the order of about ][10
3

rad
−

, see Fig. 4e)) and at the level of motion of the 

camera carrier (on the order of about ][10
3

m
−

, see Fig. 4a) and Fig. 4d)). 

 

Example 2: All system and control parameters are the same as in the Example 1. This 

example is done with one illogical assumption, which is the case when the system user 

assumes that the system at the reference level is uncoupled. In that case the Jacobi 

matrix has the diagonal form:  

 pJb  ⋅= ⊕φ . (26) 
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J
. (27) 

 ⊕⋅+⋅+⋅= bvvv MSLGu φφ  . (28) 

 RFM bb ⋅= ⊕⊕ . (29) 

The resultant force is defined as: 
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F
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J

F
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b

b ⋅

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


=
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⊕

1

. (30) 

 
( )

R

J

C

T
b

b

1−

⊕◊
⊕








= . (31) 

 ⊕⊕◊ ⋅◊= bb JJ . (32) 

 FCRSLGu bvvv ⋅⋅⋅+⋅+⋅= ⊕φφ  . (33) 

Directly follows that the matrix ⊕bC  is diagonal like matrix ⊕bJ . 

Unlike the previous example, the mathematical model of the system at the reference 

level in this example is defined by (26), (27), (14), (15), (28)-(30), (19), (20), (31)-(33). 

At the real level the system is coupled and its kinematic and dynamic model is defined by 

(12)-(24). 

Fig. 5a) shows the results of the camera carrier motion in all three directions of the 

Cartesian coordinate frame x , y , z and the reference frame o
x , 

o
y , 

o
z .  
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Trajectory of motor angular positions at the real frame 1θ , 2θ , 3θ  and reference 
o

1
θ , 

o

2
θ , 

o

3
θ  frame is given in Fig. 5b).  
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Figure 5. a) Reference frame and real coordinate x , y , z of camera carrier, b) reference and real coordinate 
1

θ , 

2
θ , 

3
θ  of motor shaft, c) reference frame and real resultant forces 

i
F  , d) deviation real from the reference frame 

values of a motion trajectory of camera carrier, e) deviation real from the reference frame values of a motion 

trajectory of motor shaft, f) reference frame and real control signal 
i

u , (for CPR-B, Example 2). 

 

Since the positional control law is applied (with local feedback on the position and 

velocity) for each motor angular position, defined in equation (25), the control of motor 

motion is ideal, see Fig. 5b) and Fig. 5e). However, the coupling characteristics are not 

taken into the consideration at the reference frame, and because of that there is no good 

enough tracking of a real trajectory comparing to the reference signal in the Cartesian 

space, see Fig. 5a) and Fig. 5d). The unknown coupling characteristics significantly affect 

the accuracy of the trajectory tracking, which value reaches )(85.0)( min m
o

zz −=− . 

This will happen in the period of ][3.5 s . The value of control signals is given in Fig. 5f). 

In Fig. 5c) there are three resultant forces, until to ][32 N . 

 

Example 3: The importance of this example is that the radius of motorized pulley is 

)(08.0321 mRRR === . 

All other system parameters are the same comparing to the one in Example 1. The 

system mathematical model at the reference frame is defined by equations (12)-(24). It 

can be seen in Fig. 6d) and Fig. 6e) that the desired trajectory at the camera motion frame 
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and at the motor motion frame is worse than in Example 1. This is because the selected 

radiuses of motorized pulleys are smaller. 

The first motor achieves the saturation point at ][7.4 st =  referred to the real and 

reference frames. At the reference frame the signal goes out of saturation at ][8.6 s , while 

at the real frame it goes out of saturation at ][45.7 st = , see Figure 6f). The second and 

third motors do not enter saturation at all.  

This causes a significant deviation of the real position of first motor comparing to the 

reference frame, which reaches value ][137.0( min1 )
1

rad
o

−=− θθ , see Fig. 6b) and Fig. 

6e). This is all reflected in a bad position tracking of the camera carrier in the Cartesian 

coordinates ( ][063.0)(
min

mzz
o

−=− , ][068.0)(
min

mxx
o

−=− ), see Fig. 6d). The 

resultant forces in Fig. 6c) are up to ][35 N . 

Reducing the radius of all three motorized pulleys significantly affects the dynamics of 

the motor i.e. it increases their speed. 

This analysis shows that the motion dynamics of individual motors depends significantly 

on the choice of CPR-B construction type and its parameters. 

This example confirms the property of the coupling between the motor motion and camera 

motion, as well.  
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Figure 6. a) Reference frame and real coordinate x , y , z of camera carrier, b) reference and real coordinate 
1

θ , 

2
θ , 

3
θ  of motor shaft, c) reference frame and real resultant forces 

i
F  , d) deviation real from the reference frame 

values of a motion trajectory of camera carrier, e) deviation real from the reference frame values of a motion 

trajectory of motor shaft, f) reference frame and real control signal 
i

u , (for CPR-B, Example 3). 
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                                        Figure 7. Organized work space with CPR system. 

 

The CPR-B is modeled and analyzed by software package AIRCAMB. 

The CPR device is developed in the Mihajlo Pupin Institute and is used to observe space. 

It is a part of more complex system presented in [13], see Fig. 7. The CPR observes the 

area in which the humanoid robot and robotic vehicle. 

4. Conclusion  

 

The unique general type of the CPR-B mathematical model is defined.  

It is clear that the system has double led ropes that move the camera carrier through the 

3D space. Another import specification of the system is reflected in the work done by the 

first and the second motor within construction. Each motor unwinds the rope on one 

side, and winds it on the other side, while the third motor unwinds or winds two ropes at 

the time only from one side. These properties have an important influence on the 

complexity of both kinematics and dynamics of the CPR-B model. Kinematic model is 

generated for the system via Jacobi matrix. The presented CPR-B model is functionality 

generated by formulating and applying its highly authentic kinematic and dynamic model 

during synthesis and analysis which will enable further development and 

implementation of the current control laws. Software packages AIRCAMB is developed 

and used for individual and comparative analysis of the CPR-B from various aspects. 

The influence of changing any parameters of the system (workspace dimensions, the 

mass of a camera carrier, change the size and dynamics of power disturbances, the 

choice of control law, the reference trajectory, and the presence of singularity avoidance 

system and a number of other characteristics) can be analyzed through this software 

package.  

The selection of the motor components is extremely important for the CPR-B 

performance. The simulation results show the importance of the motor parameters 
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selection, especially for the cases when some system properties are unknown. Motor type 

can significantly affect the response of the system or accuracy of the desired trajectory 

tracking.  

The general mathematical model of the CPR-B presented in this paper has been 

evaluated using several numerical examples. The model can be used for different 

applications, especially for following moving objects using integrated intelligence. 

Future research intend at implementing the elastic ropes (type of nonlinear dynamic 

elasticity as defined in [14]-[31] in the mathematical model of the CPR-B. In this 

research several different models were developed and new models will be developing for 

different applications. All these models will be unified according to their similarities 

into one reconfigurable model, using the approached presented in [32] and [33].  
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ABSTRACT Vector expressions for linear momentum and angular 

momentum and their corresponding derivatives with respect to time 

describe rigid body nonlinear dynamics with coupled rotations around 

axes without intersection. Vector method based on mass moment 

vectors coupled for pole and oriented axes was defined by K. Hedrih in 

1991. and it is applied for analysis of a heavy gyrorotor nonlinear 

dynamics. Series of graphical presentations and their parametric 

transformations in relation with changing orthogonal distance between 

axes of coupled rotations is presented. 

 

 

1.Introduction 

 

Tern or a toy top is just a simple well-known toy with unusual property that when it 

rotates by high angular velocity about its axis of symmetry, it keeps in the state of 

stationary rotation around this axis. This feature has attracted scientists around the 

world and as a result of year’s research many devices and instruments are created; from 

simple to very complex structures, which operate on the principle of a spinning top that 

plays an important role in stabilizing the movement. Ability gyroscope that keeps the 

line was used in many fields of mechanical engineering, mining, aviation, navigation, 

military industry, and in celestial mechanics because heavy bodies in motion, rotors of 

turbines, different mobile installations on ships, artillery projectiles in motion, aircraft 

propeller rotating possesses special properties known as properties of gyroscopes. 

Each mechanical gyroscope is based on coupled rotations around more axes with one 

point intersection. Most of the old equipment was based on rotation of complex and 

coupled component rotations which resulting in rotation about fixed point gyroscopes. 

The classical books contain a classical and very important elementary dynamical model 

of the simple case of the gyrorotor, and present an analogous and useful dynamical and 

mathematical model of nonlinear dynamics. This work is different in that the equations 

of motion are derived using vector method proposed by K. Hedrih [1], and propose 

stability analysis for the system based on the derived model. The vector approach is very 
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suitable to obtain new view to the properties of dynamics of pure classical task, 

investigated by numerous generations of the researchers and serious scientists around 

the world. 

 

2. Equations of rigid body dynamics  

Mass moment vectors for axis and pole was introduced and defined by Hedrih 

(Stevanovic) K., and presented in the monograph [1] as well as in the series of papers 

[2-4] listed here. 

Here is considered a heavy rigid body which rotates around two coupled axes without 

intersection and with orthogonal distance defined by vector 120 OOr =


. The body is 

eccentrically and inclined positioned on the self–rotation axis (Figure 1). Two angular 

velocities around two axes oriented by unit vectors 1n


and 2n


are denoted as 111 n


ωω =  and 

222 n


ωω = . By using basic definitions for linear momentum and angular momentum as 

well as expression for velocity of elementary body mass particle 

rotation [ ] [ ]ρωωω


,, 2102 ++= rv , the following vector expressions are presented: a
* 

for 

linear momentum and b
* 
for angular momentum.  
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, dVdm σ= are corresponding body 

mass linear moments of the rigid body for the axes oriented by direction of component 

angular velocities of coupled rotations through the movable pole 2O on self rotating 

axis, 
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 are corresponding body 

mass angular moments of the rigid body for the axes oriented by direction of component 

angular velocities of coupled rotations through the movable pole 2O on self rotating axis. 

Using first derivatives of linear momentum and angular momentum two vector 

equations of rigid body coupled rotation around axes without intersection are obtained. 
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These vector expressions can be used in general case when considered system has two 

degree of freedom. Differential equation of self rotation and equation of phase   

expressions for kinetic pressures to bearings of self-rotation shaft with corresponding 

components as well as for corresponding vector rotators can be obtained [5-7].  

The dynamical equations for motion on a straight inclined rotor can be easily obtained 

from the theorem of angular momentum derivative which in this case is in a form[5]: 

( ) [ ] [ ][ ]MrFM
dt

Ld
CiO

O
ρωωω




,,, 21021

1 +−=
 (5) 

This leads to the two vector equations of rigid body coupled rotation around axes without 

intersection which can be used in general case when considered system has two degree 

of freedom[7]. In case when the second angle 2ϕ is a rheonomic coordinate which is 

defined by a time function 2022 ϕωϕ += t , we have one vector equation and it is in a 

form: 
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Here, in  differential equation there are some constants which are in following form: 
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Transforming previous nonlinear differential equation into system of two first order 

nonlinear differential equations it is possible to obtain stationary values which 

correspond to the relative equilibrium positions of the rotor on the self rotating axis. For 

each of relative equilibrium position Lyapunov criteria of stability can be applied and 

then it can be concluded about center or saddle points. 

 

Relative nonlinear dynamics of heavy gyrorotor disc around self rotation shaft axis is 

possible to present by means of phase portrait method. Forms and transformations of 

phase trajectories by changing of initial conditions and for different cases of rotor 

eccentricity ( )ε , angle of inclination ( )β  or orthogonal distance between axes ( )a  express 

nonlinear phenomena. 

The solution-first integral of differential equation (6) with the initial conditions 00 =t , 

( ) 1001 ϕϕ =t , ( ) 1001 ϕϕ  =t , is obtained in the following form: 
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The energy integral because the conservative system is analyzed is in a similar form. 

 Some curves of potential energies are shown on Figure 2 where one can  see extreme 

values that correspond to stable or nonstable relative equilibrium positions. 
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3. Phase portrait of the gyrorotor 

 

Using obtained vector expressions by applying software tool, series of graphical 

presentations depending on the orthogonal distance between two axes of coupled disk 

rotations are obtained.  

Characteristic potential energy curves, and corresponding homoclinic separatrix phase 

trajectories for different parameters values of the basic system correspond to the dynamic 

model illustrate the trigger of the coupled singularities and coupled triggers of the 

coupled singularities and homoclinic trajectories in the form of the number eight and 

also in the form of the duplicate number eight. 

 

 

 

Figure 1-  Model of gyrorotor who rotates around 

 two no intersecting axes 

Figure 2 - Potential energy  

  

Phase trajectories for different values of parameters of system and for different initial 

conditions are shown on Figure 4.There are many types of trajectories which are  relared 

to oscilatory or progresive motion.  One-sided separatrix, which are “prolating”, and 

open phase trajectories, which are comprising enclosed phase trajectories which are 

matching to the periodical oscillator motion-rotations system around stability 

configurations of equilibrium positions for specific initial conditions when initial 

angular velocity are small and small angles elongation of rotations, and when that 

condition are satisfying for any time are illustrated on Figure 3. 

In Figure 4. on phase portrait we notice augmentation of singular points, and it can be 

deduced by researching that for some kinetic parameters of system one stable 

equilibrium position loses stability and that positions now on phase portrait response to 

homoclinic point by type unstable saddle, but in symmetrical neighborhood appear two 

near-by stable equilibrium positions (configuration of masses), which on phase portrait 

response two singular points by center type. All of three points are coupled in one 

“trigger” (trigger of coupled singularities). Two stable singular points by type centers 

enclose one, and the new, closed homoclinic orbit which goes around three singularities, 

and passing trough one homoclinic point by type saddle in which it self-cross, that it is 

shaped like form of the number eight or in the form of duplicate of number eight or 

multiplication. Inside that new separatrix trajectory homoclinical orbit  a series of 

common closed phase trajectories which los instability relative equilibrium positions or 
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relative rest positions, which correspond to periodic oscillatory motion for certain initial 

conditions, apropos oscillations around new stable position of equilibrium can be 

noticed.  
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Figure 3 - Parametric transformation of phase trajectory for different values of orthogonal 

distance between axes 
 

                                     
Figure 4 -  Transformation of a closed phase trajectory of the heavy gyro-rotor-disk dynamics with coupled 

rotations inside a  trigger of coupled singularities 
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4. Concluding remarks 

 

By use derived vector expressions as well as graphical presentations of the system 

nonlinear dynamics, we can 

conclude that body mass inertia moment vectors and vector rotators are very suitable for 

obtaining linear momentum and angular momentum and their derivatives of the system 

with coupled numerous rotations around axes without intersections, as well as for vector 

method analysis of system vector parameter dynamics. Analysis of rotation of a heavy 

gyro-rotor show us that in graphical presentations of the system kinetic parameters exits 

a set of the fixed points not depending of change of rigid body eccentricity or angle of 

inclination or of the orthogonal distance between axes of rigid body coupled rotations. 
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Abstract.The paper contains analytical descriptions of heavy material particle which moves 

on a rotating circular smooth line, radius R,  which rotate around vertical axis, eccentrically 

positioned in relation to center of circle line on distance e, angular velocity , (see Figure 1). 

By using software GeoGebra three-parametric testing of singularity and position of non-

linear dynamics relative balance of heavy material particle on eccentrically rotating smooth 

circle line is examined. 

 

 

1. Introduction  

 

Dynamics of heavy material particle is a very old engineering problem with many 

different research results and discoveries of new nonlinear phenomena (see Refs. [1-3]). 

Many researchers pay attention and interest for research the nonlinear dynamics by 

using new analytical, numerical and experimental methods to discover the properties of 

nonlinear dynamics (see Refs. [4-10]).  

2. Motion of the heavy material particle along circles 

In Figure 1, for generalized coordinate we will take the angle φ, by which we mark 

relative position of material particle on circle line. The system has one degree of moving 

freedom, and two degrees of moving freedom because one reonomic relation is imposed- 

rotating by constant angular velocity.  

Velocity of heavy material particle has two components:  

1. component of relative rotation for circle line:    

   ϕ= Rvr
                                                                                                  (1) 

2. component due to transmitting moving by rotation of circle line: 
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Ωϕ+= )sin( Revp
                                                                       (2) 
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Figure 1. Moving of heavy material particle on circle 

line, radius R, which rotates around vertical axis, 

eccentrically positioned in relation to center of  circle 

line on distance e, by angular velocity . 
 

 
 

The components are normal in relation to each other, so the square of angular velocity of 

material particle is presented in following form:  
222222

)sin()( Ωϕ++ϕ=+= ReRvvv prel
                                               (3) 

Expression of kinetic energy of the system is in the form: 

))sin()((
2

1

2

1 2222 Ωϕ++ϕ== ReRmmvEk
                                          (4) 

Potential energy of the system equals operation of weight force by improving height 

h=R(1-cosφ) and with changed mark.  

)cos1( ϕ−== mgrRmghEp
                                                            (5) 

On the basis of Lagrange's equations:  .0=
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Differential equation of heavy material particle moving illustrated in figure is:  
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If we introduce following symbols 
2Ω

=λ
R

g
 and ψ==ε

R

e
, previous differential 

equation is in the following form:  

( ) 0cossincos
22 =ϕψΩ−ϕϕ−λΩ+ϕ                                                        (7) 

Using the previous ordinary nonlinear differential equations of second order, form non-

linear system of differential equations of first order in the following form: 

ϕψΩ+ϕϕ−λΩ−=

=
ϕ

cossin)cos(
22

dt

du

u
dt

d

                                                        (8) 

For angular velocity we introduce symbol u.  We are interested in the values of the 

parameters λ and ψ  leads to changes in dynamic systems. The paper deals with the 

specific parameter values λ and ψ for which there is a substantial change in the 

dynamical system. 
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3. Nonlinear differential equation 

 

The initial problem that we had, describing of the dynamics movement of heavy material 

particle which moves as already described, reduced to solving nonlinear differential 

equation: 

( ) 0cossincos
22 =ϕψΩ−ϕϕ−λΩ+ϕ .                                             (9) 

Introducing a shift )(, ϕϕ uuu == we lower row of differential equation for one, i.e. 

we come to the equation:   

.0cossin)cos(
22 =ϕψΩ+ϕϕ−λΩ+uu                                            (10) 

 

From there we get .)sin2sincos2(
2

cu +ϕψ−ϕ+ϕλΩ±= From here we get 

connection between angle φ by which we denoted position of material particle on circle 

line and time t , i.e. we come to a general solution of starting differential equations.   

.0,

)sin2sincos2(
2

1

22

≠Ω+
+ϕψ−ϕ+ϕΩ

ϕ
±= ∫ c

c

d
t

                       (11) 

Of course, in our particular case we start from assumption that there is determined 

angular velocity , and we will not consider case when =0. 

 

4. Three-parametric testing of singularity 

 

To determine the stationary points of differential equations system (8), which correspond 

to positions of relative heavy material point equilibrium on eccentrically-rotating smooth 

circle line, it’s necessary to find position where relative angular velocity and relative 

angular acceleration of material points on the circle line equal zero. From there follows 

that it is necessary that the functions, i.e. expressions on the right side of the differential 

equations system (8) equals zero.  

In order to determine the stationary points of differential equations system (8), we 

introduce next conditions: 

0=u                                                                                               (12) 

( ) 0coscossinsin
2 =ϕψ+ϕϕ−ϕλΩ−  

In order to determine the stationary points, it is necessary to solve next nonlinear 

equation: 

0coscossinsin =ϕψ+ϕϕ−ϕλ                                                         (13) 

However, a set of roots which we seek from the previous equation (13), having 

considered the fact that it depends on three parameters of systems, radius circle line R, 

eccentricity e, center’s C circular lines in relation to the axis of rotations, as angular 

velocity  rotation around the circle line, we can express by using two coefficients 

2Ω
=λ

R

g  and ψ==ε
R

e  contained in previous equation. 

This means that it is necessary to examine the influence of these two coefficients on the 

set of roots of nonlinear transcendental equation. 
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If 0sin =ϕ  i.e. Ζ∈π=ϕ kk , then for 0=ψ  points Ζ∈π kk ,),0(  are stationary points of 

system of differential equations. Assuming that 0sin ≠ϕ ,and if we divide equations (13)  

with ϕsin then follows: 

ϕψ−ϕ=λ ctgcos                                                                           (14) 

Coefficient ( )ψϕλ=λ ,  we will observe as a function of two variables: coordinates φ and 

relative eccentricity ε=e/R=ψ   of the axis rotation from center around circle line.  

Depending on the properties and values of coefficient ( )ψϕλ ,  in the function of the 

coordinates φ and relative eccentricity ε=e/R=ψ of the axis rotation from center around 

circle line, we come to following conclusions. 

 

5. Mathematical conclusion 

 

First, it is necessary to explain what we mean when we say „Mathematical conclusion”. 

Mathematical conclusion implies determining the stationary points of system differential 

equations, but when parameters λ,  and ψ can be of arbitrary values from the set of real 

numbers, i.e. when these values we do not observe as the physical size, but rather as 

mathematical constants.  

For each fixed λ and ≠0 we can find stationary points of the system. We will differ 

cases: 

1. For ψ <-1 or ψ >1 there will always be two stationary points on interval [ ).2,0 π  It 

can be seen in Figures 6 and 7. 

 

2. For fixed [ ]1,1−∈ψ  let’s consider λ as a function of φ i.e.  λ= λ(ϕ ). If λ <
min

λ or 

max
λ>λ , system dynamics will have two stationary points on interval [ )π2,0  (see 

Figures 2 and 4). If 
min

λ=λ or 
max

λ=λ , system dynamics will have three stationary 

points on interval [ )π2,0  (See figure 8). If 
maxmin

λ<λ<λ system dynamics will 

have four stationary points on interval [ )π2,0  (See Figures 3 and 5). 

 

3.  For 3arcsin ψ=ϕ , λ will reach extreme values .If we mark with .arcsin 3* ψ=ϕ  

Then it is **
cos ϕψ−ϕ=λ ctgekstremo

.Of course for fixed values of the parameters λ, 
 and ψ, i.e. on the concrete example, stationary points can be determined 

completely.   

 

6. Conclusion about system dynamics properties  

 

In our particular case, we consider the problem when ≠0 and λ>0. Then we can get a 

little closer information about the stationary points. We will differ cases: 

 

1. For ψ <-1 or ψ >1 there will always be two stationary points in interval [ ).2,0 π  If ψ 

<-1 then the first will be in interval 





 π

2
,0 , and second will be in interval .

2

3
, 






 π
π   
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If ψ >1 then the first will be in interval 







π
π

,
2

, and second will be in interval .2,
2

3








π
π   

2. For  fixed [ ]1,1−∈ψ  and if  λ <
min

λ or  λ >
max

λ , system dynamics will have two 

stationary points on interval [ ).2,0 π  For fixed [ ]0,1−∈ψ  then the first will be in 

interval 




 π

2
,0 , and second will be in interval 





 π
π

2

3
, , and for fixed ( ]1,0∈ψ  then the 

first will be in interval 







π
π

,
2

, and second will be in interval .2,
2

3








π
π  For fixed 

[ ]1,1−∈ψ  and if  λ=
min

λ  or  λ =
max

λ system dynamics will have three stationary 

points in interval [ ).2,0 π  For  fixed ]0,1[−∈ψ  in the interval 







π
π

,
2

 will not be 

stationary points, and for  fixed ( ]1,0∈ψ  in the interval 






 π
π

2

3
,  will not be stationary 

points. For fixed  [ ]1,1−∈ψ  and
min

λ < λ <
max

λ , system dynamics will have four 

stationary points on interval [ ).2,0 π  For fixed ]0,1[−∈ψ  in the interval 







π
π

,
2

 will 

not be stationary points, and for fixed ( ]1,0∈ψ  in the interval 






 π
π

2

3
,  will not be 

stationary points. 

 

This can be seen in Figures 2, 3, 4, 5, 6, 7 and 8. 

 

 

7. Linearize of system and behavior of solutions in singular points environment 

 

We are interested in behavior of solutions in singular points environment. Therefore we 

exert linearization of the starting system (8). Linearized system is:  

 

u
dt

d
=

ϕ  

ϕϕψ−ϕ+ϕ−ϕλΩ−= )sinsincoscos(
222

ssss
dt

du                     (15) 

 

Where we marked ( )0,sϕ  stationary points. 

 

If we marked:  

( ).sinsincoscos
222

ssssR ϕψ−ϕ+ϕ−ϕλΩ−=                                (16) 

 

We will differ cases for:  

 

1. If  R>0, then the equation will have real roots, and in such a way that the first 

is lower than zero, and second higher than zero, than in this case, stationary 

points will be saddles.  
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2. If  R<0, than the equation will have complexity-conjugated roots, and in such a 

way that their real parts equal zero, then  in this case, stationary points will be 

centers.  

 

We are interested in a change of dynamic system due to the value of parameter Ψ. For 

that reason we will observe next equation. 

 

.0sinsincoscos
22 =ϕψ−ϕ+ϕ−ϕλ ssss

                                          (17)      

                                                           

For sϕ matter ss ctgϕψ−ϕ=λ cos  for Ζ∈π≠ϕ kks , . When we convert this in the 

previous equation (17), we obtain: .0sin
3 =ϕ+ψ− s This equation will have solutions 

for [ ].1,1−∈ψ  For ss ctgϕψ−ϕ=λ cos  and sϕ>ψ 3
sin system dynamics will have a 

different structure, then when is sϕ<ψ 3
sin . If we marked ,sin

3

0 sϕ=ψ  we can see 

that for each fixed λ , we can determine 
0

ψ , such that for 
0

ψ<ψ  system dynamics has 

one structure, and for 
0

ψ>ψ  other structure.  

 

We distinguish cases: 

 

1. If 1>ψ  (then 0sin
3 <ϕ+ψ− s ) 

For ( )π∈ϕ ,0z  0>R , so in this case stationary point will be a saddle. For 

( )ππ∈ϕ 2,z 0<R , so in this case stationary point will be a center. (See Figure 7) 

 

2. If 1−<ψ  (then 0sin
3 >ϕ+ψ− s ) 

For ( )π∈ϕ ,0z  0<R , so in this case stationary point will be a center. For 

( )ππ∈ϕ 2,z 0>R , so in this case stationary point will be a saddle. (See figure 6) 

 

3. If [ ]1,0∈ψ  

For [ )π∈ϕ ,0z , if ψ is such that 0sin
3 <ϕ+ψ− s , then 0>R , so stationary points are 

saddles, while if ψ  is such that 0sin
3 >ϕ+ψ− s , then 0<R ,  so stationary points are 

centers. For [ )ππ∈ϕ 2,z  then 0<R  so stationary points are centers. (See Figures 3 and 

2) 

 

4. If ( ]1,0∈ψ  

For [ )π∈ϕ ,0z
 then 0<R , so stationary points are centers. For [ )ππ∈ϕ 2,z

 if ψ is such 

that 0sin
3 <ϕ+ψ− s , then 0>R , so stationary points are saddles, while if ψ  is such 

that 0sin
3 >ϕ+ψ− s , then 0<R ,  so stationary points are centers (See Figures 5 and 

4). 
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8. Figures 

 

 

  
 

Figure 2. Portrait phase of dynamic system for                              Figure 3. Portrait phase of dynamic system for, 
61.0=ψ , 1=Ω  and 71.0=λ                                                  08.0=ψ , 1=Ω  and 71.0=λ  

                                                                                                                               

            
 
Figure 4. Portrait phase of dynamic system for                                  Figure 5. Portrait phase of dynamic system for 

96.0−=ψ , 1=Ω and  71.0=λ                                                      08.0−=ψ , 1=Ω and 71.0=λ  

                                                                                                         
 

           
 
Figure 6. Portrait phase of dynamic system for                                 Figure 7. Portrait phase of dynamic system for       

3−=ψ , 1=Ω  and 71.0=λ                                                       3=ψ , 1=Ω and 71.0=λ   
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                                                      Figure 8. Portrait phase of dynamic system for 

                                     35.0=ψ , 1=Ω and 35.0=λ  
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 Abstract. In this paper a method to find optimal places of piezoelectric actuators and 

sensors on different structures is presented. The genetic algorithm and multi-objective genetic 

algorithm are selected for optimization and H∞ norm  is defined as a cost function for the 

optimization process. To optimize the placement concerning the selected modes 

simultaneously, the multi-objective genetic algorithm is used. The optimization is 

investigated for two different structures: a cantilever beam and a simply supported plate.  The 

vibrating structure is controlled in a closed loop with feedback gains obtained from optimal 

control. Finally, output of a structure with optimized placement is compared with output of 

the structure with not optimized placement of piezoelectric patches. 

 

 

1. Introduction  

 

In recent years, focus of many researchers in the field of vibration control has been 

concentrated on implementation of active piezoelectric materials due to their numerous 

advantages. For instance, they response very fast to changes of circumstances and they 

flexibly can be used as a sensor or an actuator. They are also lightweight materials and 

can be embedded on different structures.  

The problem arises here to find the best location of the piezoelectric patches on 

structures to control the structure in an optimal way. Many researches have been done 

on this problem and lots of solutions have been recommended. Nevertheless all of them 

have some advantages and also disadvantages. The placement problem grows when not 

only optimization of one mode, but also some modes simultaneously are demanded. 

Arbel [1], Hac [2], and Devasia [3] have used the grammian matrix as criterion for 

optimization propose to maximize the controllability and observability of the structure. 

For optimization process usually classical algorithms such as conjugate gradient and 

Newton-Raphson are used but they crash down when there is more than on local optima. 

To overcome this problem genetic algorithm (GA) has been proposed in several papers. 

In this paper, the H∞ norm is selected as a criterion or fitness function for 

optimization process within GA. The advantage of the GA over some other placement 
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methods can be seen in the fact, that many objectives can be optimized simultaneously 

(in our case norms of different modes) and it results in optimal locations of piezoelectric 

patches, whereby unlike with some other methods, there is no need to specify in advance 

limited number of predefined places. 

2. Genetic algorithm 

 

For very complicated cases, which cannot be optimized with other numeric optimization 

strategies, the evolution strategies are good choice of design optimization. The evolution 

strategies are slow and they have convergence problems. But they are well suited for 

complex situations: multi-modal problems that don't have only one single local 

optimum, problems where the objective function or the constraints or parts of constraints 

are not differentiable, problems with discontinuous solution spaces with local optima, 

etc. This strategy is a member of the down-hill-climbing methods since we are 

considering minimization as a goal of an optimization process. 

The genetic algorithm is one method of the evolution strategies, which was 

introduced by John Holland and Kenneth around 1975. This method was introduced 

from natural science to mathematics and therefore lots of biological names are used in it. 

The GA has to code the phenotype information into bits using mostly the floating point 

representation known from computer science [4].  

One genetic algorithm consists of three parts:  

 

1. Chromosomes (Individuals) are selected from the solution space. They can be 

optima or non-optima but generally they are result of a problem. In GA the 

chromosomes are built of genes, which encode the independent variables. These 

codes can be Boolean, integers, floating point, string variables or any 

combination of them. Traditionally, genes or codes are binary numbers as 

strings of 0s and 1s. One set of different chromosomes forms a generation. 

2. Cost or Fitness function is a criterion to evaluate each of chromosomes. 

3. Operators are used to create new chromosomes from old ones. 

The goal of GA is to minimize fitness function. The sequences of this optimization 

are listed in the following steps. 

2.1. Initialization of population 

In this step as a first guess to find the best result, an amount of chromosomes is 

randomly created. The number of these chromosomes Ps, depends on the number of 

variables of the problem. Usually two methods for Ps are suggested (n is the number of 

variables): 

 1
s

P n> +  (1)  

 10
s

P n=  (2)  

2.2. Evaluation of chromosomes 

In this step, each of chromosomes are evaluated according to the value of their fitness 

function, i.e. the chromosome X which has lower F(X) will have higher value and more 

chance to be chosen and to generate a new population. 
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2.3. Selection 

Some of good chromosomes are selected in this step using usual selection procedures: 

• Roulette Wheel 

• Tournament selection 

• Ranked-based selection 

2.4. GA’s Operators 

With use of GA’s operators, new individuals will be created. The GA’s operators are: 

Mutation and Crossover. 

 

2.4.1. Mutation 

This is a random process where one allele of a gene is replaced by another to produce a 

new chromosome. This operator is mostly used to avoid the local optima but it can cause 

convergence problem and reduce the speed of convergence. Mutation is randomly 

applied with low probability in range of 0.001 and 0.01 [5]. 

 

 
 

Figure 1. Sample of mutation in binary representation  

2.4.2. Crossover 

This operator uses an exploitation method to create new individuals, where with 

combining of two chromosomes of current population it creates new chromosomes. This 

combination is done by replacement of genes of parent chromosomes (Fig.2). This 

operator is important to reach the optimum point more quickly, therefore it executed 

with high probability in range of 0.5 to 0.9 [6]. 

 

 
 

Figure 2. Three kinds of crossover operator 

 

2.5. Termination factor 

Two methods for termination of optimization iteration are introduced [5]: 

• After reaching the specified number of generations. 

• When not a big improvement for last N generations is observed. 
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An overview of a genetic algorithm is represented by the flowchart in Fig.3. 

 

 
 

Figure 3. General scheme of a genetic algorithm or any evolutionary algorithms. 

 

 

3. Multi-objective genetic algorithm 

 

In many complex engineering problems simultaneous optimization of some objective 

functions is required, while optimizing one objective can cause an unaccepted result 

from other objectives. Traditionally GA was defined to solve one objective problem but 

lots of methods are developed to increase its capability. Generally there are two 

approaches for multi-objective optimization: Weighted sum method and Pareto optimal. 

In this paper, the Pareto optimal is used. 

3.1. Pareto based approach 

In many real-life problems, objectives are in conflict with each other. Hence, 

optimization with respect to one objective can cause unacceptable result for other 

objectives but a perfect multi-objective solution that simultaneously optimizes all 

objective functions is almost impossible. A reasonable solution to a multi-objective 

problem is to find a set of solutions, where each of them satisfies the objectives at an 

acceptable level without being dominated by any other solution. 

To define a Pareto optimal, domination should be defined at first. A vector v 

dominates vector u if:  

 {1, 2,..., } : ( ) ( );
i i

i k f f∀ ∈ ≤v u  (3)  

 {1, 2,..., } : ( ) ( )
j j

j k f f∃ ∈ <v u   
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A vector x∈S (S: Solution space) is a Pareto optimal solution, if and only if there 

would be no vector like y∈S , where f (y) = ( f1(y),…, fk(y)) dominates f (x) =( f1(x),…, 

fk(x)) [7]. 

Finding the non-dominated set of solutions from a given set of solutions is similar in 

principle to finding the minimum of a set of a real numbers. Two approaches are 

presented in following for finding the non-dominated set from a given population. 

3.2. Naive and slow approach 

In this approach, each of solutions in population is compared with each other to see 

which one is dominated and which one not. If the solution i is found to be dominated by 

another solution, it means that there exists at least one solution which is better than i. A 

step-by-step 

procedure of finding non-dominated set is given in the following [8]: 

1. Set the solution counter i=1 and create an empty non-dominated set P´. 

2. For a solution j ∈ P (but  j ≤  i ), check if solution j dominated solution i. if yes 

go to 4. 

3. If more solution are left in P, increment j by one and go to 2; otherwise, set 

P´=P ∪ {i}. 

4. Increment i by one. If i ≤  N, go to step 2; otherwise stop and declare P´ as the 

non-dominated set. 

 

3.3. Non-dominated Sorting of a Population 

There exists some algorithm to classify the entire population into various non-dominated 

levels. The best non-dominated solutions are called non-dominated solutions of level 1. 

Once the best non-dominated set is identified, they are temporarily neglected from the 

population. The non-dominated solutions of the remaining population are then found 

and are called non-dominated solutions of level 2 and then it is neglected. This 

procedure 

is continued until all population individuals are classified into non-dominated levels. 

The steps of procedure are represented in the following [9]: 

1. Set all non-dominated sets Pj, ( j = 1, 2,…) as empty sets. Set non-domination 

level counter j=1. 

2. Use non-domination approach like naive and slow to find the non-dominated 

set P of the population P. 

3. Update Pj = P´ and P = P/P´. 

4. If P ≠  P´, increment j by one and go to 2. Otherwise, stop and declare all non-

dominated sets Pi, for i = 1, 2,…, j. 

4. Controllability and observability 

 

Controllability and observability are structural properties that carry useful information 

for testing and control. 

Definition 1: System states given by state equation are controllable if it is possible by 

admissible inputs to steer the states from any initial value to any final value within some 
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time window. Observability is a measure for how well internal states of a system can be 

inferred by knowledge of its external outputs [10]. 

Definition 2: A structure is controllable if the installed actuators excite all its 

structural modes. It is observable if the installed sensors detect the motions of all the 

modes [11].  

4.1.  Continuous-time systems 

A linear time invariant system (A, B, C) with s inputs is completely controllable when 

the controllability matrix 

 
1N

co

− =  2
S B AB A B A B  (4)  

has rank N (N is number of states). And the system is completely observable if the 

observability matrix has rank N [10]. 

 
2

1

ob

N −

 
 
 
 =
 
 
  



C

CA

S CA

CA

 (5)  

The above criterion is simple but it has two disadvantages that first they answer the 

controllability and observability question in yes or no terms and second they are not 

useful for a system of big dimensions, since it causes numeric problems and enlarge the 

calculation time. Grammians are the alternative approach for determining the system 

properties. Grammians are nonnegative matrices which can express the controllability 

and observability in qualitative form and they are free of the numerical difficulties. The 

controllability and observability grammians are: 

 
T

t

τ τ

0

T

c
(t)= e e dτ∫ AAW B B  (6)  

 
T

t

t t

o

0

T
(t)= e e dt∫ AAW CC  (7)  

For a stable system, the grammians can be obtained by (9) which is called Lyapunov 

equations: 

 

T T

c c
+ + =0AW W A BB

 
0

T

oo

T+ + =A W W A C C  
(8)  

The eigenvalues of the product of grammians are independent of coordinate 

transformation and can be denoted as: 

 ( )
oi i c

=γ λ W W  (9)  

They are referred to as the Hankel singular values of the system [11]. 

4.2. Controllability and observability of a structural modal model 

The modal state-space representation of flexible structures has specific controllability 

and observability properties, and its grammians are of a specific form.  
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When the damping is small, the grammians in modal coordinates are diagonally 

dominant and by using appropriate scaling they are approximately equal. 

 
2

( )c cidiag w≅W I
 

2
( )c cidiag w≅W I  

(10)  

Therefore, the approximated Hankel singular values are obtained as a geometric 

mean of the modal controllability and observability factors. 

 i cii oii
w w≅γ  (11)  

For flexible structures the grammians of each mode can be expressed in a closed 

form. This allows for their speedy determination for structures with a large number of 

modes, and allows for the insight into the grammian physical interpretation. In modal 

coordinates the diagonal entries of the controllability and observability grammians are in 

form: 

 

2 2

2 2
,

4 4

mi mi

ci oi

i i i i

B C
w w

ζ ω ζ ω
= =  (12)  

and the approximated Hankel singular values are [11]: 

 
2 2

4

mi mi

i

i i

B C
γ

ζ ω
=  (13)  

The form of (14) is similar to norm of a system. System norm serves as a measure of 

intensity of its response to standard excitations such as unit impulse or white noise of 

unit standard deviation. Typical system norms are: H2, H∞, and Hankel. In this work H∞ 

is used, which is defined as [12]: 

 
2

( ) 0
2

( )
sup

( )u t

y t
G

u t∞
≠

=  (14)  

or alternatively as: 

 max
max ( ( ))G G

∞
=

ω
σ ω  (15)  

where 

 1
( ) ( )G C j −= −ω ωI A  (16)  

 is the transfer function of a system and  

 
max

( ( ))Gσ ω  (17)  

is the largest singular value of G. The peak of the transfer function magnitude is the H∞ 

norm of a single-input-single-output system. 

The H∞ norm in modal coordinate for each mode is expressed as following: 

 
max 2 2

max

( ))
( ( ))

2 2

mi mi

i i

mi mi

i

i i

i

B CC B
G G

σ
σ ω

ζ ω ζ ω∞
= = =  (18)  

The acquired equation is similar to (14), hence it is a good criterion for measurement 

of controllability and observability of a system. 
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Start: 

- Model the structure 

- Place piezos on the structure and 

specify x as location variable 

Genetic Algorithm 

- Run GA 

- Initialize random x 

FE software: 

- Model the structure 

- FE analysis 

- Modal analysis  

Analysis the output of FE: 

- State-space representation 

- H∞ norm as a cost function 

H∞ is optimal? 

Go back to GA: 

- Improve x according to 

cost function 

End: 

- Determine optimal feedback-gain 

from optimal solution 

- Compare optimal with not- 

optimal piezo places 

Yes 

No 

5. Application of optimal placement 
 

This section includes the results for different host structures of piezoelectric patches. 

These host structures are a cantilever beam and a simply supported plate. At last, the 

frequency response of the different structures is depicted to show how well piezo-patches 

are placed on the structure. In Fig.4 the general algorithm, which has been used in this 

work to find optimal places of piezoelectric patches, is depicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Flow-chart of the optimization procedure applied throughout this work 

 

In this paper, when analyses are made on a beam, the beam has properties and size 

as shown in Fig.5. 
 

5.1. Optimal locations of four piezo-patches on a cantilever beam 

In this section, the optimization is done for optimal places of four piezoelectric patches 

based on the first mode of the system which is the most important mode, and then for 

first four modes of the structure with use of multi objective genetic algorithm. 

5.1.1. Optimization based on first mode 

It has been assumed that there are four patches, two of them act as sensors and other two 

act as actuators. The sensor and actuator are placed on the same location on the beam 

but on opposite sides. Therefore just finding the x1, x2 is enough. 
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In this case the genetic algorithm is run with population size of 20 in 100 

generations. After 11 generations, the genetic algorithm converges to the best result 

(Fig.6) and gives x1 = 0.01; x2 = 0.07 as optimal places of piezoelectric patches. After 

finding the optimal places, it has been analyzed how well this optimization is done. For 

this propose, the output of system with optimized placement is compared with not-

optimized one (Fig.7). 

 

Length of beam             L 0.44 m 

Width of beam              B 0.04 m 

Height of beam             H 0.0028 m 

Length of patch             L1 0.05 m 

Width of patch              B1 0.03 m 

Height of patch             H1 0.0005 m 

Elastic modulus            E 11
0.7 10×  

2
N m  

Poisson’s ratio             υ  0.33 

Density                        ρ  2800  
3

kg m  

Beam element type in Ansys Solid45 

Stiffness matrix            C 
10 10 10

10 10 10

10 10 10

10

10

10

12.29 10 7.66 10 7.02 10 0 0 0

7.66 10 12.29 10 7.02 10 0 0 0

7.02 10 7.02 10 9.71 10 0 0 0

0 0 0 2.32 10 0 0

0 0 0 0 2.32 10 0

0 0 0 0 0 2.32 10

 × × ×
 

× × × 
 × × ×
 

× 
 × 

×  

 

Piezoelectric element type in 

Ansys 
Solid5 

Piezoelectric constant matrix                         

d 

0 0 7.07

0 0 7.07

0 0 13.82

0 0 0

0 11.91 0

11.91 0 0

 
 
 
 −
 
 
 −
 
−  

 

Permittivity matrix     ε  929 0 0

0 929 0

0 0 857

 
 
 
  

 

 

 

Figure 5. A cantilever Beam with its properties. 
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Figure 6. The genetic algorithm process for a cantilever beam with four patches (Pop.=20, Gen.=100). 

 

 

Figure 7. The outputs of optimized and not-optimized placement for the cantilever beam (opt. is based on first modes). 

5.1.2. Optimization based on first four modes 

The procedure of finding optimal places of four piezo-patches on a cantilever beam 

regarding the first four modes of the structure is almost like the previous procedure with 

some small changes. In this optimization process, the multi-objective genetic algorithm 

has 

been used. The multi-objective GA has ran with 40 as population size in 200 

generations. The multi-objective GA uses Pareto front approach and gives the best 

Pareto front as shown in Fig.8. The optimization process gives fourteen good places for 

piezo-patches. All these results are optima and are far better than not-optimized ones 

(Fig.9) but to see which result is the best one and which one is more compatible with our 

requests, the optimal control method is applied again, similarly as mentioned in the 

previous section (Fig.10). 
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Figure 8. The best Pareto front after 150 generations for optimization based on first four modes (Pop.=40, 

Gen.=200). 

 

Figure 9. Comparison of opt. and not-opt. places of four patches on a cantilever beam regarding first four modes 

 

Figure 10. Comparison of two opt. places of four patches on a cantilever beam regarding first four modes. 

 

 

5.2. Optimal placement of four piezoelectric patches on a plate 

In this approach, the same procedure is followed as for the cantilever beam but now 

there are four design variables x1, x2, x3, and x4, which are defined as in Fig.11. 
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Figure 11. A schematic of the plate L = B = 0:44m. 

 

 

5.2.1. Optimal places of piezo-patches for plate regarding first mode of the structure 

After defining the geometry and material properties of the structure, the optimization of 

the placement for piezoelectric actuators and sensors is performed. The GA is used 

again to find these optimal places. The GA was run for population size 40 in 150 

generations and it has converged to best result after 52 generations (Fig.12). 

Fig.13 shows that the optimization is ended with very convenient results. 

 
 

Figure 12. The GA performance to find optimal places of piezos on a plate regarding its first mode. (Pop.=40, 

Gen.=150). 

 
 

Figure 13. The comparison of output of two systems: one with optimal places and other one with random placement. 
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5.2.2. Optimal places of piezo-patches regarding first four modes of the structure 

The multi-objective GA was executed with the 40 population size in 150 generations. 

This optimization process ends with giving final Pareto front which is depicted in 

Fig.14. 

As Fig.15 shows, the best optimum placement is placement with: x1 = 0.19,  x2 = 

0.25, x3 = 0.19, x4 =0.23. 

 

Figure 14. The final Pareto front (Pop.=40, Gen.=150). 

 
 

Figure 15. The comparison of output of optimized with not-optimized placement. 

 

6. Conclusions and outlook 
 

It is very important to find the places on the structure with the highest value of 

controllability and observability with limited number of piezoelectric patches. The GA 

has been used to find the optimal places. At first the structure has been analyzed with 

use of ANSYS to obtain the eigenmodes and eigenfrequencies of the structure. 

Afterwards, the output of ANSYS has been fed into MATLAB to build state space 

representation of the structure and at the end a criterion has been introduced for the 

optimization process with GA. The use of GA or multi-objective GA depends on the 

optimization purpose that whether optimization should be based on one mode or more 

than one mode. The process has been applied to two kinds of structures: a cantilever 

beam and a plate. The optimization process gives very convenient result as it can be seen 

from figures. The results show the different positions of piezopatches when optimization 
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based on one mode or more than one mode. From design point of view, it is very 

important beforehand to make a decision which mode shape or mode shapes are 

important to be controlled. In the GA, it is also possible to define some constraints 

regarding the position of piezo-patches since in some designs there are some predefined 

places that the patches cannot be embedded there. It is also possible to apply this 

optimization process to different types of structures.  

In this paper, the optimization is done with limited numbers of piezo-patches but it is 

also possible to generalize the code to find optimal number of piezo-patches. 

Optimization of the number of pizo-patches as well as implementation of the procedure 

with complex geometries is a part of the ongoing research. 
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Abstract. This paper considers the problem of optimal actuator and sensor 

placement for active large flexible structures. The proposed placement 

optimization method is based on balanced reduced models. It overcomes 

disadvantages arising from demanding numeric procedures related with high 

order structural models. Optimization procedure relies on H2 and H∞ norms, 

as well as on controllability and observability Gramians, related with 

structural eigenmodes of interest. The optimization procedure was 

documented by several examples showing a good agreement between the 

results obtained using different placement indices. 

 

1. Introduction 

 

The study and development of piezoelectric smart structures involves a very important 

investigation of optimal actuator and sensor placement. Especially for piezoelectric 

smart structures and systems, the placement once applied cannot be changed easily and 

it is often related with the need to build a new structure in order to perform another 

placement constellation for actuators and sensors. Development of appropriate and 

reliable optimization procedures, which can be applied prior to real structure or a 

prototype building, is therefore the task of a great significance. In this paper we have 

proposed a reliable method for determining appropriate actuator/sensor placement, 

based on structural models developed using the finite element (FE) approach. Model 

based approach represents an indispensable tool in the optimization procedure due to 

requirement for iterative problem solution. 

Optimization problem was treated by several authors and investigated for different 

structures. An overview of the optimization criteria for optimal placement of 

piezoelectric sensors and actuators on a smart structure was given in a technical review 

by Gupta et al. [1]. In [2] based on the modal approach, optimal geometrical conditions 

were obtained for several cases of active beams with different boundary conditions. 

Optimization criterion for finding optimal actuator/sensor positions for piezoelectric 

beams in [3] is the performance of an optimal LQR controller. In [4] efficiency indices 
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based on the mode shapes for a clamped piezoelectric beam were determined for typical 

eigenmodes. 

Kumar and Narayanan [5] have applied the LQR controller based criteria to find optimal 

location of piezoelectric actuators/sensors for vibration control of plates and used genetic 

algorithm (GA) for solving a zero-one optimization problem. Peng et al. [6] involved 

maximizing of the controllability Gramian as the optimization criterion for optimal 

placement on a clamped plate using GA. Similar approach with modal controllability 

and observability Gramians and GA were also used in [7]. 

In this paper we present a general approach to optimal actuator and sensor 

placement applicable both for beam and plate structures, but also for other complex 

geometries of structures. The optimal placement procedure is based on the method for 

balanced model reduction, which assumes models with equally controllable and 

observable retained modes. The method has advantage over modal truncation and 

mathematical criteria for controllability and observability, since the retaining of the 

modes of interest is founded on their equal controllability and observability expressed in 

terms of appropriate Gramians. Further the paper deals with optimization criteria based 

on the H2 and H∞ norms, which are calculated for all possible candidate locations. In 

this way the fulfillment of the criteria is not limited to a narrow set of selected assumed 

favorable locations, but it relies on verification through all candidate positions by 

finding the placement indices with largest values. 

 

2. Models and objective functions used for optimal placement 

 

The procedure for finding optimal placement of actuators and sensors relies on the state 

space models of smart structures, which are obtained through the finite element (FE) 

modeling procedure and model order reduction. 

 

2.1. FE based state space models 

Applying general FE modeling procedure the model of a smart structure can be 

represented as a set of equations of motion in matrix form (1) obtained by assembling all 

finite elements of the structure (more details on FE modeling of piezoelectric structures 

can be found in [8,9]). 

 FKqqDqM =++ 
d  (1) 

Vector q contains all degrees of freedom and it can be formed e.g. by node-wise 

arranging of degrees of freedom for all elements. For modeling of piezoelectric materials 

besides mechanical degrees of freedom, electric voltage or charge is included as 

additional degree of freedom to model electro-mechanical behavior. 

The total load vector F is split, for the purpose of the control design later, into the vector 

of external forces FE and the vector of control forces FC: 

 
E C 0

( ) ( )t t= + = + =F F F Ef Bu B u .  (2) 

The forces are here generalized quantities, which include also electric charges or electric 

potentials. Matrices E  and B  describe the positions of generalized external forces f  
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and the control parameters u  in the finite element structure, respectively. Matrix B0 

represents the input matrix, and vector u includes all model inputs. 

For the controller design purposes equation (2) is accompanied by the output equation in 

the form: 

 
0 0q v

= +y C q C q  (3) 

where in a general case C0q represents the output displacement matrix, and C0v the 

output velocity matrix.  In the output equation (3) q represents a generalized 

displacement vector containing all degrees of freedom defined in the modeling 

procedure, like in (1). Matrices C0q and C0v are obtained through an FE procedure by 

defining appropriate sensor locations. 

Solution of the equation (1) is determined in the form 
j t

e
ω=q ϕϕϕϕ  by solving the 

eigenvalue problem for a homogeneous case. 

The nodal model representation (1) is transformed into a model in modal coordinates 

applying the following modal transformation: 

 
m

=q qΦΦΦΦ  (4) 

where qm represents the vector of modal degrees of freedom or generalized modal 

displacements and Φ is the modal matrix.  

Introducing the modal coordinates (4) into (1) after normalization with respect to mass 

and appropriate transformations, taking into account the orthogonality properties the 

modal model is obtained, which after introducing the coordinate transformation in the 

state space form: 

 
m

m

 
=  
 

q
x

q

ΩΩΩΩ
 (5) 

can be obtained as a state space realization: 

 = +x Ax Bu ,    = +y Cx Du  (6) 

Considering that flexible structures can be described in terms of independent 

coordinates, the modal state space model can be expressed in terms of state space 

realizations (Ami, Bmi, Cmi) for each mode i (7). With the coordinate transformation as in 

(5) corresponding matrices in the realization (Ami, Bmi, Cmi) are determined by [10]: 

 
00

, ,
2

i

i

i

mqi

mi mi mi mv

mi i i i

c
c

b

ω

ω ζ ω ω

    
= = =    − −    

A B C  (7) 

with natural eigenfrequencies ωi and dampings ζi of the eigenmodes. The elements of 

the realization (Ami, Bmi, Cmi) are used for assessing the optimal actuator/sensor 

locations based on candidate input/output transfer functions relating corresponding 

actuators and sensors. 

 

2.2. Norms – objective functions for optimal placement 

 

Optimization of the actuator/sensor placement in this work is based on the properties of 

the H2 and H∞ norms and approximations for their determining, which enables norm 
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calculation in cases of large structures with high model orders. Exact calculation of the 

norms in such cases would require high computational effort and computational time. 

Proposed approach represents a suitable basis for optimal actuator and sensor placement 

in large structures due to reduced required computational time. The norms and their 

properties, which are considered and implemented in optimization procedure, are 

defined for a single mode, for a structure and for a system including a set of actuators 

and sensors. The main norm properties are summarized below. The proofs are derived in 

[10]. 

H2 norm of a single mode. For a transfer function 
1

( ) ( )i mi mi miG j
−= −ω ωC I A B  of 

the i
th

 mode obtained from the realization (7), the H2 norm of the mode is estimated as: 

 
2 2 2 2

2
2

2 2

mi mi mi mi

i i i

i i i

G ≅ = ≅ ∆
∆

σ ω
ζ ω ω

B C B C
 (8) 

where Bmi, Cmi represent the input and the output matrices of the modal state space 

model defined in (7), ζi is the damping of the i
th

 mode, σi the Hankel singular value 

corresponding to the i
th

 mode, and 2i i iω ζ ω∆ = is a frequency segment at the i
th

 

resonance for which the value of the power spectrum is one half of its resonance value. 

H∞ norm of a single mode. For an i
th

 mode given by its modal realization (Ami, Bmi, Cmi) 

or by the parameters (ωi, ζi, bmi, cmi) the H∞ norm of the mode is estimated as: 

 2 2 2 2

2 2

mi mi mi mi

i

i i i i

b c
G

∞
≅ =

ζ ω ζ ω

B C
. (9) 

H2 norm of a structure. Given a modal state space realization (Am, Bm, Cm) of a 

structure, the H2 norm of the structure can be determined approximately as the root 

mean square of the modal norms: 

 
2

2 2
1

n

i

i

G G
=

≅ ∑ , (10) 

where n represents the number of the modes, and G and Gi are the transfer function (or 

the transfer matrix) of the structure and of the ith
 mode respectively. 

H∞ norm of a structure. Since the modes are almost independent, the norm H∞ norm of a 

structure is approximately determined as the largest of the mode norms: 

 max , 1,...,i
i

G G i n
∞ ∞

≅ = . (11) 

For a system including a set of actuators and sensor, for the H2 and H∞ norms an 

additive property both for a single mode and for a structure is valid and can be used in 

the approximated calculation or the norms. 

 

H2 and H∞ norms of a system with a set of actuators and sensors 

for a single mode: 

        
2

2, (2, )
1

, 1,...,

s

i ij

j

G G i n
∞ ∞

=

≅ =∑  (12) 



351

H2 and H∞ based optimal placement of actuators and sensors for active vibration control 

for a structure:  

             
2

2, (2, )
1

s

j

j

G G
∞ ∞

=

≅ ∑ . (13) 

with s representing the number of actuators or the number of sensors, which may be 

different in a general case. 

For a given structure the actuator/sensor placement problem requires the selection of 

optimal locations as a subset from a given set of possible candidate locations with regard 

to the specified objective function. The set of possible candidate locations consists of a 

larger number of elements then the subset of locations to be optimized. 

In the first approach the placement is performed based on the placement indices and 

matrices, where the actuator and sensor placements are solved independently using 

similar procedures. Definition of placement indices and matrices is based on the additive 

properties of modal norms on the structural level. 

For a flexible structure represented by a modal state space model, the norms of any mode 

i are determined based on appropriate input (Bmi) and output (Cmi) matrices of the 

corresponding mode, (8), (9). If s represents the total number of defined inputs 

(actuators) 1,...,=j s , and r the total number of outputs (sensors) 1,...,k r= , then the 

corresponding input and output matrices are: 

1 2 j s

mi mi mi mi mi
 =  B B B B B 

T 1 2 k r

mi mi mi mi mi
 =  C C C C C   (14) 

where each of the matrices 
j

miB  represents the 2×1 block of the jth actuator and 
k

miC  

represents the 1×2 block of the k
th

 sensor, both having the form as in (7). Then 

according to the additive properties of the H2 and H∞ norms, the norm of a mode with a 

set of actuators (sensors) can be approximated by the root mean square sum of the norms 

of this mode with a single actuator (sensor), which can be expressed as: 

for actuators: 
22

(2, ) (2, )
1

s
j

i i

j

G G
∞ ∞

=

≅∑ , (15)  

for sensors: 
22

(2, ) (2, )
1

r
k

i i

k

G G
∞ ∞

=

≅∑ . (16) 

Here the H2 norms of the i
th

 mode with a single actuator corresponding to the j
th

 position, 

and of the i
th

 mode with a single sensor corresponding to the  k
th

 position are given 

respectively by: 

 
22

2
,

2

j

mi mij

i

i i

G =
ζ ω

B C
      

2 2

2
.

2

k

mi mik

i

i i

G =
ζ ω

B C
 (17) 

Similarly the H∞ norms of the i
th

 mode with a single actuator corresponding to the j
th

 

position, and of the i
th

 mode with a single sensor corresponding to the  k
th

 position are 

expressed as: 
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22 ,

2

j

mi mij

i

i i

G
∞

=
ζ ω

B C
     

2 2 .
2

k

mi mik

i

i i

G
∞

=
ζ ω

B C
 (18) 

Placement indices are defined in terms of H2 or H∞ norms for an actuator or a sensor 

placement. Each index 
(2, )

k

i ∞η  evaluates the k
th

 actuator (or sensor) in the i
th

 mode in 

terms of the H2 or H∞ norm and it is defined with respect to all modes 1,...,i n=  and all 

admissible actuators 1,...,k s=  (or sensors 1,...,k r= ): 

 
(2, )

(2, )

(2, )

k

i
k

i

G

G

∞

∞

∞

=η . (19) 

Here the norms 
(2, )

k

iG
∞

 are determined accordingly as in (17) or (18), and G is the 

transfer function of the system with all candidate actuators (or sensors). Placement 

indices determined according to (19) can be arranged in the form of matrix, where each 

row corresponds to the ith
 mode and each column to the kth

 actuator or sensor. Actuator 

and sensor placement indices are then obtained from the placement matrix by 

performing column-wise appropriate operations on the elements over all modes. For the 

objective function in terms of the H2 norm, actuator (subscript a) or sensor (subscript s) 

placement indices are determined as the root mean square sum of the column-wise 

elements: 

 ( )
2

( , )

1

, 1,...,

n
k k

a s i

i

k p
=

= =∑η η  (20) 

and p s=  (for s actuators) or p r=  (for r sensors). For the objective function in terms 

of the H∞ norm, the actuator/sensor placement index is the largest index over all modes: 

 ( )( , )
max , 1,..., , 1,...,

k k

a s i
i

i n k p= = =η η  (21) 

where again p s=  (for s actuators) or p r=  (for r sensors). The placement indices 

( , )

k

a sη  determined in this way characterize the importance of the k
th

 actuator or sensor, 

and represent therefore a criterion for the actuator/sensor placement in the presented 

approach, which treats the actuator and sensor placement individually. 

Placement index for simultaneous actuator/sensor placement is defined as 

 , 1,...,

jk

ijk

i i

m

G
i n

G
= =η  (22) 

for each mode i, where 
jk

iG characterizes the ith
 mode in the presence simultaneously of 

the actuator placed at the j
th

 candidate location and of the sensor at the k
th

 candidate 

location. 
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Besides the introduced placement indices, for the comparison purposes, the 

controllability index is introduced as an objective function for the optimal placement as 

well. The influence of the actuators to structural eigenforms is determined by the term 
T

m =B BΦΦΦΦ , se Eq. (2). Different actuator configurations and their influence on the 

controllability of the i
th

 mode ϕϕϕϕi are investigated by determining the value of 
T

( )i i jj Bτ = ϕτ = ϕτ = ϕτ = ϕ  for the j
th

 actuator location. The controllability index is calculated based 

on the squared value of ττττi and divided by the scalar product of the eigenvectors, in order 

to obtain the controllability index as a measure which is independent of the sign 

influenced by placement and independent of the eigenvector scaling. The controllability 

index can thus be determined as [19]: 

 

T T

T
( )

i j j i

i

i i

jµ =
Β Βϕ ϕϕ ϕϕ ϕϕ ϕ

ϕ ϕϕ ϕϕ ϕϕ ϕ
. (23) 

In a similar way the influence of the sensor placement can be considered through 

appropriate observability indices for the k
th

 sensor location: 

 

T T

T
( ) i k k i

i

i i

kν =
C Cϕ ϕϕ ϕϕ ϕϕ ϕ

ϕ ϕϕ ϕϕ ϕϕ ϕ
. (24) 

 

3. Results of optimal placement for investigated beam and plate structures 

 

To illustrate the optimization of the actuator/sensor placement, the results of the 

placement for a clamped piezoelectric beam and plate are presented in this section. 

Clamped beam 

In this example a steel beam clamped on both sides is considered. It is modeled as a 2D 

beam using the ANSYS software. As a result of the modal analysis, the eigenfrequencies 

and eigenvectors are determined, which represent an input to the algorithms for the 

optimal actuator/sensor placement procedures. Meshing the beam along its length 

results in 101 nodes, and possible candidate positions for this analysis are represented 

schematically in Figure 1 with pointed nodes 10, 20, … , 90. 

 

 
Figure 1. Candidate locations for actuator/sensor placement along the beam clamped on both sides 

 

For the comparison purpose the optimal placement procedure was performed applying 

the algorithms for separate and simultaneous placement as well as the controllability/ 

observability indices. Several representative examples are presented below. 

Qualitative representations of the curves presenting the values of the placement indices 

for different positions along the beam are similar for separate placement based on the H2 
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and H∞ norms. Depending on the number of eigenmodes, which should be considered 

(sensed or actuated) at the same time, the positions for optimal actuator/sensor 

placement may differ. Figure 2 shows different possible candidate positions with largest 

placement indices calculated based on the H2 norm under consideration five bending 

eigenmodes of interest. 
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Figure 2. Placement indices calculated based on the H2 norm for the first five eigenmmodes 
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Figure 3. Placement indices based on the H∞ norm for separate and parallel consideration of the eigenmodes 
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Placement indices determined based on the H∞ norm are represented in Figure 3. Left 

hand side plot in represents the placement indices for individually considered 

eigenmodes 1 to 5. In the right hand side plot the placement indices were calculated 

based on parallel consideration of several eigenmodes of interest (here 1 to 5). Locations 

with largest placement indices indicate the candidates for optimal placement, depending 

on the number of employed actuators/sensors and on the number of considered modes of 

interest.  Figures 2 and 3 represent the sensor placement indices. The forms of the 

placement indices curves for actuators are qualitatively the same and for the reason of 

brevity are omitted here. For the comparison, the method based on the 

controllability/observability indices is also applied. The results regarding the first five 

eigenmodes of the beam are summarized by the controllability index representation in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Controllability indices calculated for eigenmodes 1 to 5 for different candidate locations 

The results of the three methods applied to the beam clamped on both ends are 

summarized in Table 1. It can be seen that all three methods provide identical results, 

when considering eigenmodes individualy. For parallel consideration of several 

eigenmodes of interest, optimal candidate locations depend on the performance index 

which was adopted as a criterion for placement.  

 
Table 1. Candidate locations with largest placement indices (beam clamped on both sides) 

Modes 
Separate placement Simultaneous placement 

Controllability/observability  indices 
H2 H∞ H2 H∞ 

1 50 50 50 50 50 

2 29, 71 29, 71 29, 71 29, 71 29, 71 

3 21, 79 21, 79 21, 79 21, 79 21, 79 

4 16, 84 16, 84 16, 84 16, 84 16, 84 

5 13, 87 13, 87 13, 87 13, 87 13, 87 

1, 2 43 to 57 50   34, 35, 36, 64, 65, 66 

1 to 3 48 to 52 50   26, 74 

1 to 4 47 to 53 50   21, 79, 41, 59 

1 to 5 49 to 51 50   17, 83, 69, 31 
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Clamped plate 

The plate structure in this example was modeled as a 3D plate in ANSYS software and 

corresponding eigenvectors of interest were obtained through modal analysis. The 

meshing of the plate, i.e. the nodes which correspond to candidate locations for 

actuator/sensor placement are represented in Figure 5. Here the corresponding rows and 

columns are numerated for a better preview. 

 

 

Figure 5. Candidate locations for the plate denoted by corresponding row and column numbers 

 
Table 2. Candidate locations with largest placement indices (plate) 

Modes 
Separate placement 

Controllability index 
H2 H∞ 

1 (10,15) (10,15) (10,15) 

2 
(10,8), (10,9), 

(10,21), (10,22) 

(10,8), (10,9), 

(10,21), (10,22) 

(10,8), (10,9), 

(10,21), (10,22) 

3 (14,15), (6,15) (14,15), (6,15) (14,15), (6,15) 

4 (10,6), (10,15), (10,24) (10,6), (10,15), (10,24) (10,6), (10,15), (10,24) 

5 
(6,8), (6,22), 

(14,8), (14,22) 

(6,8), (6,22), 

(14,8), (14,22) 

(6,8), (6,22), 

(14,8), (14,22) 

1, 2 (10,9), (10,10), (10,20), (10,21) (10,15) (10,10), (10,20) 

1 to 3 (9,9), (9,10), (9,20), (9,21) (10,15) 
(7,11), (7,19), 

(13,11), (13,19) 

1 to 4 (10,7), (10,22) (10,15) 
(12,8), (8,8), 

(12,22), (8,22) 

1 to 5 
(7,8), (13,8), 

(7,22), (13,22) 
(10,15) 

(13,8), (7,8), 

(13,22), (7,22) 

 

Due to a very high number of nodes, i.e. candidate locations for the plate, the 

simultaneous placement procedure would not give a clear representation and therefore it 

is omitted from this analysis. The results of other two methods, separate placement and 

controllability index, are compared and summarized in Table 2. Besides, several 

representative results of the actuator/sensor placement for the clamped plate are shown 

in the figures below. Complete agreement of the results is available for individual 
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consideration of the eigenmodes. For parallel consideration of several structural 

eigenmodes of interest, the arising differences are based on the calculation, i.e. on the 

definition of the placement indices for the structure. Qualitative representations of the 

placement indices based on H2 and H∞ norms as well as of the controllability index for 

individually considered modes are the same. Actuator placement indices based on the H2 

norm for selected individual modes are represented in Figure 6. 
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Figure 6. Placement indices based on H2 norm for individually considered selected eigenmodes of the plate 

Figure 7 represents the values of the placement indices calculated for all selected 

candidate locations based on the H2 norm under parallel consideration of several 

eigenmodes of interest (left: modes 1 and 2; right: modes 1 to 5). 
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Figure 7. Placement indices for the plate based on the H2 norm (parallel consideration of eigenmodes of interest) 

4. Conclusion 

In this paper the optimization methods for actuator/sensor placement for large flexible 

structures are presented, based on balanced reduction of structural models. Balanced 

modal reduction of the model orders for structures with large numbers of degrees of 

freedom is proposed as an efficient modeling procedure, which results in a realization 

with equally controllable and observable retained states. Optimal placement procedure is 
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based on the properties of the H2 and H∞ norms and approximations for their 

determining. Proposed approach represents a suitable basis for optimal actuator and 

sensor placement in large structures due to reduced required computational time. 

Optimization procedure is proven by showing examples of a beam clamped on both 

sides and clamped plate. For these examples an extensive analysis was conducted and 

systematized results of separate and simultaneous placement procedures for individual 

and parallel consideration of the structural modes are shown. The efficiency of the 

proposed method is also proven by the comparison with the optimization results based 

on controllability and observability indices. This analysis has shown a compete 

agreement of the results. The method suggested in this paper also covers a broad 

spectrum of possible problems, which do not have to be necessarily limited only to 

piezoelectric actuators and sensors, but can be extended more generally to systems with 

integrated actuators and sensors, whose effect may be considered through actuation 

forces or moments. 
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ABSTRACT.  An attention in this investigation is focused on developing 

efficient optimization method for minimum weight design of thin-walled 

structures. Today, it is a common practice to use numerical optimization 

methodologies to deal with multidisciplinary industrial design problems.   One of 

the major tasks in the design of aircraft structures is the sizing of the structural 

members to obtain the desired strength, weight, and stiffness characteristics. 

Optimization algorithms have been coupled with structural analysis programs for 

use in this sizing processThe efficiency of method is based on application of the 

two-level approach in optimization structural systems. This approach breaks the 

primary problem statement into a system level design problem and set of 

uncoupled component level problems. Two-level optimization approach is 

applied to structural design problems like: minimum weight of the complex 

aircraft composite structure under various strength, buckling and stiffness 

constraints. This paper considers a discrete model the buckling sensitivity 

analysis of thin multi-layered angle-ply composite structures. Angle-ply design 

variables and the thickness of each layer considered as design variables. 

Optimization method presented here is based on combining optimality criterion 

(OC) and mathematical programming (MP) algorithms. Finite element analysis 

(FEA) are used to compute internal forces at the system level. The local stress 

and local initial failure load in each independent element are defined as 

component constraints. The use of this MP algorithm is essential to two-level 

approach and local level, since it can handle the highly nonlinear component 

problem, such as local buckling or special initial failure constraints in 

mechanical fastened joints.  Optimality criterion method significantly reduces 

time and cost the optimization process. The two-level optimization approach is 

applied to minimum-weight design of aircraft structural components such as 

aircraft nose landing gear, wing skins and parashute composite beam subject to 
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multiple constraints. Finally,  several examples are shown to illustrate 

effectiveness of the two-level optimization model. 

 

Key words: Optimization methods, multi-level approach, optimality criterions, 

displacement constraints, stress constraints, buckling constraints, finite elements 

 
 

1   Introduction 

The design of complex structures (which require a large finite element model (FE model) 

such as aircraft, require the use of optimization methods. The size of the optimization 

problem depends on the number of variables and constraints required, especially for the 

design of structures with large interactions between their various components. A multi-

level approach is needed to decompose the entire system problem (system-level) into 

several sub-problems (element-level) taking into account the various coupling effects. The 

multi level approach allows individual system components to be optimized, thus 

significantly reducing the time needed for the computation and the design cycle. Various 

concepts have been proposed [1–7] to decompose large optimization problems down into 

sub-problems. It should be noted that the design parameters of the global structure affect 

both the structure and sub-structures (density, Young modulus, etc.), while the design 

parameters of the substructures can be local dimensions (e.g. geometric dimensions: 

thickness, length, width).The constraints on the structure are global (e.g. structural 

displacement), while the constraints on the sub-structures are local (e.g. local stress or 

strain). Today, it is a common practice to use numerical optimization methodologies to 

deal with multidisciplinary industrial design problems.   One of the major tasks in the 

design of aircraft wing structures is the sizing of the structural members to obtain the 

desired strength, weight, and stiffness characteristics. Optimization algorithms have been 

coupled with structural analysis programs for use in this sizing process. Most of the 

difficulties associated with large structural design are solution convergence and computer 

resources requirements. Structural optimization problems traditionally have been solved by 

using either the mathematical programming (MP) or the optimality criteria (OC) 

approach. More recently, the works in Refs [1-3,14] have illustrated the uniformity of the 

methods. Nevertheless, each approach offers certain advantages and disadvantages. The 

MP methods are extremely useful in defining the design problem in proper mathematical 

terms. When the design variables are few the these methods can be used quite effectively 

for optimization. However, in the presence of a large number of variables these methods 

are very slow. The rate of convergence for OC methods is initially very fast, step size 

determination is critical closer to the local optimum where the number of active 

constraints' increases and the computations of Lagrange multipliers becomes more 

complex.  Power and weakness of the various MP methods are given in Ref. [8]. Ideally, a 

methodology that exploits the strength of both approaches could be employed in a practical 

system. The object of the present research effort is to develop such design method that can 

efficiently optimize large structures that exploit strengths (power) of the MP and OC 

methods. The motivation of this study is to come up with a multilevel optimization method 

using optimality criteria and mathematical programming techniques. Multilevel 
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optimization permits a large problem to be broken down into a number of smaller ones, at 

different levels according to the type of problem being solved. This approach breaks the 

primary problem statement into a system level design problem and set of uncoupled 

component level problems. Results are obtained by iteration between the system and 

component level problems. The decomposition of a complex optimization problem into a 

multilevel hierarchy of simpler problems often has computational advantages. It makes the 

whole problem more tractable, especially for the large engineering structures, because the 

number of design variables and constraints are so great that the optimization becomes both 

intractable and costly. The nature of an aircraft structure makes multilevel optimization 

highly practical, not only in terms of reducing the computing cost but also because the 

individual tasks in the traditional design process are preserved. The suitability of 

multilevel optimization in more complex design problem tested on a structure 

representative of a wing box in composite material, with buckling limitations in each 

panel, and another problem in which reliability requirements are included. Multilevel 

approach for optimization of the composite structures subject to stress, displacement, 

buckling and local failure constraints is developed.  

 

2.    Formulation of optimization problem 

 

Structural optimization techniques have undergone many developments and refinements 

over the past few decades. More and more design problems can now be optimized using a 

variety of algorithms. 

The general structural optimization problem of layered composite structures modeled by 

finite elements can be stated as follows:       

Find the vector of design variables x such that 

       W l x
i i

i

n

i
= ⇒

=

∑ ρ
1

min                                   (1) 

subject to behavior and side constraints 

       G C C j mj j j= − ≥ =0 1,...,                          (2) 

where: 

W - is the weight of structure  

xi  - is design variable assigned to element i 

li   - is a geometrical parameter such that the product lixi  is the volume of the element i 

ρi  - is the mass density 

Gj  - is constraint j 

C j - is  limiting value of the constraint j 

n   - is total number of elements 

m  -is total number of constraints 

The constraints imposed on the structure, defined by equation (2), may have the global and 

local character. The global constraints will be defined as system constraints. The system 

constraints imposed on the structure may include the maximum allowable stress in each 

element, the displacement limits at one or more locations, system stability, reactive forces, 
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dynamic stiffness, divergence, flutter etc. In addition to these there would be limitations on 

the minimum and maximum sizes of the elements. 

In addition to system constraints there are local constraints. These include various 

buckling loads, various failure types in composite structures, etc. 

Inclusion all these constraints in optimization process to large-scale structures are 

inefficient with computational aspect. However, to develop an efficient algorithm that 

effectively handles all types of constraints would be impractical and generally unnecessary. 

In the case of most structures it is likely that one can predict the type of constraint that will 

be the most active at the optimum and use the algorithm based on that constraint. The 

multilevel optimization approach may be very efficient for optimization large-scale 

structural systems because it breaks the primary problem statement into a system level 

design problem and a set of uncoupled component level problems. Results are obtained by 

iterating between the system and local level problems.  The decomposition of a complex 

optimization problem into a multilevel hierarchy of simpler problems often has 

computational advantages. It makes the whole problem more tractable, especially for the 

large aircraft structures. The nature of an aircraft structure makes multilevel optimization 

highly practical, not only in terms of reducing the computing cost but also because the 

individual tasks in the traditional design process are then preserved. 

 

3.   Theory of multilevel optimization 

 

Let D and d represent the sets of system and component design variables, respectively. 

Then the problem can be stated as: 

Find vectors D and d such that 

W D( ) min⇒                                                       (3) 

subject to 

    G D dq ( , ) ≥ 0     ,   q Q∈                                (4) 

and 

  g d Dlj j( , ) ≥ 0    ,    l L j M∈ ∈;                  (5) 

The Gq (D,d) represents constraints that are strongly dependent on the D vector and they 

are implicit functions except for the side constraints. The glj(dj ,D) represent constraints 

that are primarily dependent on the j  component variables dj, and they are either explicit 

or implicit functions of dj, depending on the type of constraints and the type of local failure 

analysis. The symbols Q and L denote the set of system and component level constraints 

respectively, M denotes the number of components and d
T
 =[ d1

T
, d2

T
,..., dM

T
] . 

The system design variables can be expressed symbolically as explicit functions of the 

detailed design variables, that is 

                                        D d j Mj j= =Ψ( ) ,...,1                                         (6) 

For each component the number of detailed design variables are larger than the number of 

corresponding system design variables. 

Therefore, casting the problem entirely at the system level by expressing Dj as functions 

of dj and solving it using mathematical programming methods are an impractical task 

for large-scale problems. The multilevel approach presented here is decomposed into 

two levels of design modification; one with the constraints that are strongly dependent 
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on system design D and the other with the constraints that are primarily dependent on 

local design variables dj. Then system and local analyses and optimizations are carried 

out separately and tied together by an iterative scheme going from one level of design 

modification to the other and visa-versa seeking an overall optimum. 

The structural optimization problem given by Eqs. (3)-(5) is recast as a multilevel 

optimization problem following form: 

                     i. )    System level: 

                Find vector D                                                                                                  (7)  

                such that   W D( ) min⇒                                                                            (8) 

                and G D d q Qq ( , *) ;≥ ∈0                                                            (9) 

where d* implies that the parameters strongly dependent on the detailed design variables d 

(i.e., failure loads and local buckling), do not change during a system level design 

modification stage. 

                     ii. )   Component level: 

                Find vectors    dj                                                               (10)  

               such that mj(dj) ⇒min                                                                                 (11) 

                and  g d D l Llj j( , *) ;≥ ∈0                                                               (12) 

where D* implies that the parameters strongly dependent on the system level design 

variables are kept constant during each component design modification stage. 

 

4.  The system level optimization  

 

An efficient optimality criterion method is used for the system level optimization of large-

scale complex structures subjected to constrains which are included at the system level. 

Optimality criteria approach will be used for the optimization structures with system level 

constraints. Optimality criteria methods for structural optimization involve: 

1. derivation of set of necessary conditions that must be satisfied at the optimum design, 

and 

2. the development of an iterative redesign procedure that drives the initial trial design 

toward a design which satisfies the previously established set of necessary conditions. 

In order to establish the optimality conditions for the problem defined by (7)-(9) we need 

the associated Lagrangian which is given by the expression 

                       ∑ ∑
= =

+=
N

i

Q

j

jj

i

i G
D

w
DL

1 1

),( λλ                                                                   (13) 

where λj’s are the Lagrange multipliers. The Kuhn-Tucker optimality conditions are now 

obtained, in part, by differentiating the Lagrangian and the complete set is given by 

                        D*    is possible                                                         (14) 

                    λ λq qG D q Q( *) ,= ≥ ∈0 0                                                   (15) 

                      ∇ + ∇ =
∈

∑W D G Dq q
q Q

( *) ( *)λ 0                                    (16) 

If the problem is assumed to be convex then these conditions are necessary and sufficient 

for the solution of vector D
*
,λ*

 to represent a global optimizing point otherwise they 
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define a local optimum. The optimum structure must satisfy Eqs. (14)-(16). These are 

the Kuhn-Tucker conditions or the optimality conditions. Equation (16) is the ratio of 

the weighted sum of the gradient of the constraints to the gradient of the objective 

function, which must be equal for all elements in an optimum design. 

Equations (13) and (14) ensure satisfaction of the constraint equations. The constraints Gq 

in equation (9) may be displacement limits at the different node points in a structure, the 

relative nodal displacements corresponding to maximum allowable stress in each element, 

system stability, frequency constraints, flutter requirements, various failure criterions in 

layered composite structures such as the Tsai-Wu criterion. 

The real optimum structure must satisfy conditions (15)-(16). To develop a computational 

algorithm that handles all these constraints efficiently would be difficult and generally 

unnecessary. In practical design problem what may be required is a design which is near 

minimum weight and not a design that exactly satisfies the mathematical optimality 

criteria. This can generally be achieved by designing the structure based on one or two of 

the must important constraints, and checking the design for the other constraints. 

Problem optimization defined by Eqs (7)-(9) or (1)-(2) involves; large numbers of design 

variables, large numbers of inequality constraints and many inequality constraints that are 

computationally burdensome implicit functions of the design variables. These obstacles 

have been overcome by replacing the basic problem statement (7)-(9) with a sequence of 

relatively small, explicit, approximate problems that preserve the essential features of the 

original design optimization problem. This has been accomplished through the coordinated 

use of approximation concepts. The most important feature of the approximation concepts 

approach lies in the construction of simple explicit expressions for the set of constraints 

retained during each stage. This is achieved by linearization of these constraints with 

respect to linked reciprocal design variables. The linearized behavior constraints (9) are 

obtained by using a first order Taylor series expansion as: 

 G D d C D i Qq iq i
i

n

( , *) ; ,...,= − =
=

∑1 1
1

                                                                  (17) 

where Ciq is the partial derivative of q-th constraint for  i-th design variable, a Q is  the 

total number of constraints. Equation (17) represents the current linearized approximations 

of the retained behavior constraints. Using (17) the retained behavior constraints system 

level optimization problem (7)-(9) can be expressed as: Find vector D such that 

W D
w

D

i

ii

N

( ) min= ⇒
=

∑
1

                                                                                                 (18) 

subject to constraints 

G D C D q Qq iq
i

n

i( ) ;= − ∈
=

∑1
1

                                                                                    (19) 

and D D Di

L

i i

U≤ ≤                                                                                                      (20) 

The wj are positive fixed constants corresponding to the weight of the set of elements in 

the j-th linking group when Dj=1. The set of independent design variables after linking is 

denoted by N and equation (19) represent the linear approximations of the behavior 

constraints. The Di
L
 and Di

U
 respectively denote lower and upper limits on the independent 

design variables. 
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In developing optimality conditions standard approach is to form a Lagrangian: 

L D
w

D
C D

i

i

q iq
i

n

i
q Qi

N

( , )λ λ= − −








=∈=

∑∑∑ 1
11

                                                                          (21) 

where λq  are the undetermined  Lagrangian multipliers. Approximation problem  (18) -

(20) is convex problem and therefore Kuhn-Tucker conditions are necessary that solutions 

D*, *λ  represent global minimum. Conventional optimality criteria methods for 

structural optimization involve; (i) the derivation of a set of necessary conditions that must 

be satisfied as the optimum design and (ii) the development of an iterative redesign 

procedure that drives the initial trial design toward a design which satisfies the previously 

established set of necessary conditions. Each approximate primal problem of the form 

given by equations (18)-(20) can be transformed to  correspond an explicit dual problem.  

Detail solution methods and optimization algorithms are given in Refs [8,9,19]. 

 

4.1 Definition of strength constraints in layered composites  

 

For analysis and optimization fibrous layered composite structures, modeled by laminated 

shell type finite elements, various failure criterions can be used. The Tsai-Wu criterion is 

used for failure analysis of orthotropic layers in composite shell. This criterion can be 

expressed as:  
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where σ1, σ2, τ12 are the components of stress tensor σσσσ; F1 ,F2 and F12 are the stresses of 

failure in uniaxial tension, compression and shear, respectively and Tt is Tsai’s number. 

By using eqns (19) and (22) linearized approximations of Tsai-Hill criterion can be written 

as: 

     G
T

D
Dq

t

i

i
i

n

= −
=

∑1
1

∂

∂
                                                                                                  (23) 

where:                             
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In similar manner linearized constraints such as displacement, stability, frequency or other 

system constraints can be defined. 

 

4.2 Definition of stability constraints 

 

The linear stability of a structure is defined by eigenvalue problem. 

                     [K - λjKG]qj =0                                                                                       (25) 
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where K and KG are respectively system stiffness and geometric matrix of the structure and 

qj is the eigenvector associated with the j-th eigenvalue λj. For an efficient optimization of 

buckling problems it is essential to know the sensitivity of the buckling load parameter λj. 

The sensitivity with respect to changes in the design variable ti (thicknesses of shell layers) 

is evaluated by 
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The evaluation of sensitivities using equation (26) is not computational efficient. It is 

better to obtain the sensitivity of the buckling load parameter λj at the element load level 

using (26) in the form 
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where E is the number of elements in the structure. 

                                     

5.  Local Level Optimization 

 

Local level optimization process can include various types of failure modes in laminates or 

local buckling constrains. This optimization problem is solved by algorithms based on 

nonlinear mathematical programming methods. Classical optimization problem in local 

level are mechanically fastened joints in composites. Initial failure arises on characteristic 

curve, as shown in Fig. 1   
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Fig. 1.   Description of the characteristic curve with FE mesh 

 

The characteristic curve with finite element mesh, Fig. 1, is specified by the expression:  
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2
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ππ
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D

r                            (28) 
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where Rt  and Rc  are referred to as the characteristic lengths for tension and compression. 

In order to determine the load at which a mechanical fastened joint fails and the mode of 

failure, the conditions for failure must be established. In this paper the joint is taken to 

have failed when certain combined stresses have exceeded a prescribed limit in any of plies 

along a chosen the characteristic curve. The combined stress limit is evaluated using the 

failure criterion proposed by Yamada- Sun in form [11] 
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where σ1 and  τ12 are the longitudinal and shear stresses in a ply, respectively (1 and 2 

being the directions parallel and normal to the fibers in the ply). F12 is the rail shear 

strength of a symmetric cross ply laminate [0
o
/90

o
]s. F1 is either the longitudinal tensile 

strength or the longitudinal compressive strength of a single ply. 

This criterion is based on the assumption that just prior to failure of the laminate, every ply 

has failed due to cracks along the fibers. It is very important to say, that local constraints 

such as expressed by Eq. (29) or similar, can be included in optimization process as direct 

formulae using Fortran lingue notation in programme OPTIS [12]. Direct manner for 

defining very nonlinear constrains by using direct Fortran description is very efficient in 

practical optimization of composite or metal aircraft structure. Final dimensions are 

obtained at local optimization. Optimization algorithms are based on Nonlinear 

Mathematical programming methods such as: SUMT, CONMIN, method inscribed 

hypersphers [6], etc. 

 

6.   Numerical Examples 

 

To illustrate the application and versatile multilevel approach to the weight structural 

optimizations composite structure subjected static loads are considered. 

 

Example 1: Optimal Design of Composite Panel Subject to Buckling Constraints 

 

Here laminated composite panel is optimized with respect buckling constrains. Geometry, 

loads, material properties and FE model of CFC composite panel are shown in Figure 2. 

The panel is modeled using 4-node layered shell finite elements based on higher order 

shear deformation theory (HOST) [16]. The complete optimization results are shown in 

Table 1. 
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Figure 2 Geometry and FE model of laminated composite panel 
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Table 1: Optimal design of composite panel subject to buckling constraints 

Sequences Wopt 
Condition to [mm] t90[mm] t45[mm] t-45[mm] t30[mm] λmin 

[ ]
S

45 / 45 / 0 / 90− 0.09187 
45 45

t t−=  0.59776 0.12849 0.31742   1.006 

[ ]
S

45 / 45 / 0−  0.09181 
45 45

t t−= 0.73146  0.31514   1.0179 

[ ]
S

0 / 90 / 45/ 45−  0.09462  0.125 0.125 0.22735 0.92449  0.9966 

[ ]
S

45 / 45 / 45 / 45− − 0.08853    0.28935 

0.125 

0.80231 

0.125 
 0.993 

[ ]
S

30 / 30 / 0 / 90− 0.09453 
30 30

t t−=  0.57937 0.13951   0.3408 1.0126 

[ ]
S

0 / 90  0.10525  0.7796 0.7796    1.0009 

 

 

[ ]
S

45/ 45/ 0/ 90− , λ=1.006 

 

[ ]
S

45 / 45 / 45 / 45− − ,  λ=0.993 

Fig. 3 Buckling modes of optimized panels with stability constraints 

 

The effect of the stacking sequences on minimum weight of the composite panel, Wopt, is 

evident. 

 
Example 2: Optimization of Aircraft Parachute Composite Beam 

 

As very illustrative example for multilevel optimization procedure the fibrous composite 

parachute beam considered. The structure of parachute beam shown in Fig. 4 idealized 

with membrane finite elements. The elements consist of four layers in the 0
o
,90

o
 and ±45

o
 

directions. The 0
o
 fibers are parallel to the length of the beam. The parachute composite 

beam was subject to static loading conditions. The aircraft parashute composite beam 

shown in Fig. 4 used for system level optimization. 

Material of composite beam was graphite/epoxy NCHR 914/34%/132/ T300 with next 

mechanical properties: 

E11=126800     MPa                          F11
t
=1362   MPa 

E22=9220         MPa                          F11
c
=1333   MPa 

E33=9220         MPa                          F22
t
=    42   MPa 
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G12=4620         MPa                         F22
c
= 172    MPa 

G23=G13=720   MPa                          F12 = 100    MPa  

ν11=ν13=ν23                                                          t layer=0.13 mm 

 

 
Fig. 4 Parachute CFC-composite beam 

 

There are four mechanical fastened joints (holes) on the end of the parachute beam. The 

loads are introduced in these holes. Zone around each hole considered as substructure. This 

substructure has characteristic curve, as defined in Fig. 1, is modeled by very refined finite 

element mesh. The substructure (rectangular panel with central hole) is treated as 

optimization model on the local level. The Yamada-Sun criterion (29) around characteristic 

curve (28) used as constraints in local level optimization. For this purpose, in the local level, 

SUMT optimization algorithm is used. Optimization results of this substructure are 

thicknesses of layers: 

                                          t1(     0
o
)  = 2.08   mm  

                                          t2(+45
o
)  = 0.78   mm 

                                          t3 (- 45
o
)  = 0.78   mm 

                                          t4  (  90
o
)  = 0.26   mm 

Failure load that is in this analysis obtained:  Ff = 2297 daN. Failure was initiated in layer 

0
o
, with extension type of mechanism of failure 75 90

 ≤ ≤Θ f . 

Failure loads that are experimentally obtained: (F1 = 2087 daN,  F2  = 2296 daN and F3 = 

2390 daN). 

Good agreement between numerical and experimental results is evident. Detail 

comparisons between numerical and experimental results are given in Ref. [13]. Difference 

between numerical and experimental results is maximum 5%. In this work optimization 

results of one substructure are presented only. These results illustrate multilevel 

optimization process. 

Example 3: Minimum Weight Design of Nose Landing Gear with Stability Constraints 

 

Here is illustrated minimum weight design of nose landing gear with stability constraints 

(See Section 4.2). This part is modeled by shell finite elements based on HOST [16]. 
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FE model of Nose Landing Gear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part of landing gear modeled by shell finite 

elements 

Figure 5  FE model of landing gear 
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Figure 6 Weight history of part landing gear modeled by shell finite elements 

 

Figure 6 shows weight history design of optimization process.  The minimum weight of 

structure is obtained after 6 iterations only. Here is used dual algorithm based on OC 

approach. 

 

7   Conclusions 

The obtained results demonstrate the practicality of multilevel optimization approach in 

the design of the complex aircraft structures. In this study two-level optimization 
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algorithm is applied; system- and component level. From the various investigated test 

problems it becomes clear that the choice of various optimization algorithms at each level 

play a major role in the efficiency of the whole optimization process. Presented multilevel 

optimization approach uses optimality criteria’s algorithm in conjunction with a 

Sequential Unconstrained Minimization Technique (SUMT). Optimality criteria's 

algorithms are used for system level optimization i.e. in case of weight minimization 

subject to global (system) constraints that can be displacements, system stability, 

frequencies, flutter etc. Nonlinear Mathematical Programming optimization algorithms are 

used for local (component) level optimization. Combining FEA, approximation concepts 

and OC or dual algorithms has led to a very efficient method for minimum weight sizing 

of large-scale structural systems. The proposed method is suitable for designing practical 

large-scale structures with a large number of design variables. Finally, minimum weight 

designs obtained for the aircraft parachute composite beam illustrate the application of the 

multilevel approach to a relatively large structural system. 
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Abstract. The modelling and calculation of parameters of involute gear pair 

dynamics is basic requirement for studying of gears stability and energy 

efficiency. In this paper, the dynamic model of involute gear pair is used in 

the comparative study of spur and helical involute gears with their stability as 

the dominant aspect. The stiffness and load distribution for research of gears 

dynamic behaviour have been calculated with the finite element method. The 

special attention was paid to define the procedure for time-varying mesh 

stiffness calculation. The obtained results shown as phase portraits confirm 

that the helical gear pair has more stabile work than the spur gear pair with 

same main geometry and load. Described procedure can be used for future 

investigation of optimal gears parameters (e.g. tooth profile, nominal load) 

with aspect of gear pair stability. 

 

 

1. Introduction 

 

In order to study gears stability and energy efficiency, in recent years the focus is on 

nonlinear dynamics of gears. Many authors have investigated and discussed this 

problem from wide range of aspects, [1-4], and point out the importance of studying the 

nonlinear oscillations of gears from aspect of competitive limitations of noise level and 

vibrations. In this paper, the comparative study of spur and helical involute gears with 

their stability as the dominant aspect has been discussed.  

The precise solution for involute gears oscillations can be obtained only if non-linear 

functions of stiffness and load are known. In the literature, the tooth stiffness and mesh 

stiffness are treated in different ways. In the simpler models, the gear mesh stiffness is 

assumed to be constant. In last decade, authors overcame this simplification and 

presented various methods for teeth deformation, teeth stiffness and load calculation. 

Thus, some of them determined the dynamic load between two elastic helical gears with 

excitation from new incoming contacts and calculated the total deformation of contact 

teeth as sum of numerical calculated (with Finite Element Method) teeth bending 
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deformations and analytical calculated Hertz’s teeth contact deformations. But, they 

neglected influence of load value on contact deformations. The importance of 

determination of variable contact area in simulation of contact problems in gears is 

discussed by Ulaga, [5]. They presented a new Finite element technique for more 

accurate contact stress predictions, while Pedrero et al. [6] described minimum elastic 

potential criterion as method for calculation of load distribution in involute gears mesh. 

But they still used Hertz’s formulae for contact in one point and neglected influence of 

load value. This is not appropriate calculation methods for teeth total deformations, 

because contact deformation depends of the magnitude of load and must be determined 

through iterative procedure [7]. In the new series of papers, [3,8,9,10,11] have been 

confirmed the Finite Element Method (FEM) as out of competition method for 

investigations of deformations and load distribution for involute gears. 

The main objective of this paper is to present a method to determine the load in a gear 

pair considering the actual positions of the contacts and the actual deformations of the 

gear teeth. The determination of positions of the contacts and the actual deformations of 

the gear teeth are then used to determine the mesh stiffness and load distribution 

between the meshed teeth pairs. These values are used in gear pair dynamic model to 

obtain the analysis of involute spur and involute helical gears motion. 

 

2. Theoretical gear pair dynamic model 

 

A pair of gears is simulated with two disks coupled with non-linear mesh stiffness and 

mesh damping. Many authors confirmed this simplified dynamic model and focus their 

investigation resources on various influence factors [12,13,14,15]. In this model one 

disk (driving gear) has radius r1 and mass moment of inertia J1 and the other (driven 

gear) has radius r2 and mass moment of inertia J2. The radii r1 and r2 correspond to the 

radii of the base circles of the two gears, respectively (Fig.1a). The dynamic 

transmission error is the difference between the actual and ideal position of the driven 

gear and can be expressed as a linear displacement along the line of action (x). It is very 

important to calculate the x(t) function (t - time) to predict gear noise and increase gears 

life. Reduction to the line of action [16,17], transforms the gear model II (model with 

two steps of freedom, Fig.1a) to gear model I (model with one step of freedom, Fig.1b).  

 

 
  Figure 1. Dynamic model of gear pair. 
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  a) model II - with two steps of freedom, b) model I - with one step of freedom 

 

Nonlinear dynamic analytical model of involute gears motion for model II can be given 

with equations: 

 ( ) ( ) )()()( 2102111 tFxxtcxxtdxm nz =−+−+  . (1a) 

 ( ) ( ) )()()( 2102122 tFxxtcxxtdxm nz −=−−−−  . (1b) 

and for model I with equation:  

 )()()( 0 tFxtcxtdxm nzred =++  . (2) 

In these equations: mi (i=1,2) are equivalent masses of gears and mred is reduced mass of 

gears, c0(t) is the gear mesh stiffness function, dz(t) is the gear mesh dumping function 

and Fn(t) is the function of normal load distribution between the gear teeth in mesh, 

during gear meshing period. The mathematical models can be used for the analysis of 

the gears oscillation parameters, only if all functions are known. In the research 

presented in this paper, the stiffness and load distribution are calculated using the true 

contact geometry of the involute gears as elastic bodies. The developed finite element 

model presented in previous papers [11,18] have been used. Damping value is assumed 

to be equal to 1 which excludes its influence on the gears oscillation characteristics, 

[17]. The calculation of nonlinear damping in dynamics of gear mesh is subject that 

requests widely access and research, [19]. 

 

2.1. Teeth stiffness and mesh stiffness 

 

In general, stiffness is the force that causes unit deformation. There are different 

variables that describe stiffness for meshed gears. In this paper, the few of them are 

used. The tooth stiffness can be defined as ratio of differential of unit normal load in 

tooth face plane section d(Fb/B) and appropriate elastic deformation: 

 
( )

du

BFd
c b /

= . (3) 

The tooth stiffness depends of many influence factors (gears geometry, load value, 

material characteristics etc.) and varies along length of action, as well as along line of 

contact of a teeth pair. Determination of tooth stiffness function is very important point 

in involute gears investigations, especially for helical gears. The complex helical gears 

geometry and variable length and position of teeth contact lines during mesh period 

require complex study of teeth contact and stiffness, [20]. Contact lines are not parallel 

to gears axis during meshing period for helical gears. Therefore, teeth pairs coming in 

mesh gradually. This leads to continuously changing of contact line length and makes 

load distribution calculation very complex. Zone of action (contact zone) for involute 

parallel-axis gears with helical teeth is the rectangular area in the plane of action 

bounded by the length of action and the effective face width, Fig.2. 
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 Figure 2. Zone of action for involute parallel-axis gears with helical teeth. 

 

The tooth stiffness at each point of line of teeth pair contact is called specific tooth 

stiffness and can be obtained as ratio of unit load and tooth deformation for any specific 

point: 

 uqcsp /= . (4) 

For calculation of unit stiffness for i
th

 teeth pair (when m teeth pair are simultaneously in 

contact), contact is simulated with serially connected springs, which is in accordance 

with contact modelling in mechanics. So, the specific teeth pair stiffness for any contact 

point when unit specific tooth stiffness for pinion tooth csp1, and wheel tooth csp2 are 

known has following form: 

 
21

21

)(

spsp

spsp
isp

cc

cc
c

+

⋅
= . (5) 

In many theoretical calculations, the assumption of constant teeth pair stiffness along 

line of contact exists. The average teeth pair stiffness along line of contact is used as 

constant teeth stiffness and can be calculated for every of m teeth pair in contact as 

average value of specific teeth pair stiffness along line of contact: 

 uqc /'= . (6) 

The previous mentioned dynamic models of gears motion [14,15] use simplified stiffness 

variable called total mesh stiffness c0 that is sum of total teeth pair stiffness for all 

simultaneously meshed teeth pairs.  

For involute spur gears, that means: 

 ∑⋅= '0 icBc , i=1 for single tooth pair contact period  

                                                    i =1,2 for period with two teeth pair in contact. (7) 

where: ci’ is average teeth pair stiffness for i
th
 teeth pair in contact and B is length of 

line of contact, i.j. gear facewidth. 

For involute helical gears, that means: 

 )'(0 ∑ ⋅= ii Bcc , i =1,2 for two teeth pair in contact 
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                                                        i =1,2,3 for three teeth pair in contact. (8) 

where Bi is length of line of contact for ith
 teeth pair. 

 

3. Analytical solution of nonlinear load distribution for spur gears 

 

3.1. Load distribution over simultaneously meshed tooth pairs 

 

For cylindrical involute straight-tooth gears (spur gears), the problem of load 

distribution in mesh could be solved with separately solved two load distributions: the 

load distribution over simultaneously meshed tooth pairs and the load distribution over a 

gear facewidth. Paper [21] describes the solution of load distribution over 

simultaneously meshed tooth pairs. This solution is used as the starting point in research 

described in this paper. 

The following equations describe the gear load distribution in an analytical form 

[21,22]: 

 

0

1

21

1
1

'

''

'

c

Fc

B

F

cc

c
q bnbn =⋅

+
= ; 

0

2

21

2
2

'

''

'

c

Fc

B

F

cc

c
q bnbn =⋅

+
= . (9) 

 

3.2. Load distribution over gear facewidth 

 

In real working conditions, the load distribution over gear facewidth is non-uniform and 

can be described with function q(z), which defines the unite load change along the tooth 

pair contact line. The system of integral equation, which consists of the contact equation 

and balance equation, represents the starting point for determination of real load 

distribution over gear facewidth. This system can be presented in the following form: 

 )(),()(

0

zFdzuzKzq
B

β+∆=⋅∫ ; (10) 

 ∫ =
B

bnFdzzq
0

)( . (11) 

Where: q(z) – is the function of unite load change along the tooth pair contact line; 

K(z,u) – is influence function, which defines the relation between u (elastic deformation 

at one particular point on the contact pattern) and q(z)dz (concentrated load at the same 

point); z – is the coordinate of the studied point along contact pattern; ∆ – is total tooth 

pair deformation in the direction normal to tooth pair contact pattern; Fβ(z) – is mesh 

initial misalignment (deviation between pinion tooth facewidth direction and wheel 

tooth facewidth direction when the gear pair is nonloaded); Fbn – is total normal load 

value for gear pair in mesh. 

It’s very hard or almost impossible to determine real values for many factors and 

variables that have crucial influence on the accurate form of the function q(z), as well as 
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on the value of real tooth pair bearing pattern length B. Also, there is very small 

possibility to determine and to take into the calculation the real values for gear body 

deformation, gear rim deformation and deformations of all other parts of gear 

transmission. Therefore, the determination of function q(z), with very high level of 

accuracy, is impossible and a system of integral equations defined with the expressions 

(10) and (11) could be solved only by numerical method usage with the same 

simplification and assumptions. 

The discrete method for solving the problem of load distribution over gear facewidth is 

used in this paper. During single meshed tooth pair period, the main principle of this 

method defines tooth pair contact pattern like the final number of equal segments. 

Generally, a length of these segments is nearly a value of gear pair module m, Fig. 3. 

Then, value of load qj (z) that acts on the j
th

 segment (part) of tooth pair contact pattern 

substitutes with uniform unite load jq , i.e. with concentrated force 
jjj zqF ∆⋅= . Finally, 

the discrete method gives the system of integral equations that can be translated to the 

equivalent system of algebraic equations. A lot of numerical methods can be use for this 

translation. 

The matrix form of the mentioned equivalent system of algebraic equations is: 

 

1 111 12 1

1

2 221 22 2

2

1 2

. . .

. . .

. . .

1 1 . . . 1

n

n

n nn n nn

n

bn

FK K K
F

FK K K
F

FK K K
F

F

β

β

β

∆ +  
     ∆ +    
     ⋅ =
    

∆ +             

  


. (12) 

where each matrix element Kjk represents the sum of all influence factors for both gears, 

i.e. the total coefficient for influences of force that acts on the k
th
 segment of tooth pair 

contact pattern to the deformation of the j
th
 segment of the tooth pair contact pattern. 

 

 
  Figure 3. Partition of tooth pair contact pattern on finale number of equal segments. 

 

In equation (12), Fj, j=1,n are unknown forces that act on the center points of segments 

and their values define the load distribution over gear facewidth, and ∆j, j=1,n is the 

displacements of the center points of contact pattern segments which are increased for 

corresponding mesh misalignments due to manufacturing and assembly (Fβj, j=1,n). ∆j 

and Fβj are corresponding values in the direction which is identical to the direction of 

normal load. The solution of the system of algebraic equations (12) gives values Fj and 

this define the real load distribution over facewidth and real length of tooth bearing 

pattern during transmission of external load defined with force Fbn. 
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4. Analytical solution of nonlinear load distribution for helical gears 

 

The helical gears nonlinear load distribution in gear mesh could be solved only by 

resolving the load distribution between simultaneously meshed teeth pairs and the load 

distribution along each of teeth pair contact line, at the same time. For mathematical 

definition of load distribution in helical gear mesh, the expanded procedure for load 

distribution over gear facewidth for involute spur gear could be used. 

For every moment (contact position P) during helical gears meshing period m tooth pairs 

are simultaneously in contact. System of integral equations, which consists of the contact 

equation and balance equation, can be defined for each ith
 of m simultaneously meshed 

tooth pairs for single contact position. This system can be presented in the following 

form: 

 ( ) ( ) ( )zFdzuzKzq iii

B

i

i

β+∆=⋅∫ ,

0

. (13) 

 ( )∫ =
iB

bnii Fdzzq

0

. (14) 

Where: qi(z) – is function of unit load change along the ith
 tooth pair contact line, Bi – is 

length of ith
 teeth pair contact line for a contact position P, Ki(z,u) – is influence 

function, which defines relation between u (elastic deformation at one particular point 

on the contact pattern) and qi(z)dz (concentrated load at the same point), z – is 

coordinate of studied point along contact pattern, ∆i – is total tooth pair deformation in 

the direction normal to tooth pair contact pattern, Fβi(z) – is mesh initial misalignment 

(deviation between pinion tooth facewidth direction and wheel tooth facewidth direction 

when the gear pair is unloaded), Fbni – is total normal load value for i
th

 tooth pair in 

mesh. 

Systems of equations (3) and (4) for all m simultaneously meshed tooth pairs and 

equation of load balance: 

 bnbnmbnbn FF...FF =+++ 21 . (15) 

give system of (2m+1) equation for load distribution solution. It’s very hard or almost 

impossible to determine real values for many factors and variables that have crucial 

influence on accurate form of the function qi(z), as well as on value of real tooth pair 

bearing pattern length Bi. Therefore, this system of integral equations can be solved only 

by numerical method usage with same simplification and assumptions.  

The main difference between discrete method developed for spur gear pair and helical 

gear pair is in the number of tooth pairs that are simultaneously in mesh and in variable 

tooth pair bearing pattern length. It is consider that the ni is the number of segments on 

the i
th

 tooth pair contact line, so the equation (15) takes the following form: 



380

 IVANA  ATANASOVSKA, M. VUKŠIĆ POPOVIĆ 

 ∑ ∑
= =

=⋅
m

i

n

j
bnijij

i

FBq
1 1

. (16) 

where qij – is normal unit load along the j
th

 segment of i
th

 tooth pair contact line; Bij – is 

length of the segment. The numerical Finite Element Method is used for calculation of 

these values.  

 

5. Finite Element Analysis for load distribution calculation 

 

This chapter of the paper describes Finite Element Analysis (FEA) of spur and helical 

gears. Appropriate analysis is performed in order to select meshed gears model which is 

sufficiently economic and in same tame sufficiently geometrically accurate, [18]. The 

chosen FEM models each consist of three gear’s teeth. The special algorithm for tooth’s 

involute profile drawing is developed and built in present FEM software to assure 

drawing of real involute flanks contact geometry. Also, choice of optimal mesh size level 

is performed, [18]. Described FEM models are made for one particular gear pair with 

high value of transmission ratio, that enable us to perceive all potential problems during 

stress and strain calculations. The main characteristics of the gear pair are: number of 

teeth z1=20, z2=96; standard tooth involute profile, addendum modification coefficients 

x1=0.3, x2=0.2; face width b=175 mm; module mn=24; pressure angle αn=20°; rotational 

wheel speed n2=4.1596 min
-1

; wheel torque T2=1264.4 KN⋅m, material: steel with  E = 

206 000 N/mm
2
; ν =0.3; helix angle β=15° and pinion teeth inclination – right, wheel 

teeth inclination – left (for the investigated helical gear pair only). For defined geometry 

characteristics and torque, the normal nominal load that this gear pair transmits is Fbn= 

1168.0354 KN. The appropriate Finite Element Analysis gives the possibilities for 

monitoring of deformation and stress variables during tooth pair meshing period.  

 

5.1. FEA for a spur gear pair 

 

Finite Element Analysis for the spur gear pair with previous defined characteristics is 

performed by FEM model shown in Fig.4a,b and in detail described in previous papers, 

[11,18]. For solving the stiffness and load distribution for gear pair dynamic model the 

specific iterative procedure has been used: In the first iteration, for the period with two 

teeth pairs in contact, the uniform distribution of normal load Fbn between 

simultaneously meshed teeth pairs is assumed ( 21 qq = ). For this load case, the FEA 

gave results for total pinion tooth deformation and total wheel tooth deformation (uz1 

and uz2) – equal to displacements of contact points in the direction of the path of contact. 

Sum of these values represents the total deformation for a teeth pair in mesh u’. Then, 

equation (6) gives the values of tooth pair stiffness ci’ for both of simultaneously meshed 

teeth pairs, as well as the equation (7) for the total mesh stiffness c0. When the obtained 

values are inserted in equations (9) the unit loads iq , i=1,2 result in corrected values. 

Then new FEA with same gear models, but with corrected loading, produce results for 
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the next iteration of unit load values. Number of iterations depends on the partcular level 

of accuracy required. 

In the last iteration, the developed methodology and FEM calculations give all the 

values necessary for determination of the key parameters: tooth deformations, tooth 

stiffness, load distribution, maximum equivalent stress in tooth roots and maximum 

equivalent stress on the meshing tooth flanks, Fig.4c. 

  
   

a) b) c) 

 Figure 4. The spur gear FEM model and equivalent stresses for pinion gear. 

 

5.2. FEA for a helical gear pair 

 

Finite Element Analysis for the helical gear pair with previous defined characteristics is 

performed by FEM model shown in Fig.5a,b and in detail described in previous papers, 

[10]. For solving the stiffness and load distribution for gear pair dynamic model a 

similar  iterative procedure has been used: In first step (iteration), total normal load for a 

contact position P is divided on simultaneously meshed tooth pairs in proportion of 

appropriate bearing pattern lengths, which are scanned from FEM nonlinear contact 

solution for the investigated gear pair. Therefore, the normal load on i
th

 meshed tooth 

pair is: 

 ∑
=

⋅=
m

i

ibnii BFBF
1

/ . (17) 

  

 

 
a) b) c) 

  Figure 5. The helical gear FEM model and equivalent stresses for pinion gear. 

 

Then, tooth pair stiffness of j
th

 segment on i
th

 line of contact is calculated as ratio of unit 

normal load and total teeth deformations in the direction of line of contact scanned from 

FEA results, Eq.4. For the next iteration normal load is divided on tooth pairs in mesh 

in accordance with stiffness values and bearing pattern lengths: 
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'
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In the last iteration, the developed methodology and FEM calculations give results 

needed for dynamic behaviour modelling: tooth deformations, tooth stiffness, load 

distribution, maximum equivalent stress in tooth roots and maximum equivalent stress 

on the meshing tooth flanks, Fig.5c. 

 

6. Results and discussion 

 

For the investigated spur gear pair the results are obtained by described procedure and 

displayed in this chapter for the middle teeth pairs of modelled gear segments.  

On Fig.6 obtained distribution of specific tooth stiffness is presented: along path of 

contact (Fig.6a) and along gear facewidth for the contact point with maximum stresses, 

Fig.6b. On this diagrams the variable y/pb [-] is ratio of contact point position on line of 

contact (measured from start contact point) y and base pitch pb. The appropriate load 

distribution obtained from shown stiffness distribution is calculated with Eq.9 and 

shown on Fig.6c. Total mesh stiffness for a spur teeth pair is shown on Fig.7. The mesh 

stiffness variation is presented during two time periods of the gear pair motion.  

For the investigated helical gear pair, results for the specific stiffness and normal load 

distribution are obtained by described procedure and shown on Fig.8. The results are 

displayed for one tooth pair meshing period. On this diagrams the variable y/pbt [-] is 

ratio of contact point position on line of contact (measured from start contact point) y 

and transverse base pitch pbt, and the variable z [mm] is distance of contact point form 

tooth face surface. 
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  Figure 6. The results for spur gear stiffness and load distribution. 
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  Figure 7. Total mesh stiffness during spur gear meshing. 

 

The specific stiffness that is calculated and shown at Fig.8 and the real teeth pair bearing 

pattern lengths Bi (i=1,2,3) taken from the FEM helical gears model are used for the 

calculation of total mesh stiffness c0 (N/m) by Eq.8. The trend of the total mesh stiffness 

change during the periods with two and three simultaneously meshed gear pairs is shown 

in Fig.9. Results shown in this diagram correspond to three tooth pair mesh periods. The 

diagrams shown in Fig.7 and Fig.9 have the expected form in accordance with results of 

other authors, [17]. 

 

                                  
Figure 8. Mesh stiffness and normal load distribution for helical gear pair. 
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Figure 9. Total mesh stiffness during helical gear meshing. 
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  Figure 10. Variation of spur gear pair displacement and velocity. 

 

Obtained results for total mesh stiffness and normal load distribution for both of gear 

pairs (spur and helical) are then put in nonlinear dynamic analytical model of involute 

gears motion described with equation (1a,b) for model II and equations (2) for model I. 

In that way these analytical   models   become solvable.   The  Runge-Kutta    numerical  
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  Figure 11. Variation of helical gear pair displacement. 

 

 

iterative methods are used for solving the obtained differential equations. The 

commercial MATLAB software is used for calculations.  

The variation of displacements and velocity for the spur gear pair calculated with model 

II are shown in Fig.10. For the helical gear pair appropriate diagrams are shown in 

Fig.11 and Fig.12. The results obtained for dynamic gear models I and II, are shown in 
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comparative diagrams with the zooming details. Results in Fig.11 correspond to three 

meshing periods and results in Fig.12 correspond to gear pair velocity for the same time 

period. 
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  Figure 12. Variation of helical gear pair velocity. 
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7. Conclusions 

 

This paper shows the calculation of total mesh stiffness and nonlinear load 

distribution for spur and helical involute gears with a new methodology and Finite 

Element Analysis. The presented research successfully put together numerical 

methods for stress and strain calculations and numerical iterative methods for 

differential equations solving. Excellent qualitative superposition of results with 

results of other authors, [2], led to the conclusion that developed models and 

procedures are suitable for future research. The obtained results shown as phase 

portraits in Fig.13 confirm that the helical gear pair has more stabile work than the 

spur gear pair with same main geometry and load. 
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  Figure 13. Comparative phase portraits. 

 

Although this fact has been known in theory of gears, the presented research is 

important because the developed procedure gives the accurate assessment of the 

differences between spur and helical gear pairs and can be used for future 

investigation of optimal gears parameters (e.g. tooth profile, nominal load) with 

aspect of gear pair stability. Also, the time-varying meshing damping could be 

incorporate in developed model of gears dynamics.  
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Abstract. The present paper deals with the problem of improving of dynamic characteristics 

some structures. Dynamic modification procedure is given as using distribution of potential 

and kinetic energy in every finite element is used for analysis. Also, the paper will discuss the 

introducing of a probabilistic treatment of important problem parameters. Most numerical 

simulations of physical systems are rife with sources of uncertainty. Uncertainty in 

simulations stems from the stochastic nature of geometric and physical parameters, 

indeterminate nature of initial/boundary conditions, and inadequacy of physical models 

coupled with discretization errors. Structural modifications can cause changes in the matrices 

of some elements. Depending on the type of structure, or a desired change, a group of 

elements can be modified 

 
Key words: dynamic modification, reanalysis, uncertainty 

 

1 Introduction 

 

Dynamic response of mechanical systems depends on structural parameters. The 

objective is to evaluate the structural response for successive modifications in the design 

avoiding the difficult solution of the modified equations. The structural modifications 

may be caused by external factors or by the designer in order to improve the 

characteristic of the response (eigenvalues and eigenvectors). Modification of dynamic 

characteristics means change of corresponding design variables to get desired dynamic 

behavior of structure. The design variables depend on the type of optimization problem. 

In the design of structural components, such as stiffened panels and cylinders, the design 

parameters represent the spacing of the stiffeners, the size and shape of the stiffeners, 

and the thickness of the skin. The thickness of plates, cross-sectional areas of bars, 

areas, moments of inertia, and torsion constants of beams represent sizes of the 

elements. Joints and members could be eventually added or deleted during the design 
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procedure so that the geometry of the structures may be modified. Reanalysis methods 

can include the next activities:  

(a) Modification in the geometry with no further change in the number of degrees of 

freedom.  

(b) Modification of design variables (mass, damping and stiffness).  

(c) Increase or reduction of the number of DOFs by changing the supporting manner 

and addition or deletion of joints and members.  

(d) Alteration of the kind of material on some places if modification is possible. The 

main purpose of dynamic reanalysis is to provide numerical procedures to evaluate the 

structural response after modifications of design variables.  

The development of a new, simple procedure for structural reanalysis of mechanical 

system must be capable of modifying its dynamic properties while achieving requested 

characteristics with conveniently fast convergence of the whole process. The analytical 

method with a clear concept, based on distribution of kinetic and potential energies is 

used for modifying the dynamic properties of main vibration (oscillation) forms, 

occurring in individual components or in grouped assemblies. The analysis of complex 

structures begins with initial rough analysis of a structure that is followed by the analysis 

of grouped structural assemblies. The final phase is the precise analysis based on 

sensitivities of individual elements. The selection of structural parameters for dynamic 

properties improvement through eventual modification according to energy distribution 

includes geometry, supporting system and material characteristics. Based on this 

approach, the corresponding algorithm is proposed and applied. One of the important 

performances of this algorithm is convenience for rational implementation in computer 

systems, using appropriate software. In this way, relevant data for structural system 

dynamic response during reanalysis can be obtained and considered in the optimization. 

The main purpose of dynamic reanalysis is to provide numerical procedures to evaluate 

the structural response after modifications of design variables.  

 

1.1 Literature Overview 

The basic theory for determining the existence of solution for frame structure 

optimization with frequency limits is found in Ref. (Tong at all, 2000). According to this 

theory, natural frequencies do not change with uniform frame modification and key 

limitation for determination of optimal dynamic solution of frame structure modification 

is mostly that of eigenfrequencies. The optimization criteria for space frame structure 

with multiple limitations in its natural frequencies are considered in (Wang at all, 

2004). Knott coordinates and cross sections of elements, although of different nature, 

have been treated simultaneously in unified design specification for a minimum weight 

of structure. Optimum first criterion, developed for one limitation based on 

differentiation of the Lagrange function, indicates that at optimum all the variables are 

of the same efficiency. In order to solve multiple limitations of frequencies global 

numbers are introduced, avoiding in this way the calculation of Lagrange’s 

multiplicators. 

In the final stage, the most efficient variables are identified and modified as priority. 

Using the minimal weight increment, optimal solution can be obtained from initial 

design solution. The procedure is also effective for repeated values of frequency. In 
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paper (Nair at all, 1998) the model for modified dynamic structural system is presented, 

based on reduced appreciative concept of improved method for the approximation of 

eigenvalues and eigenvectors of first order. The expressions for local approximation 

based on Taylor's series are used as base vectors for eigenparameters perturbance 

approximation. The reduced system of eigenvalues is generated for each eigenvector 

using eigenvectors as a base and Ritz's vector approximation of first order. The 

equations for reanalysis are algebraic (Wamg at all, 1986). A new function to limit 

eigenvalues approximation in the procedure of structural optimization is introduced in 

(Canfield, 1990). Applied Reyli ratio increases the approximation quality for frequency 

limitations since it approximates eigenforms energy and kinetic energy instead 

eigenvalues, producing faster and stable convergent solutions.   

The application of iterative method for sensitivity determination in reanalysis of 

structure due to small perturbances of design variables is applied in numerical 

procedure, discussed in (Yoon, 1988). In this paper the algorithms for displacements 

and stresses are given, as well as for eigenvalues and forms. The scheme of iteration is 

modified saving matrix coefficients as constant and using only one decomposition. 

Implementation of algorithm is simple, and the convergence fast. The extension of the 

method to the sensitivity of eigenfrequencies with repeated values is convenient to avoid 

the conditions of matrix coefficients close to bifurcation points, which occurs when non-

linear response of a structure is considered. 

It should be noted that dynamic response is given primarily through corresponding 

eigenfrequencies and main oscillation forms as characteristic (typical) variables. 

Changing them, by changing the design parameters of a structure, it is possible to 

achieve the required structural dynamic response. 

Sensitivity analysis is an important point within the dynamical modification procedure. 

Sensitivity analysis represents a collection of mathematical methods for reanalyzing 

structures which is, within dynamical modification, related to sensitivity of eigenvalues 

and eigenvectors. Therefore, the application of sensitivity analysis is limited to 

construction of segments for which necessary mathematical relations can be determined. 

If this is not possible, sensitivity analysis is only partially applicable. Dynamical analysis 

of complex structures can easily be conducted via finite elements modeling. Therefore, 

while finite element analysis method is highly adequate for modeling complex 

structures, one of its major drawbacks lies in the usage of large number of degrees of 

freedom in calculating the exact eigenpairs. This number can amount to few tens of 

thousands, or even more. To reduce the calculation time it is possible to divide the 

complex structure into connected substructures and analyze each one separately. The 

dynamical behavior of each substructure is represented only by a reduced set of 

eigenpairs of interest, which contributes to significant problem simplification. A more 

general problem of structural dynamic analysis has three important aspects. Firstly, the 

observed physical structure is represented by initial finite element model. Modeling is 

based on numerous idealizing approximations within an exaggerated elaboration of 

details, which in essence does not significantly improve the accuracy of output data, 

especially having available powerful computers and appropriate software packages. 

Optimal alternative is to have the possibility of verifying outputted data that were 

measured on a prototype or real structure. Secondly, the dynamic characteristics of 
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construction under reanalysis are analyzed. What is basically observed are eigenvalues 

and main forms of oscillations as characteristic variables that can invoke inadequate 

actual dynamic behavior. Thirdly, on the basis of the analysis of actual dynamic 

behavior, modification steps are proposed after which a modified model is obtained. 

Having in mind that mechanical structures are most often very complex, the most 

convenient modification steps are not easily obtained. 

 

1.2 Uncertainty quantification 

Uncertainty quantification in structures is a very important field of investigation, due to 

its influence on subjects such as structures reliability and model validation amongst 

others.  Uncertainty quantification in structures can be used where the uncertainties 

introduced by random forces were applied to the structure Lin (1969). Cacciola at all 

(2005) did research on the procedure for the dynamic reanalysis of linear systems 

subjected to deterministic or stochastic loads. The structural modifications may be 

imposed by external factors (e.g. design alterations for operational reasons, or 

discrepancies between the predicted and measured properties of the structures) or by the 

designer in order to improve the characteristic of the response (e.g. layout optimization). 

Joints and members could be eventually added or deleted during the design procedure so 

that the topology of the structures may be modified. Reanalysis techniques are 

commonly devoted to efficiently determine the structural response produced by the 

following events: 

1. modification in the geometry with no further change in the number of degrees of 

freedom (DOFs); 

2. alteration of dynamic characteristics of structural components (mass, damping and 

stiffness); 

3. variation of the number of DOFs due to addition or deletion of joints and members; 

4. alteration of loads due to both modification of the original number and position of 

joints and for changing in the intensity of external excitations. 

Cacciola at all (2005) stated that most reanalysis methods are not able to deal with the 

last two modifications, which are usually named topological modifications as they imply 

a change in the dimension of the system due to addition or deletion of DOFs. 

Kirsch and Liu (1997) focused a static reanalysis method by researching the 

characteristic of a modified initial design for the case of layout modification (no changes 

in the number of degrees of freedom). 

Lecomte (2013) investigated the response of uncertain vibro-acustic and structural 

dynamic systems.  In this paper, it is shown the comparison of the exact means, 

variances, covariances, as well as the exact stochastic and covariance coefficients, with 

their estimates obtained through Monte-Carlo simulations that confirmed the advantages 

of the analytical approach. 

 

2. PROBLEM SETUP 

 

Sensitivity examination on real examples still presents a troublesome task so that the 

analysis of distribution of specified values is performed instead. The distribution of 

optimization elements is an example of reanalysis which is expressed in percentages of 
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specified quantities from a chosen group of elements. By posing the task of obtaining the 

desired first or other eigenfrequency of a system, construction analysis often requires the 

calculation of a great number of construction alternatives. However, through reanalysis, 

which is based on balancing the distribution of kinetic and potential energy of all finite 

elements in the model, it is possible to efficiently obtain the desired eigenfrequencies of 

a system. The main goal of dynamic optimization is to increase natural frequencies and 

to increase the difference between them. Some information should be prepared, before 

you set up the FE model. 

The matrix form of differential equations of motion for a system that is not subjected to 

external forces is: 

 

[ ] [ ] { }0)()(
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=





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
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
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            (1) 

Eigenvalue of this differential equation for i-th mode is: 

 { } { } { }[ ] [ ] 0ii i
K Q M Qλ− =                          (2) 

Given that ][ K∆  and ][ M∆  are the corresponding changes in rigidity and mass 

matrices respectively, then the formula (2) can be applied to the modified system and so 

called modified equation for the case of free oscillations is: { } { }[ ]' ' '[ ] ' 'ii i
K Q M Qλ= , 

where we have substituted  
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where iλ∆  and { }
i

Q∆  are changes of eigenvalues and eigenvectors, respectively. 

 Assuming that the changes in the construction are small, it can be expected that 

the changes of values of vectors of eigenvalues and eigenvectors will also be small. 

Therefore, the higher order members in the following equations can be neglected (Ki, 

1983). After mathematical transformation it is possible to express the change of i-th 

eigenvalue under system modification, which was the final purpose of this procedure: 
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The previous formula can be considered as basic expression in construction reanalysis 

aimed at improving dynamic characteristics. The expression in the nominator represents 

the difference of increases in potential and kinetic energy between modified and 

unmodified states. Since the increase in i-th eigenvalue is directly proportional to this 

difference, each member of the nominator is of vital importance for analysis, which will 

be shown in detail further in the text. Another important question arises from analyzing 

the previous formula. The designations “ ' “ depict the values which are related to the 

modified state. Often, due to large size of a certain problem, it is not possible to easily 

obtain those values. If those changes are small, which is a prerequisite for obtaining 

accurate solution it is possible, with great degree of reliability, to use the expression with 

values that are related to unmodified system: 
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The expression in the denominator of equation (5) represents the kinetic energy of a 

certain oscillation mode and having in mind equation (2), it also represents the potential 

energy, for reasons of energy balance in the main oscillation modes. 

where: 

 If the energy distribution over groups of elements is expressed in percentages 

for each main oscillation mode, it is possible to obtain rough information that can be 

used in modification. The basic goal of dynamic modification is to increase the 

eigenvalues and their distances. The formula (5) is important for understanding the 

procedure that requires modification of a certain construction. The denominator of 

previous formula is not changed in the procedure of modification, so the main point of 

analysis is placed on the nominator. The modification of construction assumes the 

change in only but few segments that are most responsive to change. This sensitivity is 

expressed in the fact that the change of certain construction parameters of these 

segments will result in greatest difference in the nominator of previous formula, and 

consequently in greatest effect on increasing the observed eigenfrequency of the system. 

Since the observed structures are already in exploitation, the essence of improving 

dynamic behavior is to achieve maximum change with minimal “intervention”. The 

question is how to determine segments or substructures of a construction that are most 

sensitive to small changes in their parameters? 

The problem of dynamic modification of a construction with the goal of improving 

dynamic characteristics has been a worldwide challenge for many researchers in 

previous decades (Trisovic (2007), Trisovic at all (2010), Allaboudi at all (2013). 

The methods thereby used are widely different, from strictly mathematical do entirely 

experimental. Dynamic response of a mechanical structure must be improved by either 

(i) load control, or (ii) change in dynamic characteristics of a structure. Loads are often 

the result of interaction of the structure and its environment, so they are not easily 

controlled. In that case, it is important to know that the dynamic response can be 

improved by redesigning (reanalyzing) the dynamical characteristics of the structure. 

Having this in mind, the application of the techniques of reanalysis in obtaining the 

desired conditions for FE model of mechanical structures has shown a rapid 

improvement in previous decades. There are numerous techniques that are applied in 

dynamic reanalysis of mechanical structures. One of them has been already mentioned, 

sensitivity analysis that is successfully applied in general as well as in specific dynamical 

problems. The success of the procedure of dynamical modification depends on many 

factors, most important of which are: complexity of a structure including the boundary 

conditions, and modification method that a research team will choose to apply. 

 

3.1. Dynamic analysis and diagnostics of a model and its groups 

Dynamic analysis and diagnosis of a model implies the analysis and interpretation of  
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model behavior and its modification. On the basis of the analysis of energy distributions 

in main oscillation modes for all construction elements, the following cases are 

observed, on the grounds of which it is possible to derive the algorithm for reanalysis of 

similar structures.  

I Elements in which the kinetic and potential energies (and the difference in 

their increase) are negligible with respect to other elements. 

II Elements in which the kinetic energy is dominant compared to potential energy 

III Elements in which the potential energy is dominant compared to kinetic energy 

IV Elements in which the potential and kinetic energy exist and are not negligible 

in comparison with other elements 

 

4. CASE STUDY 

 

Using the example of a cantilever beam, the application of the reanalysis formula has 

been demonstrated in determining the zones of the construction that are most sensitive 

to changes. Two models are observed: original and arbitrarily modified. The condition is 

that the modification be small, otherwise the linearization of modification equations, 

presented in the previous section, would not hold. Note that during the reanalysis, 

instead of eigencalculations for the changed construction, the corresponding reanalysis 

formula can be applied, where it is necessary to calculate the coefficients of modification 

α and β, as well as relative modification ratios ψ and ζ. It is thus possible to considerably 

save calculation time, and it will be particularly demonstrated that by the line finite 

elements the reanalysis formula generates entirely reliable results. The type of 

modification is determined by the type of finite elements, type of boundary conditions, 

model geometry, and the like.  

 

a. Deterministic input 

Consider a cantilever beam of length 1 m , rectangular cross-section, 

100 50b h mm mm× = × , divided into 5 finite elements (Fig. 1). In designations, in the 

tables and diagrams, this cantilever beam is referred to as the original cantilever beam. 

For the analysis of sensitivity to changes, the original cantilever beam is modified across 

the entire length, with small modifications
1
.  

 
Table 1. Few initial eigenvalues for the original cantilever beam and the modified one, where the 

height, as a construction variable, is increased by 10% 

Original cantilever beam Height increased by 10% 

across the entire length 

Modified shape, I, II,III,IV,V 

h[%], Mat Lab:  

8.6, +4, +0.97, -0.98, -2.59 

Frequencies, 

f0i[Hz] 

Eigenvalues, 

λi 

Frequencies 

f0i[Hz] 

Eigenvalues, 

λi 

Frequencies 

f0i[Hz] 

Eigenvalues, 

λi 

1443.94 82311011.93 1588.33 99596324.43 1472.33 85579889.95 

                                                        
1
 In the literature dealing with dynamic reanalysis it is stressed that modifications should be small, so that the 

chosen modification process converges to the desired eigenvalues of the pairs, however it is not easy to determine 

what is ’small’;  
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730.93 21091661.91 804.02 25520910.91 748.59 22122917.88 

260.24 2673654.72 286.26 3235122.21 270.70 2893010.45 

41.51 68010.88 45.66 82293.17 45.82 82876.53 

That cantilever beam is called a modified cantilever beam (Fig. 2). In this case, the 

chosen construction variable is the height of the rectangular cross-section h.  

Calculations are performed with the software package MatLab that possesses the 

function for calculating eigenvalues and eigenvectors. The lowest frequencies are always 

of the utmost interest for analysis. The table below (table 1) shows a few initial 

eigenvalues for the original cantilever beam and the modified one, where the height, as a 

construction variable, is increased by 10%.    

Fig. 3 displays the diagram of potential, pE , and kinetic, kE , energy distributions, and 

their mutual difference, pE - kE , original cantilever beams for all elements in a row, 

for the first oscillation mode, where the first eigenfrequency is f01 = 41.51Hz, and the 

first eigenvalue is  λ1=68010.88 s
-2

. 

 

 

 

 

Fig. 1 Original cantilever beam 

ρ=7833kg/m
3
, E=206840000000 N/m

2
; 

b=0.1m, h=0.05m, l=1m 

 
Fig. 2 Arbitrarily modified cantilever beam 

b1=b,    h1=1.1h 

 
Fig. 6  Modified cantilever beam after 

the first iterative step 

Fig. 3  Diagram of potential and kinetic energy 

distributions and their mutual difference for 

the original cantilever beam [J]. 

 
 

Fig. 4 Diagram of potential and kinetic energy 

growth rate distributions and their mutual 

difference for modified and original cantilever 

beam [J]. 

Fig. 5 Diagram of potential and kinetic energy 

growth rate distributions and their mutual 

difference for the modified cantilever beam  

after the first iterative step (Fig. 4.5), and the 

original cantilever beam [J]. 
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Fig. 4 shows a digram of potential, pE∆ , and kinetic, kE∆ , energy growth rates and 

their difference pE∆ - kE∆  for the increased height across the entire beam length, by 

10 %, for the first oscillation mode. The first frequency of a modified cantilever beam  is  

f’01 = 45.66Hz,  while the first eigenvalue is  λ’1=82293.17s
-2

. It is noticeable that the 

first eigenvalue growth rate is  λ1  =  +21 %, and the corresponding eigenfrequency 

growth rate is   f01  = f’01 - f01 = +10 % 

Fig. 5 displays a diagram of potential, pE∆ , and kinetic, kE∆ , energy growth rates 

and their difference pE∆ - kE∆  for the modified cantilever beam after the first iterative 

step (Fig. 6) for the first oscillation mode. The aim of modification is to increase the 

frequency by 10 %. Note the convergence compared to the previous diagram, which is 

evidenced by reduced ’columns’ characterizing the change in potential and kinetic 

energy growth rates. Also, a significant conclusion related to the cantilever beam cross-

section modification is that stiffness, i.e. cross-section height, should be increased in the 

fixed-point zone, while the beam’s free end should be loosened, i.e. mass should be 

decreased in that zone. 

Based on distribution of difference pE∆ - kE∆  between growth rates pE  and kE  

individually per element (Fig. 4), the shape of the optimized cantilever beam is obtained 

(Fig. 7). It is possible to arrive at desired changes, respectively, per element of a 

cantilever beam in the way as follows. First, the values of differences pE∆ - kE∆  per 

element are arranged in the table below:   

( )
3

1 1, , ;
j

j j j j j

h

h
α ψ β ψ ψ

∆
= + − = =  

After substituting data individually for each finite element, there follows λ1 = 

15165.96. 

When this value and the first eigenvalue of the initial beam are summed, it follows that: 

λ1,rean = 15165.96+ 68010.88= 83176.84,  a f1,rean = 45.90 Hz 

Comparing these results with those presented in Tab. 1, after eigenvalues were obtained 

by applying the MatLab software program (45.82), it can be concluded that there is a 

remarkable coincidence. 

3.2. UNCERATINITY QUANTIFICATION AND SIMULATION 

 

3.2.1 Stochastic input 

 

Further research included the execution of simulations Ek, Ep, growth rates Ek and Ep, 

differences in growth rates, first frequency in a cantilever beam and a modified beam for 

1000 values of Young’s modulus of elasticity according to the Gaussian distribution. 

On the basis of simulation, the following results were obtained, as presented in the 

figures (Fig.7-11). The figures show the diagrams of distribution  Ek, Ep, growth rates 

Ek and Ep, and differences in growth rates for each element separately. 
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The biggest difference in potential and kinetic energy growth rates was registered in the 

first finite element (nearest to the fixed point). In other finite elements the differences in 

kinetic and potential energy growth rates are decreased respectively, however on the 

very free end the values of kinetic energy are dominant, so that the difference in growth 

rate is negative. It is noticeable that the first element is the most sensitive to any change 

because the growth rate difference declines or rises very fast. The elements located in the 

middle of the beam length are almost non-sensitive, which means they are not suitable 

for the reanalysis. In order to increase eigenfrequencies, the free-end element is 

sensitive, but it is needed to decrease its kinetic energy, which can be achieved by 

decreasing its mass (reduction of height).  

Fig.7-11. Diagrams of distribution Ek, Ep, growth rates Ek and Ep, and differences in growth 

rates per element 

Element 1 

             
 

Element 2 

       

Element 3 
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Element 4 

     

Element 5 

        
 

The figure below (Fig. 12) displays distributions of differences in potential and kinetic 

energy growth rates on the beam for all five finite elements and for 1000 simulation 

results.  
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Fig. 12. Difference in potential and kinetic 

energy growth rates for five finite elements for 

1000 simulation results for the cantilever beam  

Fig. 13. Difference in potential and kinetic 

energy growth rates for five finite elements, for 

1000 simulation results, for the optimized 

beam 

 

The figure 13 shows the distributions of differences in potential and kinetic energy 

growth rates on the optimized beam (Fig. 13), for all five finite elements and for 1000 

simulation results.  
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In Table 3 a division into the confidence intervals was performed and frequency of the 

observed quantities occurrence was calculated. The result for the occurrence of the 

oscillation frequency rounded growth rate indicates normal distribution.  

 

Table 3. Confidence intervals 

Frequency rounded 

growth rate 
3,2 3,4 3,5 3,6 3,7 3,8 3,9 4 4,1 4,2 4,3 4,4 4,5 4,6 4,7 

Frequency of 

occurrence  
1 1 2 5 18 49 80 

13

5 

18

0 

20

6 

16

3 

10

4 
35 19 2 

 

Fig. 14 shows normal distribution of the probability of the frequency of occurrence of 

eigenfrequencies growth rate difference. It is evident from the diagram that the highest 

probability of the occurrence of eigenfrequencies growth rate difference is 4.2, with the 

occurrence probability of 20.6%.  
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Fig 14 Normal distribution of occurrence probability of frequencies growth rate difference  

 

By transforming the frequencies of occurrence of eigenvalues growth rate difference 

according to the Laplace criterion, we will obtain normal distribution of the occurrence 

probability, i.e. the degrees of uncertainty of the occurrence of eigenfrequencies growth 

rate difference. 
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The above text gives the probability of eigenfrequencies differences distribution in the 

original and the modified beam. Given that the normal distribution of eigenfrequencies 

growth rate difference was obtained, it is interesting to take a look at the probability 

distribution of eigenfrequencies in the original and the modified beam.  
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4.2.3 Comparison of frequency sensitivity between original and modified cantilever 

beams 

Further analysis explored the dependence between the first frequency and Ek and Ep in 

each element of the original beam and the modified one.  

The largest change in kinetic energy was found with respect to the change in the first 

frequency of the fifth element, and the largest change in potential energy was found with 

respect to the change in the first frequency of the first element, which is in agreement 

with the deterministic theory.  Identical regularities were established for both the 

original and the modified beam, however with different values. 

 

4.2.4 Uncertainty in cantilever beam redesign calculations and frequency 

calculations 

Table 2 shows the simulation results for the original beam frequency (frequency) and the 

modified beam frequency (frequency 1) for different values of Young’s modulus of 

elasticity. Frequency growth rate was calculated as a difference between the modified 

beam frequency and the original beam frequency. 

 

 Tab. 2 The simulation results for the original beam frequency (frequency) and the modified beam 

frequency (frequency 1) for different values of Young’s modulus of elasticity 

No 
Young’s modulus Frequency Frequency 1 Frequency growth Frequency rounded growth rate 

1 216008194057,0

0 43,52331847 47,87565032 4,352331847 4,4 

2 221020777903,0

0 40,47158724 44,51874596 4,047158724 4 

3 209951519584,0

0 41,8644712 46,05091832 4,18644712 4,2 

4 213280508641,0

0 38,98414442 42,88255887 3,898414442 3,9 

5 204137145899,0

0 39,82625243 43,80887767 3,982625243 4 

6 218644848354,0

0 39,47510831 43,42261914 3,947510831 3,9 

…      

100

0  

43,3733518

3 

47,7106870

1 4,337335183 4,3 

 

A set of 1000 results obtained by the normal distribution (program R
2
) was used for 

further analysis where the Laplace criterion was applied to determine the uncertainty. 

The Laplace criterion assumes equal probability for certain states to take place, so that 

probability represents    

( )
1

ijv s
m

=  

where m  is the number of likely states (1000 in this case). Therefore the expected value 

is:  

                                                        
2
 R is a free software programming language and a software environment for statistical computing and graphics. The R language is 

widely used among statisticians and data miners for developing statistical software and data analysis. Polls and surveys of data miners 

are showing R's popularity has increased substantially in recent years. 



401

Elements of dynamic modifications and sensitivity considering the efect of structural parameters uncentainty 

 ( )
1 1

1
*

m m

i ij ij ij

j j

p p v s p
m= =

= =∑ ∑  

In Table 3 a division into the confidence intervals was performed and frequency of the 

observed quantities occurrence was calculated. The result for the occurrence of the 

oscillation frequency rounded growth rate indicates normal distribution.  
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Fig. 14 shows normal distribution of the probability of the frequency of occurrence of 

eigenfrequencies growth rate difference. It is evident from the diagram that the highest 

probability of the occurrence of eigenfrequencies growth rate difference is 4.2, with the 

occurrence probability of 20.6%.  
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By transforming the frequencies of occurrence of eigenvalues growth rate difference 
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The above text gives the probability of eigenfrequencies differences distribution in the 

original and the modified beam. Given that the normal distribution of eigenfrequencies 

growth rate difference was obtained, it is interesting to take a look at the probability 

distribution of eigenfrequencies in the original and the modified beam.  
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system modification with respect to improvements in dynamic behavior is to increase 

eigenfrequencies and widen the distance between two neighboring frequencies. The 

specific importance lies in lowest frequencies and those close to the system exciting 

frequencies. 

Developed procedure for dynamic modification represents the essence of methodology 

for improving the dynamic behavior of a construction. Originality of this methodology is 

that in analyzing the dynamic behavior of construction it uses the distribution of kinetic 

and potential energy in main oscillation modes. On the basis of analyzing the 

percentages of distributions for kinetic and potential energy in main oscillation modes, a 

rough estimate for adequacy is obtainable across zones and construction subgroups. This 

is especially important for complex structures. When groups suitable for reanalysis are 

located, a detailed (fine) analysis of a separated subgroup is undertaken. Most often it is 

necessary to make a modified model which is used for comparison to the original one, 

and on the basis of thus derived reanalysis formula, new guidelines are reached. There 

are clear, mathematically expressed, unambiguous guidelines for further conducting the 

modification procedure – which is described in the algorithm, and there are segments 

where the form of modification is not clearly seen. Then, on the basis of the analysis of 

sensitivity to certain changes, a clearer image of further steps is obtained. Based on these 

cases an algorithm for reanalysis is derived and its essence is in the following. If it is 

necessary to improve the dynamic behavior of a construction, most often to avoid the 

resonance with exciting dynamic loads, it is necessary to create the initial finite element 

model of a given construction and perform the basic calculation of dynamical properties 

in order to obtain the basic frequencies and main oscillation modes. Kinetic and 

potential energy of the entire construction can be represented as an algebraic sum of the 

energies of all elements, which is also given here. In order to conduct a rough analysis, 

the distributions of kinetic and potential energy for construction subgroups in r-th main 

oscillation mode can be expressed in the values of percentages. Therefore, on the basis 

of analyzing the energy distributions in the main oscillation modes of the main 

construction elements, it is possible to depict the following cases, on the basis of which 

it is possible to derive the algorithm for reanalysis of similar structures. Following are 

the characteristic areas: 

I Elements in which the kinetic and potential energies (and the difference in 

their increase) are negligible with respect to other elements. 

II Elements in which the kinetic energy is dominant compared to potential energy 

III Elements in which the potential energy is dominant compared to kinetic energy 

IV Elements in which the potential and kinetic energy exist and are not negligible 

in comparison with other elements 

A great number of examples illustrate the cases mentioned. Also, a great number of 

empirical correlations are given for certain changes that may lead to desired 

improvement of dynamic behavior of the construction. 

The application of developed procedure on real structures illustrated its practical aspects. 

The procedure developed in this paper can be classified as iterative and having great 

reliability for fast convergence. The convergence of modification procedure assumes 

relatively fast achievement of proposed goals. Most often, the proposed goals are: 

elevation of eigenfrequencies and increase of distance between two neighboring 
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frequencies. Special importance lies in the lowest frequencies and those whose values 

are close to excitation frequencies of the system. 

Assuming that Young's modulus of elasticity has normal distribution for 1000 

simulation results, it is obtained that the frequency of free oscillations also has normal 

distribution in both the initial cantilever beam and modified beam and optimized beam. 

The results indicate that the behavior of the frequency of oscillations distribution 

correlates with the frequency of distribution of Young's modulus of elasticity and that 

the dependency exits irrespective of the cantilever beam design and shape respectively. 

Comparison of differences in potential and kinetic energy growth rates in the beam and 

optimized cantilever beam indicated differences in finite elements sensitivity, whereby 

the segments for reanalysis were identified. 

Middle-zone elements are unsuitable for reanalysis, while fixed-point and end-zone ones 

are suitable. The element in the fixed-point end is the most critical from a number of 

viewpoints. Dynamically, it is only by increased stiffness of the element that better 

effects are achievable.  

The analysis of uncertainty in the original, modified and optimized beams established 

for all three cases normal probability distribution in the rate of frequency occurrence. 

Difference was found in the interval of frequency normal distribution in the original 

cantilever beam compared to the distribution interval in modified and optimized beams.  

A broader confidence interval in modified and optimized beams indicates adverse effects 

of non-ideal material on the procedure of dynamic modification. 

A versatile procedure for conducting reanalysis studies in the presence of uncertainty 

has been developed by combining Monte Carlo simulation tools with finite element 

modeling modules. 
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In this paper, dynamics models of bucket wheel excavator (BWE) superstructure in the 

vertical plane, the boom hoisting drive system and bucket wheel drive system describes in a 

mathematical model or single program. This model allows to evaluate the effects of 

structural changes in one subsystem to its dynamic behavior as well as a dynamic behavior of 

the other subsystems on the BWE. Mathematical model solving provides the basic 

mechanical characteristics that define the dynamic behavior of a BWE in the process of 

digging. The obtained moments, angular velocity, displacement and force time functions are 

graphically represented. Results analysis of BWE dynamic calculations indicates that the 

appropriate reconstruction must be made to improve such a negative dynamic behavior in the 

process of digging.  

 
Keywords: bucket-wheel excavator, dynamic model,  mathematical model, digging. 



1. Introduction 


Dynamic model of BWE is represented by dynamic models of its major subsystems that 

are most loaded in the excavation process. Dynamic models of digging [1,2,3,4], 

hoisting [5] and superstructure [6] subsystems were examined separately without 

considering the impact of one subsystem dynamics behavior to another. These three 

subsystems are in the process of digging exposed load that comes from digging 

forces[7]. Number of influential parameters whose individual contribution to a very 

different and mutually conditioned affects on character of digging force. The main 

parametars are: specific resistance to excavation (SFRE) presented in reference [8] , 

cutting conture length (kL) , cutting speed.  According to  researches[9], value of SFRE 

is greatly influenced by cutting speed, too. From the ather side cutting conture depends 

on bucket wheel vibration in vertical plane [10,11]. Electric motor torque according to 

405-412
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[4] is described by an exponential function. Moments of inertia, stiffness and damping 

are calculated according to [12].The results obtained using the dynamic model presented 

in this paper can be used to identify the optimal retrofit solution [13]. 

 

2. Dynamics model of BWE main subsystems  

 

Figure 1 shows the kinematics scheme of the boom hoisting drive system, consisting of: 

an asynchronous electric motor (EM), mechanical coupling (S), gearbox (R), brakes (K) 

and drum for rope winding (D). For this work interesting is the case where the balance 

established between the braking and load torque. Because of the changing nature of the 

torque load at the catch is only a few teeth of gears coupled. This leads to very rapid 

wear of the gears tooth flanks, and therefore to a relatively small gear life. Oscillatory 

system is represented as five rotating mass on a single shaft wedged:  rJ  - the reduced 

gearbox moment of inertia on the shaft brake, 5J  - the reduced gear number 5 moment 

of inertia on the shaft brake, 6J  - the reduced gear number 6 and drum moment of 

inertia on the shaft brake, 7J  - the reduced boom and bucket wheel moment of inertia 

on the shaft brake. 
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Figure 1. Mechanical model of bucket wheel excavator 
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Dominant influence of the oscillations of the system has upper supporting structure. 

According to analysis [6], the upper supporting structure accumulates around 85%, 

portal sheet 10%, suspension system about 3% while all other substructure (boom, the 

drive bucket wheel system and lower supporting structure) accumulated less than 1% of 

the system potential energy in its oscillations. Those facts suggests that, in the analysis 

of the systems low-frequency oscillations, the deformability of the lower support 

structure, boom and bucket wheel drive system can be ignored. 

For the mechanical model shown in Figure 1, we write the system of differential 

equations for the boom hoisting drive system motion [5]: 

( ) ( )J c d Mk k kr r k kr r k k⋅ + − + − =  ϕ ϕ ϕ ϕ ϕ  

( ) ( ) ( ) ( ) 05555 =−−−−−+−+⋅ krkrkrkrrrrrrr dcdcJ ϕϕϕϕϕϕϕϕϕ    

( ) ( ) ( ) ( ) 055555656565655 =−−−−−+−+⋅ rrrr dcdcJ ϕϕϕϕϕϕϕϕϕ             (1) 

( ) ( ) 05656565666 =−−−−+⋅ ϕϕϕϕϕ  dcrFJ du  

 

Boom oscillations can be described by equation: 

wtsuu FrllFJ )(sin77 +−=−⋅ βϕ             (2) 

Force in the rope ( uF ) can be determined as the product of stiffness and rope 

elongation: 









−= 6

7

sin
ϕ

β

ϕ
kd

u
uu ir

l
cF            (3) 

Where is: ][,,,, 765 radrk ϕϕϕϕϕ - absolute angles of rotation reduced on the shaft brake, 

][KNmM K - braking torque, [ ]( )7,6,5,,/ rkiradNmci =  - reduced stiffness on the shaft 

brake, [ ]( )7,6,5,,/
2 rkiradNmdi =  - dumping reduced on the shaft brake, uu dc ,  - rope 

stiffness and dumping; ][KNFu  - Force in the rope reduced on the shaft brake, [ ]mls  - 

boom length, [ ] 7ϕ⋅= slmx  - vertical movement of bucket wheel, [ ]mrd  - radius of the 

drum, [ ]mrt  - bucket wheel radius, [ ]mlu  -  distance from the boom rotation axis and 

rope hanging point. [ ]̀1,1 KNFtFw ⋅=  -digging force(tangential force increased by 10% 

due to other resistance). 

Oscillatory system of bucket wheel drive system [2] is represented as two rotating mass 

IJ  - Electric motor moment of inertia, IIJ  - Bucket wheel and bucket wheel drive 

system  gearbox moment of inertia. 

Differential equations for the bucket wheel drive system motion [5]: 

( ) mIIIIIIII MCJ =−+⋅ ϕϕϕ                  

( ) wIIIIIIIIII MCJ −=−−⋅ ϕϕϕ      (4) 

where is: ][, radIII ϕϕ - absolute angles of rotation reduced on the electric motor shaft,  

][KNmMm  - electric motor torque, ][KNmMw  - load torque reduced on the electric 

motor shaft. 
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Electric motor torque according to [4] is described by an exponential function and thair 

graphic interpretation is given on figure 2.  

∑
=

⋅−⋅=
9

1

)(
)(

j

mj
m ejCM

ωλ
                (5) 

where is: C(j) – interpolation coefficient, ( )jλ  - interpolation coefficient, Mω  -  angular 

velocity of the electric motor shaft. 

 

 
 

Figure 2. Electric motor torque (P=900 KW)  

 

Tangential component of a load force, which presents 90% of total load of bucket wheel 

drive system, according [7] is given by the following equation: 

( ) ( )ψψ fLkFt srL ⋅=              (6) 

Where is: 
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
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 - Function of tangential component 

changes, ][ LL Krandomk = - Randomly selected value from a range of specific 

resistance measured, values  srL  - Length of a bucket cutting contours. 

According to experimentally obtained the values of SFRE [KL] in the Kosovo coal basin 

for gray compact clay excavation [14]  tangencial component of load force is  presented 

graphically in figure 3. 

Torque load of bucket wheel drive system cab be calculated according to equation: 

2

t
ww

d
FM ⋅=         (7) 

where is: td  - diameter of bucket wheel. Solving systems of differential equations (1), 

(2), (4) using the Runge-Kutta methods in Matlab software package Simulink Modul 

(fig. 4)  obtained the results that will be graphically represented. 

0 1 2 3 4 5 6 7 8 9 10 11
0

0.

0.

0.

0.

1

1.

1.

1.

1.

2
x 10

4 Input 

( )sradM /ω  

][KNmM
m

 



409

 Dynamical model of bucket wheel excavator main  subsystems  

 
        Figure 3. Tangencial component of  digging                    Figure 5. Load force at the last pair of toothed  

                                                                                                gears (hoisting subsystem)               

 
Figure 4. Simulink model of BWE dynamics model 

 

Figure 5 graphically presented the load force at the last pair of toothed gears. Dynamic 

load on the bucket wheel in excavation process, despite the elasticity of the rope has a 

decisive influence on the vibrations of boom hoisting drive system. 

Angular velocity oscillations of large amplitude at the last pair of toothed gears, where 

are in the process of digging in conjunction only two possibly three gear tooth, resulting 

in rapid wear of the teeth. From the figure 6 and figure 7 it can clearly be seen that the 

coupled gears 5 and 6, with a stiff shaft motors, much moved. This process leads to wear 

on their hips, so they lose their involute shape. In addition, as the latest gears pair is 

outside the gearbox housing, weather conditions affect the removal of grease from their 

contact surfaces. That enhances their wear. High-frequency oscillations are particular 

expressed in gear no.5. 

Time function of electric motor (Fig. 9) and bucket wheel angular velocity (Fig. 10) 

shows that the coupling elements of the gear have very little influence on the reduction 

of vibration caused by the stochastic load on the bucket wheel. A large gear which is  

connected with shaft to a bucket wheel has the largest angular velocity oscilations, so it 

can be concluded that the impact loads on its tangent is greatest. 
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The oscilation of electric motor torque (Fig. 8), after starting period which is not the 

subject of this analysis, is consistent with the load torque oscillations (Fig. 3). It speaks 

of  gear and coupling small absorption capacity. 

 

 
Figure 6.  Angular velocity of gear no.5                       Figure 7.  Angular velocity of gear no.6 

 

Oscillations amplitude greatly exceeds the nominal value of the electric motor torque, 

which shows that he is constantly overloaded and under the influence of heavy loads.  

The difference of electric motor shaft and gearbox input shaft angular speed that reaches 

up to 10 [ ]srad / shows that the coupling which establishes a connection between gear 

units and motors exposed to high torque twisting. 

  
                Figure 8. Electric motor torque                                  Figure 9. Angular velocity of electric motor shaft    

                              (bucket wheel drive system)                                       (bucket wheel drive system) 

 

4. Conclusion 


Results analysis of BWE dynamic calculations indicates that the appropriate 

reconstruction must be made to improve such a negative dynamic behavior in the 

process of digging. As done in the module SIMULINK of software package MATLAB 

(Fig. 4) program provides easily changes of some or all program sub-elements and 

quickly obtain the results. That is an opportunity to examine the effect of individual 

subsystem reconstruction on BWE dynamic behavior in process of digging .  

Reconstruction may involve the following intelligent retrofit solutions: 

• additional holding brake system independent of the boom hoisting drive system 

to reduced vertical movement of bucket wheel, 

]/[6 sradω  
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• coupling and gearbox replacing in digging drive subsystem to reduced the 

oscillations amplitude and frequence of bucket wheel drive system, design 

changes of bucket wheel construction to reduced displacement under load 

 

 
Figure 10. Angular velocity of bucket wheel 

. 
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Abstract. In this research, forced transversal oscillations of a 

rectangular membrane on nonlinear elastic foundation are considered, 

and for special case an analytical approximations of the solutions are 

given. Based on numerical experiment specific visualizations of the 

asymptotic approximation of amplitude-frequency and phase frequency 

curves which correspond to the asymptotic approximation of solutions 

are conducted, which describes qualitative properties of one frequency 

nonlinear oscillation stationary and no stationary regimes.  

 

1. INTRODUCTION 

Membranes as a structural elements have application in many fields of industry 

and science. Some examples are microfiltration systems in biological, medical, food, 

dairy and beverage products industry. Besides that, they also have application in, aero-

space, civil and mechanical engineering [1, 2]. To analyze oscillations of membrane 

systems is important from both, theoretical and practical point of view. Rašković [3] 

gave brief study of linear analysis of dynamics of structures. Using the mathematical 

analogy complex membrane systems can be studied similar like plats, beams or belts 

systems [4]. Nonlinear vibrations as phenomenon that appears in real systems can be 

studied analytically using the methods that are different from linear analysis. The 

transverse vibration of rectangular and circular plates connected with an elastic and 

visco-elastic layer has been studied [4-11] for linear as well for non-linear dynamics. In 

the linear analysis of coupled systems multi-frequency regimes of time functions appears 

corresponding to one eigen amplitude function of one mode, and also that time functions 

of different vibrations modes are uncoupled.  

In this research, forced transversal oscillations of a rectangular membrane on 

nonlinear elastic foundation are considered, and for special case an analytical 

approximations of the solutions are given. To be able to deal with forced oscillation 

problem in such a structure, the dynamic behavior of the structure for the free vibrations 
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of the system needs to be understood well. Then it is necessary to develop an accurate 

structural model that would describe such a system. The obtained structural model 

consists of nonlinear partial differential equation. The equation is separated to time and 

shape functions by using the classical Bernoulli-Fourier method of separation of 

variables [3]. Then, asymptotic method is used to obtain analytical solutions of the 

membrane displacements for the forced nonlinear vibrations of the system.  

 
 

Fig. 1 The physical model of  the membrane on the nonlinear elastic foundation loaded 

by external distributed excitation 

 

2. SOLUTION OF THE NONLINEAR FORCED VIBRATION 

RECTANGULAR MEMBRANE SYSTEM  

In this paper, as a model problem, we consider one rectangular membrane 

connected with the support via nonlinear elastic layer. The scheme of such a mechanical 

model is shown on Fig. 1. We are neglecting the thickness of a membrane and assume 

that membrane is thin with mass density ][
3

mkgρ . The membrane is stretched and 

fixed along its entire boundaries in xy  plane. The tension of membrane per unit 

length [ ]mNiσ  is same at all points in all directions and does not change during the 

motion. We assumed small transverse displacements of the membrane ( )tyxw ,,  and of 

the support ( )tyxw ,,0
. Also, it is assumed that the mass of the layer between membrane 

and support is neglected where with [ ]mNc~   we denote constant stiffness coefficient per 

surface unit area of the elastic layer. Using the D’Alambert principal, the governing 

partial differential equation for the forced nonlinear membrane vibration is expressed in 

the following form:  

 

     ( ) ( )[ ] ( ) ( )[ ]
ρρρ

),,(
,,,,

~

,,,,),,(
),,( 3

00

2
02

2
tyxq

tyxwtyxw
c

tyxwtyxw
c

tyxwc
t

tyxw
+−−−−∆=

∂

∂          (1) 

 

 where [ ]smc ρσ=  is velocity of transverse wave propagation of membrane and 

2222
yx ∂∂+∂∂=∆  is Laplacian operator. Where for 

i i
εβ β ρ= we have that ε is so 
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called small parameter which is always positive and β is coefficient of the nonlinearity 

of the elastic layer.  

Assuming that displacement of the foundation and external force are given by  

tyxWwtyxw
M

m

N

n

nmnmnm∑∑
= =

Ω=
1 1

00 cos),(),,(             (2) 

)cos(),(
),,(

1 1

0
ϑ

ρ
+Ω=∑∑

= =

tyxWh
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m

N

n

nmnmnm
                        (3) 

we can rewrite eq(1) and apply Bernoulli-Fourier method of separation of variables: 

)(),(),,( tTyxWtyxw nmnm=              (4) 

Then we obtain: 
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Displacement functions can be written in the form: 

0),(),(
2 =−∆ yxWkyxW nmnmnm

             (6) 

We can write eq(6) in the form 

2
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Solution of Eq.(7) can be assumed in the form 

b
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Multiplying (5) with  ),( yxWsr  and integrating over the surface A of the membrane: 
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Using orthogonality condition 
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we can easily calculate this integral in the case when nm=sr, and return this value in (9). 

Then we obtain expresion for the time function in the following form: 
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Dividing (11) by 
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and rearranging terms, we obtain 
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with 
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If disturbance of the foundation has small amplitude and introducing analysis of small 

parameter, (14) can be simplified to: 

 

 (16) 

If we consider that excitation is small [12]: 
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where ε is small parameter. Then (16) can be written as 
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Solution of this equation (19) is assumed in the form 
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In case of main resonant state in first approximation p = q = 1. 
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We are linearizing nonlinear differential equation by assumption that the frequency of 

the excitation force  is in frequency domain of the main frequency of the coresponding 

linear system: 

)(
22

0

2

00 NMNMNM
NM kc

dt

d
+=≈Ω= ωω

θ            (24) 

Amplitudes and phases of harmonics,  ( )ta
NM

 and ( )t
NM

Φ  we are determining from the 

following system of differential equations:  

( )
.....),(),( 2

2

1 +++= φεφε aAaA
dt

tdaNM                  (25) 

( )
....),(),( 2

2
10 +++Ω−= φεφεω

φ
aBaB

dt

td
NMNM

NM            (26) 

( )NMNMNMNMNMFNMNMNM thtTgtTkctT ϑωω +Ω+−=++ sin)(~~)()()( 0

32

0

22

0

2

0




417

 Forced  oscillations of a membrane on  nonlinear elastic foundation  

 where we are neglacting terms of the higher order, since they are close to zero. 

The first asymptotic approximation is: 

( ) ( ).cos)( NMNMNMNM tatT ϕθ +=             (27) 

The first corrected asymptotic approximation is: 
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The second asymptotic approximation is: 
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Finnaly, we obtain: 
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3. CONCLUSIONS 

In the present paper the nonlinear forced vibration of a membrane system connected 

nonlinearly with nonlinear elastic layer were analyzed analytically. From the obtained 

solutions of amplitude and phase time derivatives one can notice the effect of 

nonlinearity of the elastic layer on behavior of system. With differential equation (14) is 
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which is rheononlinear, we open a new research task for next investigation of different 

types of vibration regimes. 
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Abstract. In this paper the problem of path tracking is considered. Through 

the history of robotic mechanisms, path tracking was considered one of the 

hardest tasks, due to many different problems. One of the biggest problems is 

elasticity, for an example of the joint or link and therefore the elasticity of 

robotic mechanism. An example of simplified robotic mechanism is examined 

in this paper. This robotic mechanism has one motor that controls the 

movement. It  has one gear and one link on top of it and rigidity and elasticity 

of these two parts represents the biggest problem. When  model of robotic 

mechanism is idealized, which means that everything is rigid, the trajectory 

tracking is easy, but if elasticity is included this problem gets complicated 

and predefined trajectory is not very well followed. In this paper a new way of 

trajectory tracking is shown. Method is sufficiently easy and it can be used on 

more complex mechanism which is a subject for future work.  

 

1. Introduction  

 

The modeling of a modern robot system as a rigid mechanical system is an unrealistic 

simplification. Many applications, such as spray painting, plasma cutting and assembly, 

require good path tracking. Modeling and control of robotic mechanism is very popular 

and important part of today’s Robotics, therefore, there are many papers and books 

related to this topic. First one who introduced this problem was Spong [1]-[3].There are 

two sources of vibration in robot manipulators: 1) joint elasticity, due to the elasticity of 

motion transmission elements such as harmonic drives, gear-boxes, belts or long shafts 

[9], and 2) link elasticity, introduced by a long and slender/lightweight construction of 

the arm, [4]-[8]. 

Elasticity of robotic mechanism represents one of the biggest problems in path tracking. 

There are many papers dealing with modeling of robotic mechanism and its elasticity 

problems. In [11]-[15] authors present a new way of motor modeling and therefore 
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control of the robotic mechanism. Depending on a robotic mechanism, it is controlled by 

one or more motors. Robotic mechanism shown on Fig. 1. is idealized (everything is 

rigid) and path tracking is not an issue. More realistic model of a robotic mechanism is 

shown on Fig. 2. This mechanism does not track the motors movement very well, 

because of the robots elasticity. In this paper this problem is considered and robotic 

mechanism on Fig. 2. is controlled to follow the motor, and therefore manage the 

desired path. Used method is a new approach and, although, this is a simplified 

mechanism, this method can be used on a complicated robotic mechanism.  

2. Robotic mechanism 

 

It is common to make a robotic mechanism to follow predefined trajectory. Usually, this 

trajectory is defined by another robotic mechanism and this trajectory is called referent 

trajectory. The purpose of this paper is to make a robotic pair consisting of elastic gear 

and rigid link (hereinafter referred to as the elastic robotic mechanism) to follow a 

trajectory generated by a robotic pair consisting of rigid gear and rigid link (hereinafter 

referred to as the rigid robotic mechanism).  

2.1. Modeling of the rigid robotic mechanism 

 

As a first step, modeling of the rigid robotic mechanism is conducted. The rigid robotic 

mechanism is shown on Fig. 1. Model is sufficiently easy, because everything is 

idealized and therefore only kinetic energy is spent. From Fig. 1. it is chosen that  is 

used as generalized coordinate.  represents the angle originated by the movement of  

the motor and because everything is rigid, link is rotating with the same angle. Also, it 

is important to know that the link is long and mass in link tip is  

Mass in link base is  

 

         
Figure 1. The rigid robotic mechanism.          Figure 2. The elastic robotic mechanism. 

 

From Fig. 1. the Equation for kinetic energy is derived 
.

22
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2222
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++= θθθ zbzzk JJmaE                             (1) 

From (1) the first Equation of the model is conducted       
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Where - inertia moment of mass m, - inertia 

moment of mass . Equation (2) represents the essential part of the rigid robotic 

mechanism model. For the complete model, Equation of the motor is needed. Firstly new 

constants are defined 
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Where - rotor circuit resistance, - inertia moments of the 

rotor and reducer, - proportionality constants of the moment, 

 - coefficient of viscous friction. Now, Equation of motor is written 

])[(
2

••••••

++++= θθθ
zzzbvvvi

JJmaSLGCm                                           (4) 

Where  – electromotive force of motor [V]. With (2) and (4), model of the rigid 

robotic mechanism is complete. For  better representation of the results, Cartesian 

coordinates are needed. Fig. 1. shows that only x and y coordinates are important and 

change during the rotation of the robotic mechanism, while z coordinate is 0. Therefore, 

relation between generalized and Cartesian coordinates is, as on Fig. 1. 

θcos⋅= ax   .                          (5)  

 θsin⋅= ax .                            (6) 

During the rotation of the link, knowledge of the velocity is important, so from (5) and 

(6) Cartesian coordinates of velocity are 

••

⋅⋅−= θθsinax                                                                                        (7) 

••

⋅⋅= θθcosay                                                                                        (8) 

 

2.2. Modeling of the elastic robotic mechanism 

 

In 2.1 model of the rigid robotic mechanism is concluded with Equations (2) i (4). 

Created model represents referent model (referent trajectory) and next step is modeling 

of the elastic robotic mechanism. The elastic robotic mechanism is shown on Fig. 2. 

Creating model of the elastic robotic mechanism is slightly harder, because this 

mechanism has elastic gear and as a result, with kinetic energy, potential and dissipative 

energy are spent. It is important to notice that characteristic variables and constants are 

the same as in the rigid robotic mechanism. 

For easier understanding of the problem, the view from above is shown on Fig. 3. 

Because of the elastic gear, link of this robotic mechanism does not follow the motor, as 

the mechanism with rigid gear. As Fig. 3. shows, the link rotates with angle q and  is 

ahead of the motor. q is greater than  for  and it is because of the joints elasticity  

.ξθ +=q                             (9) 
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          Figure 3. The view from above                                            Figure 4. and  

For purpose of modeling the elastic mechanism q and  are used as generalized 

coordinates. Firstly, using Fig. 2. and Fig. 3., kinetic energy is derived 

.
2

1

2

1

2

1
.
22

..
2222

•••

++= qJqJqmaE zbzzk
                     (10) 

Potential and dissipative energy as a result of elasticity are, respectively  

2

2

1
ξξξ CE p =               (11) 

2

2

1
ξφ ξξ B= .             (12) 

Where )/(10*8143.1
11

radNmRC ∈=
ξ

-characteristics of stiffness of the gear, 

))//((3
1

sradNmRB ∈=ξ
 - characteristics of damping of the gear. All Equations must be 

represented with generalized coordinates. From (9) it is shown that  

.θξ −= q               (13) 

When (13) is substituted in (11) and (12) potential and dissipative energy are, 

respectively 

2
)(

2

1
θξξ −= qCE p

                           (14)  

2
)(

2

1
θφ ξξ −= qB                 (15) 

After defining the energies, next step is determination of the model. From (10) it can be 

written 
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Now, from (14) and (15), four Equations are derived 
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Using (16), (17) and (19) the first Equation of model of the elastic robotic mechanism is 

derived 

0)(
2 =−+−+++
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θθ ξξξξ BqBCqCqJJma zzzb
           (21) 

From (18) and (20) it is obvious that the Equation of the motor is 
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••••••

−+−−+= θθθθ ξξ qBqCSLGCm vvvi
          (22) 

Using (21) and (22) matrix form can be derived 
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Where,    
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. It is important to have information about the second derivative 

of generalized coordinates 
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The relation between generalized coordinates and Cartesian coordinates is needed. As 

Fig. 2. shows, only x and y coordinates are important 

 qax cos⋅= .                           (25)  

 θsin⋅= ay .                            (26) 

During the rotation of the link, knowledge of the velocity is important, so from (25) and 

(26) Cartesian coordinates of velocity are 

 
••

⋅⋅−= qqax sin                                                                                            (27) 

 
••

⋅⋅= qqax cos                                                                                              (28) 

 

3. Simulation results 

 

In second section models of two robotic mechanisms are derived. It is indicated that 

trajectory tracking is needed. The rigid robotic mechanism rotates around z axis and 

generalized coordinate for tracking of that rotation is angle  The elastic robotic 
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mechanism, also rotates around z axis, but it is in front of the motor by , because of an 

elastic joint. It is desired that the elastic robotic mechanism rotates like the rigid robotic 

mechanism.  

3.1. Initial results 

 

Using MATLAB a referent model is created and therefore referent (rigid) trajectory of 

angle is generated (hereinafter referred to as ). Afterwards, model of elastic 

mechanism is created and used referent trajectory is . Using classic PD regulator, 

whose gains are adjusted with Pole placement method [10], robotic mechanism with 

elastic gear is controlled to follow  . After this simulation, the results are gathered and 

shown on Fig.4. (these results have index 1 (first)) 

 

                
Figure 4. and  

 

Fig. 4. shows that has slightly big error, and this is because of the . These results are 

proved by showing Cartesian coordinates of referent and the first model, Fig. 5. and Fig. 

6.  

               
 

Figure 5. X coordinate of rigid and the initial model 

 



425

 Precise trajectory tracking of robotic mechanisms  

 

3.2. Final results 

 

Usually,  is in practice estimated using the known parameters and its estimation is 

often 99 % correct as the real value. In this paper, Equation (9) will be used for 

estimation of ,  

rr q θξ −=
1

                  (29) 

           
 

Figure 6. Y coordinate of rigid and the initial model 

 

Now, from (29) new referent trajectory is derived. As Fig. 3. shows q is in front of  by 

, so as a new referent trajectory  is used. It means that when new nominal 

trajectory is used, because of the , output result will be near . These results are 

shown on Fig. 7. (it is indexed as 2(second)) 

 

                
 

Figure 7. and  
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As Fig. 7. shows the error between output result and   is very small, so with this 

nominal trajectory robotic mechanism with elastic gear follows mechanism with rigid 

one very good. Comparative results of Cartesian coordinates are shown on Fig. 8. and 

Fig. 9. 

 

             
Figure 8. X coordinate of rigid and final(second) model 

 

            
 

Figure 9. Y coordinate of rigid and final(second) model 

 

Fig. 8. and Fig. 9. show that Cartesian coordinates of final(second) model are very 

similar to Cartesian coordinates of the rigid model ( ), therefore the final model tracks 

trajectory generated by the rigid robotic mechanism very well, while the initial model 

has larger error. It is shown that the influence of elasticity is removed, the only error is 

due to controllers imperfection and with usage of another regulator, this error might be 

smaller.  

 

4. Conclusion 

 

In this paper a new approach for path tracking of a robotic mechanism is presented. Path 

tracking is one of the major issues in Robotics, due to the elasticity and other 
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imperfections. The main advantage of the method used in this paper is its simplicity and 

expandability on more complex robotic mechanisms.  

Firstly, the model without elasticity is determined and therefore a desired trajectory. 

Desired trajectory is used as a referent trajectory with model that has elastic gear. 

Obtained results have quite a deviation from the referent trajectory. Deviations are 

present due to the elasticity of the robotic mechanism. This elasticity is usually 

determined by using know parameters of mechanical object (robotic mechanism ), but in 

this paper it is calculated by subtracting resulted and desired trajectory, which represents 

one of theoretical ways of calculating mentioned error. With this error, new referent 

trajectory is determined and it represents previous referent trajectory reduced by the 

calculated deviation. 

With this approach, error due the elasticity is used in good purpose and after applying 

new referent trajectory, the result is very similar to desired trajectory. The new error is 

present only due the imperfection of PD regulator. Obtained results are shown on Fig. 4. 

– Fig. 9. and they show that used method of path tracking is very precise and simple 

which is important in these applications, because of the possible use in more 

complicated systems. 
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One of the intelligent retrofit solutions for bucket wheel excavator (BWE) is installation of 

an additional holding brake system independently of the drives. The main function of the 

brake in boom hoisting subsystem of BWE, during the process of horizontal cut digging, is to 

achieve sufficient breaking torque which will hold boom and working wheel. Within 

classical solutions of hoisting subsystem, positioned to the input shaft of the gear box,  gives 

a certain freedom of gear movement during excavating. When the brake is activated, only 

two or three gear teeth are loaded. This process leads to wear on their hips, so they lose their 

involutes shape. In addition, as the latest gears pair is outside the gearbox housing, weather 

conditions affect the removal of grease from their contact surfaces. That enhances their wear. 

Disc brake installation onto the rope drum will primarily eliminated gears moving and 

completely will unload the last couple of gears. As installation of additional brake system to 

boom hoisting subsystem affect the dynamic behavior of BWE in the excavation process will 

be presented in this document. 

 
Keywords: disc brake, bucket wheel excavator, dynamic behavior, gears.  

 

 

1. Introdaction 

 

Proper and reliable functioning of the hoisting gear is vital for the safety of an BWE. 

Intelligent retrofit solutions represented in [5] proposes to implement an additional 

holding brake system independent of the drives. Caliper disc brakes [6,16] applying the 

brake forces to a disc directly mounted onto the rope drum. As positive side-

effect of this  arrangement the winch drives are relieved of load during excavating.  

Influence of disc brake installation onto the rope drum on dynamic behavior of BWE 

superstructure[8,15] and digging subsystem [2,3,4]  will be examine on dinamic model 

presented in [11]. Hoisting drive system is modeling according to [7]. Method of 

determining the BWE digging  force considering the characteristics of excavated soil, 

bucket cutting contour,  cutting speed and  vertical vibration of the bucket wheel is 

described in [1,9,10,12,15] Moments of inertia, stiffness and damping are calculated 

according to [12]. 

429-434
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2. CALIPER BRAKE ON ROOP DRUM 

Hoisting subsystem with independent dick brake system is show on figure 1. Holding 

brake on gearbox input shaft is replaced by disk brake on the roop drum. The caliper 

brakes in the SHI series (figure 2) consist of two independent halves with facing spring 

loaders and hydraulic cylinders. The brake lining support is held by guide bolts which 

absorb brake energy. The lining support is hydraulically retracted during operation of 

the brakes. The brakes can be used horizontally or vertically, predominantly as an 

emergency brake. Any lining wear can quickly be manually compensated. The friction 

lining is glued and riveted onto the lining support. Special linings are available for 

particular requirements. 

 

 

 
 

Figure1. Emergency back-up brake on rope drums 

 

 



431

Influence of disk brake installation onto the rope drum on dynamic behavior or  the busket whell excavator  

                  
 

Figure 2. Caliper disc brake SHI series 

 

 

3. Dynamic model of BWE hoisting subsystem  

 

Dynamic model of BWE main subsystems is the same as the one represented in [11]. 

Only changes are in kinematics of boom hoisting drive system. Figure 3 shows the 

kinematics scheme of the boom hoisting drive system, consisting of: an asynchronous 

electric motor (EM), mechanical coupling (S), gearbox (R), holding brakes (K)on input 

shaft (figure 3.a) or caliper brake (C) (figure3.b)  and drum for rope winding (D). For 

this work interesting is the case where the balance established between the braking and 

load torque, so the (EM) will not be included in dinamics models.   

 

Applications: emergency stop brakes for 

heavy duty operation and coasting. Ideal 

for hoists on container cranes and casting 

cranes, for large belt conveyor systems, 

cable cars, etc. 

Design Advantages: 

• fast response time for maximum safety 

• suitable for different disc thicknesses 

• no tangential forces onto pistons and 

seals during dynamic braking 

• low spare parts and maintenance 

requirement due to using only one 

dynamic seal per cylinder 

• simple and fast manual wear 

compensation 

• easy and quick replacement of pad 

carriers 
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Figure 3. Kinematics scheme of the boom hoisting drive system 

 

Oscillatory system is represented in Figure 4 as five (fig. 4.a) or four (fig. 4.b) rotating 

mass on a single shaft wedged: 
*
rJ  - the reduced gearbox moment of inertia on the shaft 

brake, 
*
5J  - the reduced gear number 5 moment of inertia on the shaft brake, 

*
6J  - the 

reduced gear number 6 and drum moment of inertia on the shaft brake, 
*
7J  - the reduced 

boom and bucket wheel moment of inertia on the shaft brake. KM - braking torque, uF  

- Force in the rope reduced on the shaft break, 

 

 

 

 

 

 

 

 
Figure 4. Dinamic model of hoisting drive system 

 

 

Solving  systems of differential equations presented in [11] using the Runge-Kutta 

method in Simulink Module of Mathlab software package will obtain graphically 

presented results. 

Results in case of  hoisting drive system with holding brake on input shaft (blue curve) 

and  system with caliper brake on rope drum (red curve) are given on the same charts, 

for easy comparison. 
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a) Hoisting drive system with holding  

brake on input shaft 
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D 
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b) Hoisting drive system with caliper  

brake on roop drum 
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a)  holding brake on input shaft   b) caliper brake on roop drum 
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Vibrations amplitude of bucket wheel in a vertical plane (figure 5), in case of installed 

disc brakes on roop drum,  are reduced to only 1 [cm] with more than 27 [cm] for system 

with holding brake on input shaft. 

  
Figure 5.  Vertical movement of bucket wheel                Figure 6. Total length of the cutting contours 

 

In addition, gears of hoisting drive system are relieved of load during excavation 

process. 

Total length of the cutting contours (figure 6), for buckets that dig simultaneously , in  

case of hoisting system with disc brakes has a jagged shape ranges between 3 to 4 meters 

(red curve). That length for old system with holding brake on input shaft has maximum 

values of 6,2 meters, which is almost double. 

 

  
Figure 7.  Digging force              Figure 8. Force in the roop 

 

The increasing of the cutting length or deeper buckets invasion into excavation terrace 

produced additional load for digging subsystem already stochastically loaded due to the 

in homogeneity of excavation materials. This leads to uneven filling of excavator 

buckets and finally causes additional load for belt conveyor. 

Digging force (figure 7) directly dependents on the total length of buckets cutting 

contours. For drive system without disc brakes digging force reaches a maximum value 

greater than 30% compared to system with disc brakes.  

Time function of rope load (figure 8) is very similar to the digging force time function, 

but the values are much higher due to the weight of the boom and working wheel. Lower 

values of  rope load when hoisting drive system have disc brakes on roop drum ensure 

their longer exploitation and better safety of an BWE. 
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4. Conclusion 

 

Disc brake installation onto the rope drum will primarily eliminated hoisting drive 

system gears moving and completely will unload the last couple of gears. Installation 

affects of additional brake system to boom hoisting subsystem are: vibration amplitudes 

of bucket wheel in a vertical plane are reduced, uncontrolled increase of cutting contours 

length is prevented, 30% less load of rope and digging drive system.  The dynamic 

behavior of BWE in the excavation process clearly suggests installation of disc brake on 

the rope drum. 
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Abstract. In this paper, we demonstrate that the earthquake magnitude frequency per month, 

recorded between 1970 and 2011 in Serbia, evolved as a chaotic process, by conducting the 

nonlinear time series analysis of 760 recorded seismic events, according to Northern 

California Earthquake Data Center. The main idea was to reconstruct the phase space of the 

system under study, solely by analysing the time course of one of its variables. In that way, 

some characteristic quantities, like maximal Lyapunov exponent or determinism factor, 

could be extracted, defining the dynamics of the observed process. The applied algorithm 

consisted of several steps. Primarily, the optimal value of embedding delay (τ=3) was 

determined using the mutual information method. In the second step, false nearest neighbor 

method, for calculating the optimal embedding dimension, gave rather high value of minimal 

false nearest neighbor (0.88), due to the small inital data set. This was the reason why 

optimal value of embedding dimension was chosen to be equal to the number of degrees of 

freedom of the observed process (m=3). The determinism test, as the next step in our 

analysis, showed relatively low value of determinism factor (κ=0.71), due to the small 

number of earthquakes recorded in the period 1970-1980, which is confirmed through the 

deterministic analysis of the seismic events in 1980-2011 (κ=0.949). In the following stage 

of our analysis, we conducted stationarity test in order to show that the parameters of the 

system do not change during the measurement (i.e. the system has the same dynamics during 

the observed period). Relatively low percent of cross prediction error (12,41%) indicates that 

the system under study is stationary, even though the sampling of data was insufficient. As 

the final step, the assumed chaotic dynamics was confirmed by positive maximal Lyapunov 

exponent (λmax=0.001257). Also, broadband noise in the Fourrier power spectrum once more 

corroborates the deterministically chaotic dynamics of the recorded seismic events. This type 

of dynamical behavior could be associated with the crustal ’’heterogeneity’’, in which fault 

zones might have fluctuations in strength due to pore pressure variation.  

1. Introduction 

 

Earthquakes represent complex feature of the deformation of the earth’s brittle crust. 

Their complexity reveals itself in power-law (fractal) scaling [1,2], with fractal spatial 

distribution of epicentres and fractal-like structure of faults [3,4]. Fractal property of 

earthquakes is also reflected through power-law distribution of magnitudes, which is 

commonly given by Gutenberg-Richter and Omori-Utsu law [5]. In the same time, 

earthquakes show complex temporal behavior, in the way that recorded seismic time 

series exhibits chaotic dynamics. Regarding this, Beltrami and Mareschal [6] tried to 

reconstruct the strange attractor for the earthquake time series recorded in the Parkfield 

seismic region between 1969 and 1987. They came to ambiguous results – either this 
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series cannot be distinguished from a random one, or it has a strange attractor with 

dimension higher than 12. Tiwari et al. [7] applied a nonlinear forecasting approach in a 

reconstructed phase space of the earthquake frequency in the Central Himalayan Region, 

and found a low positive correlation between predicted and observed data suggesting 

that the earthquake dynamics in the studied area is characterised by a mix of stochastic 

and chaotic behaviour. Applying the same nonlinear time series analysis technique, used 

in this paper, Mohammadi and Noorzad [8] calculated the value of maximal Lyapunov 

exponent from the earthquake time series in Tabriz seismic region in Iran, between 1949 

and 2007. The positive value of maximal Lyapunov exponent indicated the presence of a 

strange attractor. De Santis et al. [9] showed that the seismic sequence of foreshocks 

culminating with the Mw = 6.3 main shock on April 6, 2009 in L'Aquila (Central Italy) 

evolved as a chaotic process, by using the method based on the Accelerated Strain 

Release analysis in time and on the nonlinear approach in a reconstructed phase space.  

In this paper we apply commonly used technique for studying the possible chaotic 

nature of experimentally observed irregular behavior, which is given by nonlinear time 

series analysis theory [10,11,12]. This technique enables extraction of characteristic 

quantities, such as the maximal Lyapunov exponent, of a particular system solely by 

analyzing the time course of one of its variables. It was already successfully applied for 

confirming the chaotic behavior of a simple periodically driven resistor-inductor diode 

[13], human electrocardiographic recording and human locomotory apparatus [14,15].  

Also, this kind of analysis, in an idealized phase space after a time delay reconstruction, 

was already applied in some other fields of geophysics, like geomagnetism [16,17]. Here 

we apply this nonlinear time series analysis technique, in order to reconstruct the phase 

space from an earthquake time series in Serbia, between 1970 and 2011from the 

Advanced National Seismic System composite earthquake catalog (ANSS), hosted by 

Northern California Earthquake Data Center [18]. The original data consisted of 760 

recorded earthquakes, which is a relatively small data set. For the numerical calculation, 

we used the open-source program package, developed in [13]. The applied algorithm 

consisted of several steps: firstly, the mutual information method, initially suggested by 

Fraser and Swinney [19], was used to determine the appropriate value of embedding 

delay. Secondly, we applied the ’’false nearest neighbor technique’’ of Kennel et al. [20] 

to determine the proper value of embedding dimension. After that, we applied 

determinism test, developed by Kantz and Schreiber [11], in order to show that the 

observed system originates from a deterministic, not a stochastic process. Subsequently, 

we conducted the stationarity test, suggested by Schreiber [21], so as to ensure that the 

recorded data originate from system whose parameters are constant during the 

measurements. In the last part, we calculated the maximal Lyapunov exponent, applying 

the method proposed by Wolf et al. [22]. Furthermore, deterministicallz chaotic 

distribution of the recorded earthquakes was confirmed by broadband noise in Fourrier 

power spectrum. 

The scheme of this paper is as follows. In section 2, we describe the applied 

technique, step by step, from mutual information method through false nearest neighbor 

method, determinism and stationarity test to calculation of maximal Lyapunov exponent 

and Fourrier power spectrum. This is followed by the analysis of the obtained results, 
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regarding the dynamics of the examined time series. In the third section we give brief 

discussion on the applied method and techniques, with suggestions for further research. 

 

2. Nonlinear analysis of earthquake time series in Serbia 

 

The recordings of seismic events in Serbia represent the source of data of various 

levels of reliability [23]. During the period 1900-1970, the macrosesmic location of 

epicentres was performed (stronger earthquakes: Rudnik, Lazarevac, Juhor, Krupanj, 

Svetozarevo, Vranje, Vitina, were determined as I=8-9). From 1970 until the present, the 

instrumental recording and evaluation of earthquake magnitude has been performed. 

During this period, only four moderate-magnitude earthquakes with M=5.2-5.6 

(Kopaonik, Mionic, Trstenik and Kraljevo) have occurred. In other words, quantitative 

data about the earthquakes with epicenters in Serbia exist after 1970, which is the reason 

why we investigated the sequence of 760 recorded seismic events between 1970 and 

2011, from [18]. We are aware of the fact that studying of this relatively small data set 

could lead to ambiguous results. Another important issue is the analysis of the short 

period of seismicity, which is not a standard approach in research on seismicity in one 

area. Usually, the reccurrence time of great earthquakes is taken as an optimal period (100 

years in Serbia). However, regarding the research on chaotic dynamics of the recorded 

earthquakes, the short time series analysis is not an exception. De Santis et al. [9] also 

considered limited number of data (782 earthquakes) and demonstrated that it had evolved 

as a chaotic process. Our decision to focus the attention only to the recorded earthquakes 

in the period 1964-2011 is motivated by the fact that this period could be considered to 

have reliable data about the recorded earthquakes. Instrumental seismology started 

significantly to develop in Serbia during the 1950’s, so the data before that period should 

be taken with great caution. Also, analogous time period was considered in [8].  

 

 
 

Figure 1. Time series of recorded earthquakes in Serbia for the period 1970-2011. 

The original data consisted of 760 recorded earthquakes, with the maximum 

magnitude of 5.8, and the minimum magnitude of 1.2. 526 earthquakes occurred with the 

magnitudes between 2.3 and 3.5. We performed a nonlinear time series analysis, 
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considering the recorded earthquake magnitudes for every month, since 1970. For the 

months without any registration, we assumed zero value of magnitude, which was already 

proposed by Mohammadi and Noorzad [8]. If there was more than one registration during 

a month, then the largest recorded magnitude was assigned. In that way, we obtained a 

series of 504 data (Figure 1).  

 

2.1. Determining embedding delay 

 

According to Takens’ delay embedding theorem, phase portraits are constructed by 

expanding a scalar time series s(t), i.e. seismic time series in this case, into a vector time 

series X(t) using time delays τ: X(t) = {x0(t), x1(t), …, xn(t),…}, where xn(t) = s(t+nτ). For 

an infinite amount of data, the time delay τ can in principle be chosen almost arbitrarily. 

However, when we deal with real limited data, contaminated with a certain amount of 

noise, an appropriate value of τ must be chosen [19]. A suitable embedding delay τ has 

to fulfil two criteria. First, τ has to be large enough so that the information got from 

measuring the values of variable (magnitude in this case) at time t+τ is relevant and 

significantly different from the information we already have by knowing the value of the 

measured variable at time t. Second, τ should not be larger that the typical time in which 

the system looses memory of its initial state. If τ would be chosen larger, the 

reconstructed phase space would look more or less random since it would consist of 

uncorrelated points. The latter condition is particularly important for chaotic systems 

which are intrinsically unpredictable and, hence, loose memory of the initial state as 

time progresses.   

 

      
        Figure 2. Determination of the proper                  Figure 3. Fraction of false nearest 

                 embedding delay - the mutual                                neighbor versus the optimal  

                information has the first minimum                         embedding dimension. 

                     at τ = 3. 

 

There are two ways of choosing an appropriate embedding delay. The first approach 

is based on calculating the autocorrelation function of data, where the delay τ represents 

the time when this function takes a zero value, e.g. when x0 and x1 are completely 

decorrelated. However, autocorrelation function measures only the linear dependence of 

two variables, so it would be more efficient if we use a technique which measures the 
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general dependence of two variables, like mutual information method. According to 

[19], the value of τ that produces the first local minimum of mutual information should 

be used for phase portraits.  

As apparent form figure 2, the first minimum of the mutual information appears at 

τ=3, which is taken as the optimal value of embedding delay. 

Regarding the dynamics of the time series being reconstructed, finite value of 

Shannon entropy (2.326) suggests that the time series is non-random in nature. Indeed, 

lower entropy values represent an orderly/chaotic behavior of system dynamics, which 

is, in general, the case for the earthquake time series under study [7]. 

 

2.2. Determining embedding dimension 

 

The next step in our analysis, after calculating the optimal value of embedding delay, 

is to determine the minimal required embedding dimension m in order to fully resolve 

the complex structure of the attractor. We use the procedure that identifies the number of 

’’false nearest neighbors’’, points that appear to be nearest neighbors because the 

embedding space is too small.  This method relies on the assumption that an attractor of 

a deterministic system folds and unfolds smothly with no sudden irregularities in its 

structure. In other words, two points that are close in the reconstructed embedding space 

have to stay sufficiently close also during forward iteration. If this criterion is met, then 

under some sufficiently short forward iteration, originally proposed to equal the 

embedding delay, the distance between two points of the reconstructed attractor, which 

are initially close, will sty approximately the same. However, if some point has a close 

neighbor that doe not fulfil this criterion, then this point is marked as having a false 

nearest neighbor. Our aim is to minimize the fraction of points having a false nearest 

neighbor by choosing a sufficiently large m. In this case, the results indicate that the 

lowest value of FNN is 0.88, obtained for embedding dimension m = 1 (Figure 3).  

This could not be considered as an appropriate value of embedding dimension, 

because the criterion of FNN ≈ 0 is not fulfilled. Also, it is observed that a FNN 

increases with the embedding dimension, which could indicate the high level of 

stochasticity in the system under study, or it could be a consequence of a relatively small 

realistic data set, already reported in [20].  Concerning this, we assume that the 

minimum embedding dimension is equal to the number of degrees of freedom of the 

observed system, since the  embedding dimension tells us how many autonomous first-

order ordinary differential equations are necessary to model the behavior of the system 

[13]. In our case the earthquake nucleation mechanism is modeled with three first-order 

ordinary differential equations (velocity, distance and state variable), so the embedding 

dimension, used in further calculation, equals 3, which confirms the fact that a chaotic 

process is often characterized by having a small embedding dimension [24]. This 

assumption corresponds well to the suggestion of Sitharama et al. [25] that the false 

nearest neighbor method cannot be applied in small sample data sets. Apparently, all 

developed methods for finding a proper embedding dimension are inconvenient to apply 

on these types of time series.  

Having calculated the optimal embedding delay and embedding dimension, we are 

able to successfully reconstruct the attractor (Figure 4).  
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Figure 4. Reconstructed phase space obtained with the optimal embedding parameters: τ = 3 and 

m = 3. 

 

If we compare the return map for the system under study with the return map obtained 

by Tiwari et al. [7] for the earthquake data northeastern India regions, we would gain 

qualitatively the same graph (Figure 5). This fact indicates the possibility that temporal 

distribution of recorded earthquakes exhibits chaotic behavior, considering the fact that 

Tiwari et al [7] confirmed the earthquake processes in the northeastern india region 

evolve on a non-random high-dimensional chaotic system. 

 
Figure 5. Comparison of the return map obtained for the earthquake data in Serbia (a) and 

earthquake data in Northeastern India (b). 

 

2.3. Determinism test. 

 

After calculating the embedding delay and embedding dimension, it is possible to 

apply a determinism test, in order to show that a time series originates from a 

deterministic process, since, according to [26], the time series must originate from a 

determinstic process in order to justify the calculation of the maximal Lyapunov 

exponent. The method developed by Kaplan and Glass [26] assumes that a time series 
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more or less complex first-order ordinary differential equations. The relevant 

consequence of this fact is that if a system is described by a set of ordinary differential 

equations, its vector field can be drawn easily. The length as well as the rotation of each 

vector in every point of the phase space is uniquely determined with the differential 

equations. In order to construct the vector field of the system directly from the time series, 

the phase space has to be coarse-grained into equally sized boxes with the same 

dimension as the embedding space. To each box that is occupied by the trajectory, a 

vector is assigned, which will finally be our approximation for the vector field. The vector 

pertaining to a particular box is obtained as follows. Each pass of the trajectory through 

the box generates a unit vector, whose direction is determined by the phase space point 

where the trajectory first enetrs the box and the phase space point where the trajectory 

leaves the box, determining the average direction of the trajectory through the box during 

a particular pass. The approximation for the vector field in one box of the phase space is 

now simply the average vector of all passes. If the time series originated from a 

deterministic system, and the coarse grained partitioning is fine enough, the obtained 

vector field should consist solely of vectors that have unit length. If solutions in the phase 

space are to be unique, then the unit vectors inside each box may not cross, since that 

would violate the uniqueness condition at each crossing. In other words, if the system is 

deterministic, the average length of all directional vectors  will be 1, while for a 

completely random system   0. 

Considering the fact that we investigate the limited number of data, that are not evenly 

distributed, we coarse grained our three-dimensional embedding space into the largest  

41x41x41 grid. For this calculation the three-dimensional embedding space was coarse 

grained into 68921 boxes. The pertaining determinism factor of the approximated vector 

field presented in figure 6 is  = 0.71. The total amount of 298 vectors was obtained for 

this embedding space. We are aware of the fact that a number of vectors is significantly 

smaller than the total number of boxes, which could cause the average vector length to be 

different from 1.  

The results of the determinism test could be ascribed to three possible reasons: chaos 

is present but i) magnitude errors in the seismic catalogue may slightly affect the results; 

ii) a stochastic contribution to the dynamics is present as well; or iii) chaos in not present. 

To exclude or accept one of the possible three cases, and to further discriminate and 

quantify the possible chaos in the seismic data, we conducted additional analysis, 

excluding the first several spikes, until 1980. The additional analysis was done because 

small number of earthquakes was recorded in the period 1970-1980, which could be one 

of the possible reasons of relatively low determinism factor. The results of the 

determinism test for this data set are shown in Figure 7. For this analysis, the determinism 

factor is  = 0.949, which is closer to the value of 1 and confirms the deterministic nature 

of the system under study.  
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Figure 6. Determinism test. The approximated vector field for the embedding space reconstructed 

with  = 3 and m = 3. The pertaining determinism factor is  = 0.71. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Determinism test, for data in the period 1980-2011. The approximated vector field for the 

embedding space reconstructed with  = 3 and m = 3. The pertaining determinism factor is  = 

0.949. 

 

2.4. Stationarity test. 

 

In order to determine whether the studied time series originated from a stationary 

process, we apply a stationarity test, originally proposed by Kantz and Schreiber [11], 

based on the cross-prediction error statistics. According to Perc [14,27] the maximal 

Lyapunov exponent cannot be considered as an indicator for chaos, if the studied time 

series does not result from a stationary process, which represents a system whose 
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prediction of unknown data value, using similar events happened in the past, which are 

considered as neighboring points. For each point of the equally sized non-overlapping 

segment i at time t, predictions of the value of an unknown data are performed in the 

segment j at the time t+t. The accuracy of obtained predictions is evaluated then, by 

calculating the average prediction error δij, which is repeated for all combinations of i 

and j. The resulting high prediction error δji is a clear indicator that the stationarity 

requirements in the examined time series are not fulfilled [27].  

The colour of each map segment indicates the cross-prediction error of using 

segment i as the neighbour source for making predictions in segment j. We divided the 

original data set into short series each occupying 10 points, because of the small number 

of data and the limited value of cross-prediction error. In this way, we obtained a total of 

58 segments and exactly 58
2
 possible combinations to evaluate the statistics.  

The average cross-prediction errors for all possible combinations of i and j are 

presented in Figure 8. The average value of all δij is 1.885, while the minimum and 

maximum values are 0 and 2.4783 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Stationarity test. The whole time series was partitioned into 58 non-overlapping 

segments each occupying 10 data points. The colour map displays average cross-prediction errors 

δij in dependence on different segment combinations.  

 

As it can be seen, the minimal cross prediction error is when i = j on the diagonal, 

since xt and the neighbours pertain the same data segment, so the possibility of an 

altered dynamics is small [27]. Also, it can be observed that δij remains basically around 

the average value (green) and lower (blue and gray), approximately 87.59%, except for 

some isolated cases of high prediction error (yellow and red), without any evident 

pattern. Moreover, since all cross-prediction errors differ maximally by a factor of 2, we 

can clearly refute non-stationarity in the studied time series.  
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2.5. Largest Lyapunov exponent. 

 

Lyapunov exponents are determined according to the algorithm developed by Wolf 

et al. [22], which is based on the evaluation of the distance evolution between two 

nearest points (L0), for a fixed evolution time (tevolve). If the final distance is larger than 

the starting one (Levolve > L0), the attractor is chaotic. However, if tevolv is too large, it is 

possible that the two trajectories defining L0 pass through a folding region of the 

attractor (Levolv < L0), leading to underestimation of the largest Lyapunov exponent. 

Hence, according to Perc [27], after each tevolv a replacement step is attempted in which 

we look for a new point in the embedding space whose distance to the evolved initial 

point is as small as possible, until the initial point reaches the end of the time series. 

Finally, λmax is calculated according to the equation (1): 

 

                 (1) 

 

where M is the total number of replacement steps.  

The largest Lyapunov exponent converges well to λmax=0.001257, confirming the 

deterministically chaotic behavior. Also, the largest positive Lyapunov exponent is very 

important because it gives an idea of the length of time over which a chaotic system is 

predictable [16].  

At the end, broadband noise in Fourier power spectrum once more approves the 

chaotic temporal distribution of the recorded seismic events (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Broadband noise in the Fourier power spectrum indicates chaotic behavior. 

 

3. Conclusion. 
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In this paper, we demonstrate that the distribution of the earthquake magnitudes in 

the period 1970-2011 evolved as a chaotic process. The obtained embedding delay (τ = 

3) and embedding dimension (m = 3), verified through the determinism and stationarity 

test, led to the positive value of maximal Lyapunov number, for various values of 

evolution times. The main challenge in this analysis was the limited number of data. 

This was especially the case with determining embedding dimension, where we assigned 

the value of 3 to optimum embedding dimension, since the earthquake nucleation 

process is a system with three degrees of freedom. Also, an increase of FNN parameter 

with increased embedding dimension could indicate a high level of stochasticity in the 

system. This was the main reason why the deterministic test was deployed. However, 

determinism test did not completely confirm the uniqueness of solutions in the phase 

space, concerning the fact that the calculated  pertaining determinism factor was 0.71. 

Hence, the additional analysis was done only for the recorded earthquakes in the period 

1980-2011, showing that the determinism factor, in this case, is 0.949, which is near the 

value for purely deterministic system. In other words, denser data set should be analyzed 

in order to evaluate the deterministic nature of the original system.  

However, the results obtained by applying the nonlinear time series analysis to an 

earthquake time series must be interpreted with great caution: the measurement error 

and stochastic component could largely influence the original data, which could make 

the analysis more difficult. 

Next step in our research will be the application of this technique to the seismic 

sequence before and after Kraljevo M = 5,4 earthquake on November 3, 2010 in order to 

show that the seismic sequence during the great event also evolves as a chaotic process.   
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Abstract. In this paper we introduce the time delay τ in friction term in the Madariaga model 

of stick-slip motion coupled with Dieterich-Ruina’s rate and state dependent friction law. 

Madariaga’s system of equation describes the motion of the Burridge-Knopoff model, which 

is today recognized as a common model for earthquake nucleation mechanism. It consists of 

one block of a certain rock type, connected through harmonic spring to a moving plate and 

driven along the rough surface, which causes the whole system to move in a stick-slip 

fashion. The introduction of time delay in friction term is motivated by the fact that the 

observed spring-block model exhibits memory effect that commonly appears during the stick-

slip motion of the block along the rough surface. Standard local bifurcation analysis of delay-

differential equations is performed, indicating the dynamical change of the system state from 

stable equilibrium through periodic (first Hopf bifurcation) and quasiperiodic motion (second 

Hopf bifurcation) and eventually to deterministic chaos. The results are confirmed by using 

the software package DDE-BIFTOOL. The corresponding Hopf bifurcations are locally of 

the direct or inverse type which depends on the sign of the derivatives along the bifurcation 

curves. These dynamical changes are confirmed by the calculation of Fourier power spectra. 

We believe that this new approach, concerning the involvement of time-delay in the friction 

term in the Burridge-Knopoff model reveal some aspects of underlying physics of earthquake 

nucleation.  

 

1. Introduction 

 

Understanding the development and initial stages of an earthquake rupture is a major 

goal of earthquake science. Some researchers suggest that the nucleation process, 

specifically the size of the nucleation zone, is related to the ultimate size of the resulting 

earthquake [1-3], while others support the view that the size of the nucleation zone is 

unrelated to the final magnitude of an earthquake [4-6]. However, the influence of the 

nucleation mechanism on the final impact of earthquake certainly exists, so the 

modeling of this phenomenon could lead to new insights on the nature of earthquakes. А 

common approach in the description of seismic sources is their approximation by a 

model of equivalent forces that correspond to the linear wave equations, neglecting 
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nonlinear effects in the source area [7-11]. Equivalent forces are defined as producing 

displacements at a given point that are identical to those from the real forces acting at 

the source. However, this body-force equivalent is a formal concept and it is necessary to 

relate its characteristics to some physical concepts of the real earthquake source. One 

such concept is the elastic rebound theory, formulated by Reid [12], suggesting that 

earthquakes are  the result of fracture of the Earth's material caused by tectonic stresses. 

Today, it is commonly accepted that vast majority of shallow tectonic earthquakes arise 

from faulting instabilities. In other words, dynamic faulting is widely accepted as the 

origin of the majority of seismic events [13]. However, the earthquake origin is not 

accessible to direct observation, so research in this area is conducted by studying the 

recorded time series, propagation of seismic waves through Earth's interior or by 

simulating the earthquakes in laboratory conditions. In this paper, we follow the 

suggestion of  Brace and Byerlee [14], that stick-slip occurring in laboratory 

experiments may be analogous to the mechanism of crustal earthquakes. This stick-slip 

motion is well simulated by Burridge-Knopoff model [15], which is today recognized as 

a common model for earthquake nucleation mechanism. Originally, it consisted of 

several blocks interconnected by harmonic springs and attached to a moving plate, 

which drives the system along the rough surface, causing it to move in a stick-slip 

fashion. In this paper, we observed only one block, attached through harmonic spring to 

a driving plate, which causes the block to miove along the rough surface of the lower 

plate (Figure 1). 

 
Figure 1. The Burridge-Knopoff block and spring model, represented by a slider coupled through 

a spring to a loader plate. 

 

The main nonlinearity of this system comes from the friction between the block and 

the rough surface of the lower plate, which also causes many aspects of earthquake 

phenomena. Concerning this, some specific constitutive laws for rock friction has been 

developed based on laboratory studies. These laws have been successfully used to explain 

various aspects of stable and unstable sliding between elastic solids as observed in the 

laboratory [16-18]. In this paper we use Dieterich-Ruina rate-and state dependent 

friction law [19,20], based on experimental observations. One formulation of the 

Dieterich-Ruina friction law was proposed by Ruina [16] and is known as the ,,slip law’’ 

[21]: 

0

c

c c

V
Aln

V

d V V
Bln

dt D V

τ σ µ θ

θ
θ

  
= + +   

  
  

= − +   
  

                               (1) 
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where the friction stress τ is a function of the normal stress σ, 0 is a constant coefficient 

of friction, Dc is the critical slip distance in order for friction to change from static to 

dynamic values [22]. V is the slip rate, Vc is a constant introduced for dimensional 

consistency [16]. A and B are positive frictional parameters corresponding to the 

response to a step change in the imposed velocity of a single block configuration [23] 

and θ is the state variable (Fig. 2). 

The Dieterich-Ruina friction law (1) includes a state variable θ, which, in effect, 

represents the delayed reaction of the friction to instantaneous changes in velocity. It is 

this parameter that describes the memory effect in the model, or the so-called 

’’aging’’[23,24]. In our paper we model this effect by including the time-lag in the 

friction term, which was not explicitly considered in previous papers. 

The basis of our model is represented by the system of equations proposed by R. 

Madariaga, already used in [25], where we introduce the time-lag in the friction term. 

The results are obtained through standard local bifurcation analysis and confirmed by 

using the software package DDE-BIFTOOL, which represents a collection of Matlab 

routines for numerical bifurcation analysis of systems of delay differential equations 

with several constant and state-dependent delays [26,27]. 

 
Figure 2. Schematic diagram, illustrating the response to a step change in the imposed velocity, 

V, of a single block. The imposed velocity, initially maintained constant at V0, is suddenly 

incremented by V and subsequently held constant at V0+V. The friction stress τ, initially 

constant at τ0, suddenly increases to A when the velocity is incremented by V and then decreases 

exponentially to a new value B. The length scale Dc, characterizes the distance. 

 

The scheme of this paper is as follows. In section 2, we present the original model 

suggested by Madariaga [25], including the modification with introduced time delay. In 

section 3, we examine the one-block model, coupled with Dieterich-Ruina friction law, 

including the time delay term, by applying the standard local bifurcation analysis. The 

results are validated using the sofware package DDE-BIFTOOL. Moreover, we confirm 

the existence of chaotic motion through the calculation of the Fourrier power spectrum 
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and maximal Lyapunov exponent. In section 4 we give the possible correlation of the 

obtained results with the earthquakes. Concluding remarks are given in section 5, 

together with the suggestions for further research. 

 

2. The earthquake model 

 

Our numerical simulations of a spring-block model are based on the system of 

equations proposed by Madariaga [25]. These equations of motion coupled with 

Dieterich- Ruina rate and state dependent friction law are originally given in the 

following way: 

( ) ( )( )

( ) ( )( )

.

.

.
2

v 1 log v

u v 1

v u 1 log v

θ θ ε

γ ξ θ

= − +

= −

 = − + + 

                                  (2) 

where the parameter M is the mass of the spring block, u represents displacement of the 

block and ν is the block’s velocity. Parameter ε=(B−A)/A measures the sensitivity of the 

velocity relaxation, ξ =(kDc)/A is the nondimensional spring constant, and γ = 

(k/M)
1/2

(Dc/v0) is the nondimensional frequency [25]. Parameter k represents spring 

constant, connecting the block, while A, B and Dc are the same as in equation (1). 

The system has only one stationary solution, (θ,u,v)=(0,0,1), which corresponds to 

steady sliding. In this paper, we introduce time delay τ concerning the retardation time 

between the movement of the upper plate and the block, due to complex friction force 

between the block and the rough lower plate. In this way, we obtain the following system 

of delay differential equations: 

( ) ( )( )

( ) ( )( )

.

.

.
2

v 1 log v

u v 1

v u 1 log v

θ θ ε τ

γ ξ θ

= − + −

= −

 = − + + 

             (3) 

We shall proceed in the standard way to determine and analyze the characteristic 

equation of (4) around a stationary solution (0,0,1).  

 

3. Local stability and bifurcations of the stationary solution 

 

Linearization of the system of equations (3) and substitution  θ=Ae
λt
, u=Be

λt
, v=Ce

λt
 

and v(t-τ)=Ce
λ(t-τ) 

results in a system of algebraic equations for the constants A, B and C. 

This system has a nontrivial solution if the following is satisfied: 

( )
2 2

3 2 2 21
1 1 1 e 0

λτγ γ
λ λ λγ γ λ ε

ξ ξ ξ
−

   
− − + − + − + + =       

                   (4) 

The equation (4) is the characteristic equation of the system (3).  Further, we substitute 

λ=iω in equation (4)  to obtain: 
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( )
( )

2
3 2 2 2
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i 1 i

cos i sin

i 1

γ ξ
ω ω ωγ γ
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ωτ ωτ

γ
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ξ

   +
+ + − −        = − −

+

       (5) 

The resulting two equations for the real and imaginary part of  equation (5) after 

squaring and adding give an equation for each of the parameters, ε and ξ in terms of the 

other parameters, ω and γ, and after division for τ in terms of the parameters ω, γ and ξ. 
In this way, one obtains parametric representations of the relations between τ and the 

other parameters, which correspond to the bifurcation values λ=iω. The general form of 

such relations is illustrated by the following formulas: for ε as a function of ω: 

1 Cε = − +                             (6) 

where: 

  

22
2

3 2 2 1

2
2

1
1

C

ξ γ
ω ωγ ω γ

ξ ξ

γ
ω

ξ

    +
− + + −             =

 
  
 

              (7) 

On the other hand, for ξ as a function of ω: 

( ) ( )

( ) ( ) ( ) ( )

2 2 2

3 2 2 2

sin cos

sin cos

ωγ ωτ ω γ ωτ
ξ

ω ωγ ωτ γ ω ωτ

 + =
− + −

                              (8) 

For τ as a function of ω: 

c

2
2 1

1
arctg 2k

13 2

γ
ω

ξ
τ τ π

ω ξ
ω ωγ

ξ

   
   − +
   
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   +

− +   
   

  

         (9) 

where k is any nonnegative integer such that τk ≥ 0. 

The previous parametric equations for ε, ξ and τ give the Hopf bifurcation curves that 

are illustrated in Fig.3, for the fixed values of the parameters ξ (0,5) and γ(0.8). We 

adopted the value of γ=0,8, because for  commonly used values of  γ = 10
4
−10

12
 

according to Madariaga [25]  the system under study becomes very stiff in numerical 

sense. Another reason for taking the constant value of γ is that, in this case, the 

trajectory for a Hopf bifurcation depends only on ε, ξ and τ. In that way, we can observe 

a transition to chaos by simply increasing the value of those parameters.  

As apparent from Fig.3, the fixed point undergoes a supercritical Hopf bifurcation, 

i.e. by enchancing the time delay τ, stable fixed point turns into an unstable one, and a 

limit cycle is born. Moreover, as we change the value of time delay, periodic motion 

turns into quasiperiodic and finally to deterministically chaotic behavior. The critical 

value of the time delay τc, when the bifurcation from stable into unstable fixed point 

occurs, is given by the relation in equation (9). In other words, our system exhibits 

quasiperiodic (Ruelle-Takens-Newhouse) route to chaos [28,29]. However, the 

derivatives  of  the solutions  of  the  characteristic  equation (5) with respect  to τ  at  the  



452

 S. KOSTIĆ, I. FRANOVIĆ, K. TODOROVIĆ, N. VASOVIĆ 

 
Figure 3. Hopf bifurcation curves τ(ε), for the fixed values of parameters ξ = 0.5, and γ = 0.8. The 

signs +/- represent the supercritical or subcritical Hopf bifurcation, respectively. Appropriate time 

series and phase plots for points 1, 2, 3 and 4 are shown in figures 4 and 5. 

 

 

 
Figure 4. Temporal evolution of variable v and appropriate phase portrait for a. τ=0, ε = 0.2 , ξ = 

0.5 and γ = 0.8 – point 1 form Fig.3 (equilibrium state); b. τ=10, ε = 0.3, ξ = 0.5 and γ = 0.8 – 

point 2 from Fig. 3 (periodic motion). 

 

 

bifurcation values in the Fig. 3 are not always positive, so that for τ Є (τc, τc+1), by 

crossing the bifurcation curve, two already existing unstable directions could be lost in a 

sufficiently small neighbourhood of (0,0,1), causing the dynamic state of the system to 
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change from oscillatory behavior to stable equilibrium state, which is known as time-

delay induced amplitude death [30,31]. 

Fig. 4 and 5 represent temporal evolution of variable v for the fixed values of ε, ξ, γ 
and τ (corresponding time series and phase portraits for points 1, 2, 3 and 4 from Figure 

3).  

 

 

 
Figure 5. a. Temporal evolution of variable v and appropriate phase portrait for a. τ=13, ε = 0.5, ξ 
= 0.5 and γ = 0.8 – point 3 from Fig. 3 (quasiperiodic motion); b. τ=20, ε = 0.5, ξ = 0.5 and γ = 

0.8 – point 4 from Fig.3 (deterministic chaos). 

 

 
Figure 6.a. Single peak in power indicates the oscillatory behavior of the model. b. Two peaks in 

power indicate the appearance of torus (second Hopf bifurcation).  
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The presence of chaos was confirmed by calculation of the Fourier power spectrum 

for oscillations, torus and chaotic orbits, shown in fig. 4 and 5. The single peak in power 

in fig.6a indicates the oscillatory behavior of the system under study, while the second 

peak in fig.6b indicates a presence of torus. The broadband noise in fig. 7 indicates that 

the attractor is strange.  

 

 
Figure 7. The broadband noise in the Fourier power spectrum indicate the chaotic behavior of the 

system. 

 

Moreover, the deterministically chaotic behavior was further validated by calculating the 

maximal Lyapunov exponent for the v(t) time series. As apparebt form Fig. 8, the value 

of maximal Lyapunov exponent converges well to λmax=0.095. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Calculation of the maximal Lyapunov exponent for v(t) time series. The parameter 

value corresponds to the plot shown in figure 5.a. maximal Lyapunov exponents converge well to 

λ=0.095. 

 

4. Seismological interpretation  

 

Although parameter values used in this paper are exclusively of theoretical character, 

without looking for the relation with the observed data for laboratory and natural fault 
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zones, it is possible to give a qualitative interpretation of the obtained results. In the 

context of seismology, the spring-block model illustrated in Fig. 1 can be understood as 

a representation for one-dimensional earthquake motion, where the spring stiffness k 

corresponds to the linear elastic properties of the rock mass surrounding the fault [23]. 

According to [32], the parameter Dc corresponds to the critical sliding distance 

necessary to replace the population of asperity contacts. The parameters A and B are 

empirical constants, which depend on material properties, directly included in parameter 

ε defined by the ratio of parameters B-A and A. These parameters also change during the 

slip, as it is shown in Fig. 2. As apparent from this figure, parameter A reflects the rise 

of the friction coefficient, when the block is subjected to sudden velocity increase. For 

every succeeding slip phase, this parameter gain a new value, concerning a different 

nature of the contact between the block and the rough surface. This parameter is also 

reflected through parameter ξ, defined as the nondimensional spring constant. 

On the other hand, the results of the bifurcation analysis imply that the transition 

from periodic motion to equilibrium state, known as ’’amplitude death’’ (inverse Hopf 

bifurcation) is observed only by increasing the value of τ (Fig. 3). This time-dependence 

of the studied system could be related to ’’self-healing process’’ along the fault zone, 

and it corresponds well to previously obtained laboratory observations [33] as well as the 

seismic estimates of fault healing [34,35], which show that frictional healing proceeds 

linearly with log time during quasistationary contact.  

In the end, the analogy with earthquake motion suggests that the friction law can be 

a potential source for the observation of aperiodicity in earthquake dynamics. If we 

assume that the friction law is the main physical process regulating the frequency of 

earthquakes, then the presence of a strange attractor suggests that earthquakes are 

typically aperiodic. Thus aperiodic orbits on the strange attractor may exhibit dynamics 

analogous to the dynamics during an earthquake. Furthermore, it is important to note 

that aperiodic behavior observed in the system under study may be partially responsible 

for irregular ground motion during the earthquakes. 

 

5. Concluding remarks 

 

We analyzed the properties of a system of equations, describing the Burridge-

Knopoff model coupled with Dieterich-Ruina friction law, with the time-delay 

introduced in the state friction term. In order to examine the possibility of 

deterministically chaotic behavior we performed the standard local bifurcation analysis 

and obtained exact parametric representation of the Hopf bifurcation curves in the 

general case of the introduced time-lag. The derivatives along the obtained Hopf 

bifurcation curves indicate the transition from equlibrium state through periodic and 

quasiperiodic motion and finally to deterministic chaos. The corresponding Hopf 

bifurcations are of direct or inverse type. Supercritical or subcritical Hopf bifurcation 

could not be diversed, since we conducted only the local analysis (near the fixed point). 

On the other hand, even though we examined the model with only one block, our 

results reveal some characteristics of the general physics that is behind the generation of 

the earthquakes in terms of a chaotic process. Also, they confirm the fact that the 

memory effect included in this model represents the important feature of the real 
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earthquakes, since the chaotic motion is already observed for the recorded eartquakes. 

Moreover, the strategy applied here can be replicated for other models, e.g. with greater 

number of blocks, in order to better understand the chaotic behavior of earthquakes in 

general.  

Concerning this, we will expand our future studies, including two or three blocks, 

interconnected by harmonic springs, and coupled with different friction laws, in order to 

compare the obtained results and observe how the dynamics of the system under study 

changes under different conditions. 
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            In this presentation, a classification of discontinuity in discontinuous dynamical 

systems will be discussed first. To discuss the singularity to the boundary, the grazing and 

inflexional singular sets on the boundary will be presented, and the real and imaginary 

singular sets will be also discussed. With permanent flow barriers, the forbidden boundary 

and the boundary channel will be presented. The forbidden boundary will not allow any 

flows passing through the boundary, and the boundary channel will not allow any boundary 

flows getting into the corresponding domains. Further, the domain and boundary 

classification will be addressed. Sink and source domains will be discussed. Similarly, the 

sink and source boundary will be also presented. Because of 
0C -discontinuity, the flow 

barriers, the isolated domains and the boundary channels, the transport laws are needed to 

continue the flow in discontinuous dynamical systems. Multi-valued vector fields in a 

single domain will be introduced. With the simplest transport law (i.e., the switching rule), 

the bouncing flow on the boundary will be presented, and the extendable flows will be 

discussed as well.  A controlled piecewise linear system will be presented as an application, 

and the vector fields on both sides of the boundary will be switched at the boundary. The 

bouncing flows will be illustrated in such a controlled piecewise linear system.  
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            In this presentation, positive utilizations of nonlinear phenomena are considered for 

establishing high performance mechanical systems [1]. Because nonlinear phenomena are 

generally very complex and not predictable of their occurrences, many control methods to 

avoid the occurrences have been proposed. On the other hand, most mechanical systems 

have inherently nonlinear characteristics in their inertia or restoring forces. In this 

presentation, we do not suppress the nonlinear phenomena due to the nonlinearity, but try to 

positively utilize nonlinear phenomena produced due their nonlinearity. First, we deal with 

an under actuated manipulator of which fist joint has actuator and sensor but second joint 

does not have actuator nor sensor. In most researches on under actuated manipulators, the 

assumption that the second 

joint does not have actuator but has sensor is given, i.e., the feedback with respect to the 

angle of the free link connected to the second joint is possible, are given. On the other hand, 

we consider the case when the angle of the free link is not measurable, i.e. the feedback 

control with respect to the angle of the free link cannot be applied [2]. By high-frequency 

excitation of the first link to the second joint, the supercritical and subcritical, and their 

perturbed pitchfork bifurcations can be produced and many kinds of stable steady states can 

appear. We analytically show the motion control strategy by using the amplitude equation 

and confirm the validity through experiments. The second topic is related to the realization 

of a high performance atomic force microscope (AFM) [3]. For measuring soft materials as 

biological samples, we have to keep small amplitude in the self-excited micro-cantilever 

probe not to give the damage to the sample due to the contact between the cantilever and 

the samples. To this end, we utilize the nonlinear dynamics of van der Pol oscillator which 

has a limit cycle depending on the magnitude of the nonlinearity. We apply the nonlinear 

feedback proportional to the velocity and the deflection squared to realize the dynamics of 

van der Pol oscillator in the micro-cantilever probe in AFM. The validity is experimentally 

confirmed from the practical sample images. 
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ABSTRACT. Any reaction system starting from some arbitrary initial conditions tends to 

final steady or equilibrium state that plays the role of an attractor, passing through distinct 

regions of the phase space while its different chemical species simultaneously transform 

through the reaction network. Since, almost all complex many variable dynamical systems 

are characterized by multiple-time-scales, various forms of attractors and transitions 

between different dynamical states were studied in such systems. Typical example is an 

oscillatory reaction, known as the Bray-Liebhafsky (BL) one, that consists of a complex 

homogeneous catalytic oscillatory process involving numerous iodine intermediates such as 

I2, I
-
, HIO, HIO2 and I2O, that all oscillates [1]-[4]. The concentrations of mentioned species 

in the considered process differ for several orders of magnitudes among themselves. Thus, 

typical concentration of hydrogen peroxide during oscillatory state of the system is between 

10
−2

 and 10
−1

 mol dm
−3

, the concentration of iodine is between 10
−5

 and 10
−4

 mol dm
−3

, 

whereas the concentrations of other species are much lower, between 10
−9

 and 10
−6

 mol 

dm
−3

. Consequently, their simultaneous time variations are different, resulting in dissimilar 

behaviors characteristic for multiple-time-scale systems with, at least, slow (large-

concentration) and fast (low-concentration) species. In systems, where concentrations of 

crucial species differ significantly, the relaxation oscillations are common. Furthermore, in 

multiple-time-scale systems with more than one slow variable, mixed-mode oscillations 

may appear in the region with simple sustained oscillations. [5] They generally consist of 

two types of oscillations with distinct amplitudes: large-amplitude oscillations (LAO-s) and 

small-amplitude oscillations (SAO-s). Depending on numbers of small (S) and large (L) 

oscillations in a period, different periodic dynamical states can be identified and assigned 
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by state enumeration L
S
. Between every two successive periodic states with different 

dynamical assignation, the chaotic states appear. [6] Here we analyze emerging of chaotic 

atractor in the model [7] of BL reaction with multiple-time-scale dynamics. With aim to 

explain the mixed-mode oscillations obtained by numerical simulations of the various 

dynamical states of a model for the Bray-Liebhafsky reaction under CSTR conditions, the 

folded singularity points on the critical manifold of the full system and Andronov-Hopf 

bifurcation of the fast subsystem are calculated. The interaction between those singularities 

causes occurrence of tourbillion structure and canard solutions.  

 

Keywords: Bray-Liebhafsky oscillatory reaction, mixed mode oscillations, critical 

manifold, multiple time scale dynamics 
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ABSTRACT. Composite materials consist of at least two constituents one of which is 

matrix and another fibre usually lay up through layers mutually bonded to make 

multilayered composite in the forms of laminates. Fibres carry loads giving strength and 

matrix bonds fibres together play important role in load transfer to fibres and forms outer 

shape of composite.  

Prediction of dynamic behavior of laminated composites is rapidly assuming considerable 

importance to industry. Thus, here we deal with such composites, and analysis relates to 

fibre reinforced materials in which continuous strong and stiff fibres, such as carbon, boron 

etc., are embedded in a relatively soft matrix, such as resin. 

If material is reinforced with one family of fibres it has one privileged direction making 

material locally transversally isotropic in relation to that direction. Fibre direction may be 

defined as unit vector field a  which may vary from point to point. Trajectories of unit 

vectors a  are defined as fibres in relation to which material is locally transversally 

isotropic. Since fibre direction depends on position, here we consider coordinate free 

formulation of constitutive equations [1].  

The non-linear dynamic theory of finite elasticity is quite difficult and still today relatively 

few analytical solutions have been obtained for the full governing equations. These are 

based on early work of Hadamard and there have been examined cases simple enough to 

involve only a very limited material response. In the search of more complex motions only 

partial results seem to be possible [2].  

In recent times, researchers interested in continuum mechanics have usually restricted their 

attention to special classes of response functions such as neo-Hookean or Moony-Rivlin 
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materials. On the other hand, researchers interested in acoustics have concentrated their 

interest towards the theory of small, but finite amplitude, waves. Possibility to obtain exact 

solutions of nonlinear dynamic elasticity is important in many fields of applications. These 

solutions often give opportunity to investigate more complex theories of material behavior 

where dissipative and dispersive phenomena are taken into account. Here we are going to 

provide partial survey of some results and methods of approximations made to search 

governing equations.  

Here it is going to be made sort of parallel between nonlinear and linear elasticity, and to 

derive in a rigorous and general way the nonlinear equations, which describe fibre 

reinforced composites and laminates. Constitutive relations of finite elasticity are given for 

models of materials reinforced by one or two families of fibres. Linearization leads to 

constitutive relations same as those developed by introduction of strain energy function, 

which make relatively easy search through wave phenomena. 

For given deformation strain energy function depends on both strain ε  and fibre direction 

a . Here is given list of matrix products whose traces make proper orthogonal group basis 

leading to set of invariants which may be used to form general quadratic form of strain 

energy function. This may be used to form stress strain relations leading to elasticity tensor 

for material reinforced by one or two families of fibres.  

Dynamic behavior of anisotropic media may be seen the best through its behavior during 

bulk wave propagation. Bulk waves exist in infinite homogeneous bodies and propagate 

unbounded without disturbances caused by either boundaries or inter-layers. Such waves 

may be decomposed into finite plane waves propagating along arbitrary direction n  in 

solid.  

Properties of these waves are determined by dependence between propagation direction and 

constitutive properties of media. Three types of such waves may be distinguished in 

connection to three displacement vectors, which determine acoustic polarization. Three 

polarization vectors are mutually orthogonal, but in most cases they are neither 

perpendicular nor parallel to propagation direction.  

The most of dynamical systems are naturally nonlinear and, since it is not easy to find 

closed solutions of such systems, here we are going to write Reimann-Christoffel equation, 

leading to three non-homogeneous linear equations which determine displacement 

amplitudes. This equation represents propagation condition of bulk waves as set of three 

homogeneous linear equations. Proper values of Reimann-Christoffel equation give phase 

speed of propagation of plane waves, and proper vectors represent polarization vector. This 

equation is the most important equation of entire theory of elastic wave propagation in 

crystals. Since acoustic tensor is symmetric tensor of second order, proper values are real 

and proper vectors are mutually orthogonal. Reimann-Christoffel equation may be solved 

analytically only for the simplest cases of material symmetry [3]. 

For successful display of three dimensional wave surfaces numerical analysis, which 

contain all propagation directions, phase velocities and polarization vectors, has been 

performed. The most appropriate approach in this consideration is fibre reinforced material 

for which proper axes coincide with global coordinate system. That is always used when 

crystallographic axes are known in advance. Materials used in present analysis are fibre 

reinforced with one or two families of continuous fibres. Since fibres are much stronger 

than matrix anisotropic properties are very strong. 
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After examination of bulk waves we are going to restrict our attention to stress free infinite 

plate, developing dispersion relations. We are going to use developed dispersion relations 

to examine laminate structures, and then to consider dynamic behavior of such structures. 

 

Keywords: Waves, Composites, Strongly Anisotropic, Slowness surfaces, Acoustic tensor, 
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A system consisting of an outer rigid body (a shell) and an inner body (a material 

point) which moves according to a given law along a curve rigidly attached to the shell 

is considered. The system moves in a uniform gravity field over a fixed absolutely 

smooth horizontal plane. During its motion, the shell may collide with the plane. The 

coefficient of restitution at impact is supposed to be arbitrary.  

If the shell executes free flight over the plane, the system mass center moves in a 

parabola or along a vertical straight line. 

The paper presents differential equations governing the motion of the shell relative 

to its center of mass; they describe both stages of free flight over the plane and 

instances of collisions of the shell with the plane [1]. 

The shell is found can execute translational motion, if the material point moves 

according to the special law. The second Lyapunov method was used to investigate 

stability of this shell motion. 

A general solution of the equations governing the rotational motion of the shell was 

obtained for the case where the shell is dynamically symmetric and the point moves 

along its symmetry axis according to an arbitrary law. 

Two special cases of the system motion are also considered. In the first case the 

relative motion of the material point is assumed to be fast and the point mass small in 

comparison with the shell mass, and in the second one the point executes fast motion in 

a small neighborhood of a given point of the shell. 

Using the classical perturbation theory methods approximate systems of 

differential equations governing the shell rotation are obtained for these cases. 

Difference between solutions of these systems and the corresponding exact systems of 

equations is estimated. First integrals of the approximate systems are found, their 

integrability is proved, and some special solutions are considered.  
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The paper also presents the results obtained in the problem of existence and 

stability of periodic motions of a dynamically symmetric shell colliding with a plane 

[2].  
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ABSTRACT. In this paper we analyze the asymptotic solutions of the acceleration 

equation   

 
related to the Friedman cosmological equation  

 

which describes the expansion scale factor a(t) of the universe.  Here, p= p(t) is the 

energy pressure  in the universe, ρ= ρ(t) is the density of matter in the universe, k is 

the space curvature, G is the gravitational constant and c is the speed of light. The 

variable t represents the cosmic time. We are particularly interested in the solutions 

satisfying the generalized power law a(t) = t
α
L(t), where L(t) is a regularly varying 

function in the sense of J. Karamata, see [3]. For this reason we introduced a new 

parameter (t) =  q(t)(H(t)t)2
  where q(t) is the deceleration parameter and  H(t)  is 

the Hubble  parameter. We prove that the acceleration equation has an asymptotical 

solutions that satisfy the generalized power law if and only if the integral limit  

 

exists and  γ < 1/4. Thus, the values of the constant γ determine the asymptotical 

behavior at the infinity of the solutions of the acceleration equation, i.e. of the 

expansion scale factor a(t) of the Universe.  Our approach presented in the paper 

covers all results on cosmological parameters for Standard model of the universe, 

as presented in [1] or in [2]. Our analysis is based on the theory of regularly 
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varying solutions of the linear second order differential equation developed by V. 

Marić, see [4]. 
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The recently published state-of-the-art article [1] devoted to the analysis of new 

trends and recent results in the field of fractional calculus application to dynamic 

problems of structural mechanics has shown that during the last decade fractional 

calculus entered the mainstream of engineering analysis and has been widely 

applied to structural dynamics problems both in discrete and continuous equations. 

Among many engineering problems considered in [1], the problems of dynamic 

contact interaction play the important role.  

In the present paper, different approaches are reviewed for solving the problems 

dealing with the shock interaction of thin viscoelastic bodies, such as beams, plates 

and shell, with bodies of finite dimensions [2]. It is emphasized that fractional 

derivative viscoelastic models of the shock interaction possess some advantages, 

since they allow one to obtain the solution in the analytical form. Two approaches 

are discussed for studying the impact response of fractionally damped systems.  

The first one is based on the assumption that viscoelastic properties of the target 

manifest themselves only in the contact domain, while the other part of the target 

remains elastic one and its behavior is described by the equations of motion which 

take rotary inertia and shear deformations into account. It is assumed that transient 

waves generate in the target at the moment of impact, the influence of which on the 

contact domain is considered using the theory of discontinuities. To determine the 

desired values behind the transverse shear wave front, one-term ray expansions are 

used, as well as the equations of motion of the falling mass and the contact region. 

This approach results in defining the contact force and the local penetration of 

target by an impactor from the set of linear fractional differential equations.  

The second approach is the immediate generalization of the Timoshenko approach, 

wherein the internal viscoelastic properties of the whole target and Hertz's contact 

law are taken into account using Volterra correspondence principle. This approach 
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results in the nonlinear functional equation for determining the contact force or the 

impactor's relative displacement.  

The examples of implementing these two approaches are presented, in so doing 

several procedures are suggested for the analysis of the impact response of 

fractionally damped systems depending on the different combinations of 

magnitudes of its mechanical and viscous features. 
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ABSTRACT. It is known that Hamilton differential equations of cosmic dynamics under 

certain conditions, imposed on geometrical and dynamic parameters of model, have the 

homographic solutions in Wintner sense [1,2,3,4,5]. 

The constructive theory of such solutions (that is ¯ finding of the exact conditions 

guaranteeing their existence) have been implemented by us and our colleagues on the basis 

of application of system of computer algebra Mathematica[5]. 

In particular we have proved the existence of new classes homographic solutions for 

models with various number n gravitating bodies (n=4,5,6,7,8,9,10, ets.). We have 

developed a method of search of equilibrium points for such models and on the basis of the 

KAM-theory [6,7] have received sufficient conditions of their stability in Lyapunov's sense. 

 

Keywords: dynamic systems, differential equations, stationary solutions, stability, 
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ABSTRACT. On the basis of this phenomenological mapping and mathematical analogy, we present 

that analysis for one type of the system nonlinear dynamics is possible to applied for  qualitative 

analysis of nonlinear phenomena appeared in dynamics of other disparate model or nature system 

nonlinear dynamics. The linearizations as well as nonlinear approximations of nonlinear differential 

equations around stationary points correspond to equilibrium positions or relative equilibrium 

positions of mechanical system dynamics with trigger of coupled singularities are obtained. First 

approximations of a nonlinear differential equation obtained by different methods and around 

different known analytical solutions were compared and corresponding conclusions are presented. As 

special examples are used nonlinear differential equations describing nonlinear dynamics of the 

mechanical system with coupled rotations in damping field 

 

Keywords: Nonlinear dynamics, nonlinear phenomenon, trigger of coupled singularities, 

phenomenological mapping, approximation. 
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       Figure 1.  Three characteristic models (a*,b*,c*) of nonlinear dynamical systems  abstractions 

of real nonlinear dynamical systems and three visualiyation of nonlinear dynamics in phase 

plane(d*,e*, f*). 

 
Some characteristic nonlinear differential equations and approximations around 

stationary points: Nonlinear differential equations describing nonlinear dynamics of a heavy mass 

particle or a heavy disk rolling along rotating circle about axis inclined to the vertical direction with 

constant angular velocity are in the forms (see Figure 1 . a*, b* and c*, and also References [1-8]): 
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Previous differential equations, also, represent the analogous differential equations of the 

self rotation heavy rigid body, skew and eccentrically positioned to the axis of self rotation, with 

coupled rotations about two no intersecting orthogonal axes.  

Taking into account possible approximation of nonlinear differential equations (1)-(2)-(3) 

around stationary points (see trigger of coupled singularities and homoclinic orbit in the form of 

number “eight” in phase planes in Fig. 1. c*, e( and f*), we obtain series of the approximations and 

for this these examples, we separate the three following types of linearized approximations as results 

of linear mapping around stationary states (see Refs. [7]):  
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It is possible to obtain corresponding nonlinear approximations of of nonlinear differential equations 

(1)-(2)-(3) around stationary points. Then by using known analytical solutions of linearized nonlinear 

differential equations around stationary point, as the starting solutions, by application Krilov-

Bogolyubov-Mitropolyski asymptotic methods and method of variation constants and averaging, 

different expressions, it is possible to obtain the first approximations of nonlinear differential equation 

solutions. For nonlinear differential equation: ( ) ( ) ( ) ( )txtxtxtx N
3
1

2
11

2
1111

~
2 ωωδ  =++ ,                       (4) 

By use two methods starting by known analytical 

solutions ( ) ( ) ( )( )ttpetRtx
t φδ += −

111 cos1 , 2
111 δω −= 2p  and ( ) ( )[ ].cos)( 1 tttatx φω += , and we 

obtained the first approximations of the solution in the different forms (see Refs. [9]): 
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For the case that damping coefficient tends to zero, from both first approximations (5) and (6), we 

obtain same analytical approximation of the solution for conservative nonlinear system dynamics. For 

the case that coefficient of the cubic nonlinearity tends to zero, from first approximation (5), we 

obtain known analytical solution of the linear no conservative system dynamics, but the second 

obtained approximation (6) give not correct solution. Then we can conclude that, starting different 

known analytical solutions, for obtaining first approximations are acceptable, but limited by 

corresponding conditions.   
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ABSTRACT. The aim of this paper is to present the efforts in the area of digitization and 

digital preservation of scientific and cultural heritage of a group of Serbian scientists. They 

are from the Faculty of Mathematics of the University of Belgrade, the Mathematical 

Institute and since recently the Faculty of Natural 

Sciences of the University in Priština, now situated in 

Kosovska Mitrovica. Digitized cultural heritage is one 

of the most important contemporary components of the 

study of our history and culture. On the other hand, 

digitized scientific works are the crucial resource and 

tool for scientific works and fast exchange of scientific 

information. Also, we understand that every scientific 

work becomes after some time the part of history and 

the part of cultural heritage as well. Due to the fast 

development of computer technologies and Internet, 

there are many advantages for using digitized works. 

Besides easy and fast access and exchange of 

information, the protection of scientific and cultural 

values is also one of the most important elements. 

Some digitization projects started in Serbia already in 

the middle of the nineties of the previous century. The 

aim of these early projects was the digitization of 

national cultural heritage and    retro-digitization of 

mathematical books of old Serbian scientists. The 

principal participating institutions were Faculty of 

Mathematics, Belgrade, and Mathematical Institute of 
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the Serbian Academy of Science and Arts, but the other institutions were involved too 

(Archaeological Institute, Institute of musicology, Institute for monument protection of 

Serbia, National library, National museum, etc.). The projects were financed by the 

Ministry of Science of Serbia and Faculty of mathematics. The project Computer archiving 

and multimedia presentation of cultural values and national heritage, see [1], was the most 

important and comprehensive project in   our country in the area of digitization until now. 

The project consisted of two parts: 

-  Infrastructure, standards and methodology of design and the architecture of data. 

-  Design and building of archive databases and program implementation. 

In this presentation we describe Virtual Library, one of these sub-projects. It concerns 

digitization of mathematics-related books, theses, manuscripts, and mathematical journals 

somehow related to Serbia or our region of South Eastern Europe. The project’s goal is to 

form digital archives, databases and presentations of digitized scientific editions in 

mathematical sciences (mathematics, mechanics, astronomy) and offer easier on-line access 

both to old and recent mathematical works. The  

 

Virtual Library. The overall objective of the Virtual Library of the Faculty of 

Mathematics, University of Belgrade, http://elibrary.matf.bg.ac.rs, is to implement an as 

much as possible complete collection of retro-digitized books and other digital documents 

from the past, see [2]. The main part of this project relates to an electronic archive which 

contains first of all old manuscripts electronic form and their presentation to the general 

public.  

 

The project was initially inclined towards mathematics, but since 2009 the books from 

other areas are also deposited in the Library. The preference is given to the Serbian authors 

and works that are related to the scientific and cultural region of Southeast Europe. Some of 

the books in the Library are rare  and it is known that only a few copies of them are left in 

the printed form. Practically they are inaccessible to the general public. We felt it was 

important to preserve their existence in some way. Not only as a cultural and scientific 

heritage important for Serbia, but also as part of the World Heritage. We decided to 

contribute to the preservation of these books and present them to the general public in 

electronic, digitized form.  

 

The Library has strong support from the Faculty of Mathematics, University of Belgrade, 

Mathematical Institute of Serbian Academy of Sciences and Arts (SASA), the National 

Center for Digitization and the Ministry of Science of Serbia. 

 

Virtual Library of the Faculty of Mathematics is the largest Internet oriented database in 

Serbia of digitized texts with free access. At the time of this writing, the library 

contains almost 2,000 books. In the Library there are several important collections. For 

example, the Library contains an important collection consisting of 400 doctoral 

dissertations in mathematical sciences (most of them are defended at the Faculty of 

Mathematics).  Another important collection consists of rare books from the 18th and 

19th century. There are also small collections of digitized books from every republic of 

former Yugoslavia. 
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The important part of the Library make the collected works of some leading Serbian 

scientists from the past:  Atanasije Stojković, Bogdan Gavrilović, Milutin Milanković, 
Đuro Kurepa, Đorđe Stanojević and several others.  

 

Works related to the archive in the Virtual Library are published in the journal NCD 

Review (SEEDI Communication), issued by the Faculty of Mathematics in Belgrade.   
 

Keywords: digitization, old mathematical books, scientific heritage 
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APPENDIX II  
 
 

The 50th Anniversary Conference of the 
ICNOENOC in Rome 2011. 

 
ICNO I   September 1961 Kiev (USSR) Chair: Mitropolsky 
ICNO II    September 1962 Warsaw (Poland) Chair: Ziemba 

ICNO III  May 1964 Berlin (GDR) Chair: Reißig 
ICNO IV   September 1967 Prague (Czechoslovakia) Chair: Djadkov 

ICNO V    August 1969 Kiev (USSR) Chair: Mitropolsky 
ICNO VI   September 1972 Poznan (Poland) Chair: Ziemba 

ICNO VII   September 1975 Berlin (GDR) Chair: Schmidt 
ICNO VIII   September 1978 Prague (Czechoslovakia) Chair: Pust 
ICNO IX   September 1981 Kiev (USSR) Chair: Mitropolsky 

ICNO X    September 1984 Varna (Bulgaria) Chair: Brankov 
ICNO XI   August 1987 Budapest (Hungary) Chair: Farkas 

ICNO XII   September 1990 Cracow (Poland) Chair: Gutowski 
 
ENOC I  Hamburg, August 16 - 20, 1993, Chairman Professor Edwin 

Kreuzer 
ENOC II   Prague, September 9 - 13, 1996, Chairman Professor Ladislav Pust, 

Secretary Professor Frantisek Peterka 
ENOC III   Copenhagen, August 8 - 12, 1999, Chairman Professor Hans True 

ENOC IV   Moscow, August 19 - 23, 2002, Chairman Professor Klimov 
ENOC V  Eindhoven, August 7 - 12, 2005, Chairman Professor Dick van 

Campen 

ENOC VI  St. Petersburg, June 30 - July 4, 2008, Chairman Professor 
Alexander Fradkov 

ENOC VII   Rome, July 24 - 29, 2011, Chairman Professor Giuseppe Rega 

ENOC VIII   Wien 2014. 
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APPENDIX III 

 

 

 

SYMPOSIUMS ON  

NONLINEAR MECHANICS  IN SERBIA  
 

Symposium  NONLINEAR DYNAMICS – Milutin Milanković, Belgrade October 

2012 -  НЕЛИНЕАРНА ДИНАМИКА  2012 organized by the Department of natural-

mathematical sciences of Serbian Scientific Society is the eighth in Serbia in area of 

donlinear dynamics. 

First symposium in area of Nonlinear mechanics was held in Aranđelovac in 1984 

and was organized by Serbian society of mechanics. A leading scientist in the area of 

Nonlinear mechanics, academician RAS and NANU Yu.A. Mitropolskiy was an invited 

participant with a Plenary Lecture. 

 

Symposium, entitled Sixth International Symposium on Nonlinear Mechanics 
Nonlinear Sciences and Applications Niš 2003  (The 6

th
 ISNM  NSA NIŠ'2003), as was 

the case with the previous one, entitled ‘Nonlinear Sciences at the Threshold of the Third 
Millenium’, is organized with the wish to unite in a single symposium, on the basis of the 

Mathematical Phenomenology of Mihajlo Petrovic Alas, quite disparate sciences with the 

aim of integrating the knowledge of the participants of our symposium. This is a serious 

and long-term task of  science.  

How did it all start? It started here, at the Faculty of Mechanical Engineering, 

University of Niš. 

Prof. dr Danilo P. Rasković (Ph.D. in mechanical engineering and BS in 

mathematics), the first head of the Chair for Mechanics and Automatics, while teaching 

mechanics at the Department for Mechanical Engineering at the newly founded Faculty of 

Technical sciences, directed his youngest and most talented students towards studying 

nonlinear oscillations and nonlinear mechanics. Thereafter, he initiated a cooperation with 

the academician Jury Aleksejevitch Mitropolsky and a leading school of nonlinear 

mechanics, asymptotic methods and nonlinear oscillations at the Institute for Mathematics 

in Kiev, Ukraine. That is how a centre for nonlinear mechanics was established at the Chair 

for Mechanics, Faculty of Mechanical Engineering in Niš. They were supported by the 

Institute for Mathematics – SANU from Belgrade and by the scientist from all the 

Universities in Yugoslavia, especially Universities in Belgrade and Novi Sad. The 

organization of symposiums on nonlinear sciences followed. 

The first symposium on nonlinear mechanics - Nonlinear Dynamics, organized by 

YUSM and Serbian Society for Mechanics, was held in Arandjelovac. Prof. Jury 

Aleksejevitch Mitropolskiy gave the invited plenary lecture. All the members of the Chair 

for Mechanics and the Chair for Hydraulic Engineering of the Faculty of Mechanical 

Engineering University of Niš took part in this and other symposiums; they were co-

organizers as well. 
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The Second Yugoslav Symposium on Nonlinear Mechanics entitled: “The First 
Yugoslav Conference  on Nonlinear Deterministic and  Stochastic Processes  in  
Dynamical Systems with Applications YCNP Niš'91”, organized by the Faculty of 

Mechanical Engineering was held in Niš. The Chairman of the Scientific Committee was 

Prof. dr V. Vujičić, while the Chairman of the Organizing Committee was Prof. Katica 

(Stevanović) Hedrih. Proceedings of Abstracts was printed; the papers and invited lectures 

which were approved were printed in the first and the following issues of the University 

Journal – Facta Universitatis, new Series – Mechanics, Automatic Control and Robotics 
with Editor-in-Cief Katica (Stevanović) Hedrih. This Series was the third Series, which 

was being published, besides the Series Mathematics, Informatics and Electronics, and 

Energetics. William Nash, Kazuyuki Yagasaki ..., gave the invited lectures, at this 

international symposium. 

The invited plenary lectures were given by the following Yugoslav scientists: 

Veljko A. Vujičić, Vladan Djordjević, Ljubomir Grujić, Božidar Vujanović, and other.. 

Prof. dr Slobododan Laković, the Dean of the Faculty of Mechanical Engineering 

University of Niš and a member of the Organizing Committee, has significantly contributed 

to the success of this symposium. 

The Third Yugoslav Symposium on Nonlinear Mechanics was held in the form 

of a Minisymposium, as a part of the XXII Yugoslav Conference on Mechanics in Niš in 

1995. The Faculty of Mechanical Engineering in Niš, with co-organization by the Faculty 

of Civil Engineering organized this Congress as well. 

The Chairman of the Organizing Committee was Prof. Katica (Stevanović) 
Hedrih. The Dean of the Faculty of Mechanical Engineering, was very hospitable. 

Academician Vladan Djordjević, the President of YUSM has contributed to the successful 

organization of this Congress and the Minisymposium. Professors Yu. A. Mitropolskiy, V.V. 

Rumyantsev, Felix Chernousko, Anatoliy Martinyuk, Valentina Filchakova, Dan Stamatiu, 

... were guest at this symposium. 

The Fourth Symposium on Nonlinear Mechanics was held in 1997, again in the 

form of a Minisymposium, as a part of the XIII Yugoslav Congress on Theoretical and 

Applied Mechanics. This Congress, held in the Congress Center – Zvezda in Vrnjacka 

Banja, was organized by the Yugoslav Society for Mechanics. The organization of this 

Symposium was helped by the Institute for Mathematics – SANU and the Faculty of 

Mechanical Engineering in Niš and in Belgrade. 

The Chairman of the Scientific Committee was the academician Nikola Hajdin, 

and the Chairman of the Organizing Committee was Prof. Katica Hedrih. Professors 

Anthony Kounadis, Guiseppe Rega, Anton Baltov, Ilya Blekhman .. ... were guest at this 

symposium. 

The Fifth Symposium on Nonlinear Mechanics- Nonlinear Sciences at the 
Threshold of the Third Millenium was organized with the wish for it to become a tradition 

and to gather the connoisseurs of nonlinear phenomenology from disparate sciences and 

dynamic systems and for it to become renown all over the world. 

The Chairmen of the Scientific Committee were academicians Jury A. 
Mitropolsky, V. M. Matrosov and V. Vujičić, and the Chairmen of the Organizing 

Committee was Prof. Katica Hedrih. Academicians N. Hajdin, V.V. Rumyantsev and  M. 

Prvanović and Professors D.S. Sophianopoulos, G.T.Michaltos, Ji Huan He, I. Finogenko, 

P.S. Krasil’nikov ..... were guests at this symposium. 

The year of the Fifth Symposium was the year of the 10
 th

 Jubilante issue of the 

University Journal – Facta Universitatis, new Series – Mechanics, Automatic Control and 
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Robotics. These symposiums and the Journal Facta Universitatis are a permanent 

characteristic of the University of Niš, Faculty of Mechanical Engineering in Niš and 

scientific achievements of Yugoslav and Serbian scientists in international relations.  

Two last Mini-symposia on Non-linear Dynamics were at Third Serbian (28th Yu) 

Congress on Theoretical and Applied Mechanics, Vlasina lake, Serbia, 5-8 July 2011 and  

Forth Serbian (29th Yu) Congress on Theoretical and Applied Mechanics, Vrnačka Banja , 

Serbia, 4-7 Juny 2013. Between invited lecturers were Professor Subhash C. Sinha, 

Director, Nonlinear Systems Research Laboratory at Auburn University and  Founding 

Editor, ASME Journal of Computational and Nonlinear Dynamics and Professor John T. 

Katsikadelis, President of Hellenic Society of Mechanics and Professor Pavel Krasilnikov, 

head of department of differential equation at Moscow Aviation Institute and ,e,be rod 

Scientific Council for evaluation Doctoral Dissertation in Russian Federation, in Russia. 

 

               Katica (Stevanović) Hedrih 

 
 

Serbian Symposium on Nonlinear  Mechanics, Aradjelovac, 1984; 

 Invited Lecturer Academician RAN  and NANU Yu. A. Mitropolskiy (KIEV) in Niš  with Serbian Scientists 
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Invited Lecturer: Professor Willam Nash from  MTI  Massachusetts,  

Founder of Journal Non-Linear Mechanics  at  

Yugoslav Conference on Deterministic and Stochstic Processes in Dynamical Systems  

with Applications Nis 1991 
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THE FIFTH YUGOSLAV SYMPOSIUM ON NONLINEAR MECHANICS -NONLINEAR 
SCIENCES AT THE THRESHOLD OF THE THIRD MILLENNIUM (YUSNM NIŠ '2000) 

 

held in Niš, Yugoslavia at October 2-5, 2000. at Faculty of Mechanical Engineering, and it dedicated to the 40th 

Anniversary of the Faculty of Mechanical Engineering and 

Faculty of Civil Engineering and Architecture, as well as to the 35th Anniversary of the 

University of Niš. The Symposium is organized under the patronage of the Departmentof Technical Sciences, 

Serbian Academy of Sciences and Arts. 

 

 
 

Academician RAS V. Rumyantsev (Moscow, Russia) in Niš  

(YUSNM NIŠ '2000-October 2-5, 2000.)  at Faculty of Mechanical Engineering. 

 
Participants of  

The Fifth Yugoslav Symposium on Nonlinear Mechanics -NONLINEAR SCIENCES AT THE 
THRESHOLD OF THE THIRD MILLENNIUM  (YUSNM NIŠ '2000) 

 from Russia, Greece, China, Bulgaria, Rumania, Ukraine and Yugoslavia. mr D. Jovanović (Niš,YU), Professor 

P. Krasil'nikov (Moscow, Russia), Professor Ji Huan He mr D. Jovanović (Niš,YU), , Academician UHEAS K. 

Hedrih (Niš, YU), Academician SASA M. Prvanović (Belgrade, YU), Professor G. Michaltsos (Athens, Greece), Z. 

Vosika (Belgrade YU), Professor D. Sophianopoulos (Athens, Greece), Academician SASA N. Hajdin (Belgrade, 

YU), Ass. Professor P. Rajkovi ć (Niš, YU), Professor G. T. Konstantakopoulos (Athens, Greece), Academician 

RAS V. Rumyantsev (Moscow, Russia), Professor D. Miki či ć (Belgrade, YU), Academician ANS V.A. Vujičić,.... 
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Participants of the 6th International Symposium on Nonlinear Mechanics 

Nonlinear Sciences and Applications 6th INM NSA NIŠ 2003. 
(in middle professor A. Vatsala –USA,  V. Lakshmikanthan-prsident of IFNA, Professor Leela-USA, Professor T. 

Kawaguchi-presinet of Tensor Society-Japan, Professor L. Bareteu- Romania, Professor F. Peterka-Prague, J. 

Warminski –Lublin, Professor U. Gabbert-Magdeburg and T. Nestorovic-now Professor in Bochum,... and Serbian 

participants ) 


 

Participants of the 6th
 International Symposium on Nonlinear Mechanics 

Nonlinear Sciences and Applications 6
th

 INM NSA NIŠ 2003. 
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

D. Jovanović. K. (Stevanović) Hedrih (Niš), J. Warminski (Lublin), 

 F. Peterka (Prague)  and G. Rega (Roma) 

 

 

 



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Last Mini-symposia Non-linear Dynamics at Third Serbian (28th Yu) Congress on 

Theoretical and Applied Mechanics, Vlasina lake, Serbia, 5-8 July 2011.  Between invited 

lecturers were  Professor Subhash C. Sinha, Director, Nonlinear Systems Research 

Laboratory at Auburn University and  Founding Editor, ASME Journal of Computational 

and Nonlinear Dynamics and Professor John T. Katsikadelis, President of Hellenic Society 

of Mechanics. 
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Invited Lectured Professor Pavel Krasilnikov, head of department of differential 

equation at Moscow Aviation Institute and ,e,be rod Scientific Council for evaluation 

Doctoral Dissertation in Russian Federation, in Russia. 

 

 
 

Same of Participants of Minisymposium Nonlinear Dynamics – Milutin Milankovič at  

Forth Serbian (29th Yu) Congress on Theoretical and Applied Mechanics, 
Vrnačka Banja , Serbia, 47 Juny 2013.
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A number of Participants of Symposium  
Symposium Nonlinear Dynamics – Milutin Milanković 

Multidisciplinary and Interdisciplinary Applications 
(SNDMIA 2012), Belgrade, October 15, 2012. 

(Eight Serbian Symposium in area of Nonlinear Sciences) 
 

 
Plenary and Invited Lecturers:  Alber Luo,Katica (Srevanović) Hedrih, Ivana Kovačić and 

Hiroshi Yabuno 
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Plenary and Invited Lecturers:  Hiroshi Yabuno, Alber Lu,Marina Shitikovam Katica 

(Srevanović) Hedrih, Marinko Ugrčićm Atevan Maksimović and young researcher Marija 

Stamenković 
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A number of Participants of Symposium  
Symposium Nonlinear Dynamics – Milutin Milanković 

Multidisciplinary and Interdisciplinary Applications 
(SNDMIA 2012), Belgrade, October 15, 2012. 

(Eight Serbian Symposium in area of Nonlinear Sciences) 

 
Plenary Lecturer Professor Pavel Krasilnikov 
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Professor Slobodan Anić and Professor Žarko Mijajlović 
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A number of Participants of Symposium  

Symposium Nonlinear Dynamics – Milutin Milanković 
Multidisciplinary and Interdisciplinary Applications 
(SNDMIA 2012), Belgrade, October 15, 2012. 

(Eight Serbian Symposium in area of Nonlinear Sciences) 
 

 
Plenary Lecturer: Tamara Nestorović 
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Plenary Lecturer and Chaurman: Mihail Zekrzhevski and Dragomir Zeković 

 

 
Chaurman and Inviter Lecturer: Dragan Milosavljević and Dragomir Zeković 
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A number of Participants of Symposium  

Symposium Nonlinear Dynamics – Milutin Milanković 
Multidisciplinary and Interdisciplinary Applications 
(SNDMIA 2012), Belgrade, October 15, 2012. 

(Eight Serbian Symposium in area of Nonlinear Sciences) 
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Plenary Lecturers: Marina Shitikova and Mihailo Lazarević 

 

 

A number of Participants of Symposium  
Symposium Nonlinear Dynamics – Milutin Milanković 
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A number of young researchers  participants of Symposium  
Symposium Nonlinear Dynamics – Milutin Milanković 

   
Inviter Lecturer: Ilya Simonovsky         Plenary Lecturer: Boris Malomed 
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APPENDIX IV 
 

 

 




Š




 
dr Ing. Dipl. Math. Danilo P. Rašković 


The First Head of Chair  of Mechanics and Automatic  

 at Faculty of Mechanical Engineering in Niš 
(1963-1974) 

Prof., Dr., Eng., B.Sc. Mathematician, 
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 DANILO P. RAŠKOVIĆ, 
 full-professor at the Faculties of Mechanical Engineering in Belgrade, 

Niš, Kragujevac and Mostar, and the Faculties of Science in Belgrade and 
Novi Sad 

 

 Danilo Rašković, a doctor of technical sciences and mathematician with a university degree, 

was the founder of the first scientifically based courses of mechanics at the Faculty of Mechanical 

Engineering in Belgrade. He also introduced courses on the subject of resistance of material, elasticity 

theory, and oscillation theory all of which he taught, too. He was the author of many high-circulation 

textbooks of high scientific level and good mathematical foundation. He introduced vector, matrix 

and tensor calculus in the studies of mechanics at the Faculty of Mechanical Engineering in Belgrade 

and, later on, did the same at the mechanical engineering faculties in Niš, Kragujevac and Mostar. He 

enabled the Faculty in Belgrade, and similar schools elsewhere, to produce highly qualified and 

educated engineers which was one his greatest contributions. He wrote the first university textbook in 

Serbia on oscillation theory containing his original accomplishments in the field. He achieved 

considerable scientific results in the fields of elasticity theory and oscillation theory. With a good 

human resource base at Niš Faculty, which he had set up, he started research work into the field of 

nonlinear mechanics. His scientific work is important because in all of his projects he succeeded in 

connecting theories of elasticity and oscillation, and engineering practice. He wrote 25 university 

textbooks which covered the entire field of mechanics and related areas. Almost all of them had been 

reprinted several times, with some of them having 20 reprints. His excellent textbooks were in use on 

the territory of the entire former Yugoslavia, which was in tatters under the powerful influence of 

fascism during the Second World War.  

Thanks to Professor Danilo Rašković, the faculties of mechanical engineering of Serbia, Bosnia and 

Herzegovina, and all the other republics of the once unified Yugoslavia, which are now separate 

states, produced excellent mechanical engineers. Rašković was a patriot and an honourable man. He 

was the recipient of the October award of the city of Niš for his contributions to the development of 

science at the city’s university. 

 This distinguished scientific figure of exquisite creative energy and inspired enthusiasm, a 

scholar deeply attached to the Yugoslav and Serbian scientific and cultural heritage, and an exquisite 

pedagogue of high moral principles is in the living memory of many generations of students whom he 

taught how to learn and love mechanics, as a basic scientific branch of mechanical engineering either 

directly, through his lectures, or through his various and numerous textbooks and compilation of 

problems. His disciples and colleagues are glad that he had the ability to pass onto them his great 

enthusiasm permeated with his sincere devotion for mechanics and his exquisite scientific eagerness. 

 Professor Danilo P. Rašković was born in 1910, in Užice. Upon completing elementary 

school and six grades of high school, he graduated from the Military Academy in 1930. As an 

engineering military officer he enrolled in the department of mechanical and electrical engineering at 

the Faculty of Engineering in Belgrade, in 1933. Having graduated in 1938, he enrolled in the 

department of theoretical mathematics at the Faculty of Philosophy and graduated from it in 1941. As 

a graduate mechanical engineer he was appointed assistant section head of the Military Technical 

Institute in Čačak. He remained in that position during 1941. In 1942 he was appointed assistant at the 

Faculty of Engineering in Belgrade where he earned hid doctorate’s degree in the same year, upon 

presenting his thesis entitled Tangential Strains of Normally Profiled Beams. 

 Professor Rašković lectured mechanics, strains of materials and oscillation theory at the 

faculties of mechanical engineering in Belgrade, Niš, Kragujevac, Novi Sad and Mostar, as well as at 

the Faculty of Science in Belgrade, Faculty of Philosophy in Novi Sad, Faculty of Electronics in Niš, 

and at the Military Technical College in Belgrade. More details on the research work of Professor 

Rašković can be found in the Belgrade University Bulletin no.75 of 1957, issued on the occasion of 

his appointment as a full professor at the Faculty of Mechanical Engineering in Belgrade. During his 
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university career, he was twice elected Vice-Dean of the Faculty of Mechanical Engineering of 

Belgrade University. In the mechanical engineering department at the Faculty of Engineering in Niš, 

he lectured statistics, kinetics, kinematics, dynamics, oscillation theory, resistance of material, theory 

of elasticity, as well as analytical mechanics, theory of nonlinear oscillations and continuum 

mechanics at the postgraduate level. He was the first head of the department of mechanics and 

automatics at the Faculty of Mechanical Engineering in Niš. He was an extremely inspired professor, 

scientist and practitioner much favoured among his students and respected by his colleagues both as a 

professor and an engineer, because he knew how to relate engineering theory to practice. 

 Professor Rašković was a very fertile writer. While still in the military service he wrote five 

professional papers. In the period before 1957, when he was appointed full professor, he published 26 

scholarly papers. As a full professor he wrote 37 pieces of scientific work that were published in 

scientific journals of the Serbian Academy of Sciences and Arts, Polish Academy of Science, German 

Society of Mechanics ZAMM and some other foreign journals. He took part in a number of scientific 

meetings in the country and abroad. He reviewed papers for four leading referral journals in the 

world: Applied Mechanics Review (USA), Mathematical Review (USA), Zentralblatt für Mathematik 

(Germany) and Referativnii žurnal (Moscow).    Professor   Rašković   was   a   member  of  several 

professional and scientific societies/association in the country and abroad, the GAMM being one of 

them. He initiated the foundation of the Yugoslav Society of Mechanics during 1952. 

 He wrote a considerable number of university textbooks which ran through numerous 

editions. Some of them still hold records as for the number of editions and copies printed within the 

group they belong to. In addition, he wrote a series of textbooks on the subject of mechanics for 

secondary technical schools, as well as a number of chapters in professional technical handbooks, 

mimeographed course materials and textbooks for post-secondary schools of mechanical engineering. 

He also wrote several textbooks for postgraduate studies. 

 Among the publications for postgraduate studies the following should be mentioned: 

Analytical Mechanics, Theory of Elasticity and Tensor Calculus.  

 Most of his university textbooks and publications were at the time of their first edition the 

only professional literature on the subject, in the Serbian language. So, his publications played an 

important part in spreading of the knowledge in the field of technical mechanics among students, and 

mechanical and other kinds of engineers in Serbia and Yugoslavia. It is particularly worth mentioning 

that he has interpreted all the material by the most modern mathematical apparatus and has illustrated 

it by numerous examples from the engineering practice. Many of the cited university publications are 

being reprinted even nowadays and are still used by both students of engineering and engineers 

themselves. 

 Although it has been ten years since he left us, Professor Rašković is still present among 

new generations of students, and engineers, through his renowned textbooks that bear the memory of 

his merits and which have also left an indelible imprint on the development of mechanical 

engineering science and practice, and on the formation of many a generation of university professors. 

His life and work have set an example to future generations of students  educated at the University of  

Niš and provided them with a creative impulse. He is an everlasting paradigm and a proof of how 

one’s deeds can outlive one’s physical existence by far. 

 In 1962 Professor Rašković, as the head of mechanics department at the Institute of 
Mathematics of the Serbian Academy of Sciences and Arts, organized research work in four 

different study groups, each one dealing with a particular subject, which were: Stability of motion - 
supervised by Dr Veljko Vujičić, Boundary layer theory - supervised by Dr Victor Saljnikov, 

Problems of anisotropic incompatible materials with finite strain - supervised by Dr Rastko 

Stojanović and Optimal problems of mechanics -supervised by Prof. Dr. Danilo Rašković. 
 According to records from the mechanical engineering faculties in Belgrade and Niš, as 

well as those from the Zentralblatt’s data base, he traveled abroad on several occasions in order to 

participate in international scientific gatherings or to expend his knowledge. In 1957 he went to Berlin 

to do his specialization studies with a piece of work which was published in the Proceedings of the 

20th International Congress of Applied Mechanics. In September 1956, in Brussels, he participated in 

the working of the said congress. He took part in international congresses of applied mathematics and 
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mechanics of the German society GAMM a few times: 1957 - in Hamburg and 1958 - in Saarbrücken. 

Also, in 1959, 1961 and 1962 he was delegate of the Yugoslav Society of Mechanics. In 1963, in 

Karlsruhe, he represented Mathematical Institute of the Serbian Academy of Sciences. In 1966, in 

Darmstadt, he “produced a scientific statement in the field of oscillation theory” and in 1968 in 

Prague, Czechoslovakia, he had a paper entitled Second order acceleration (jerk) for the relative 

motion of a body expressed by a matrix method. 

 He also participated, several times, in the working of the International Conference of 

Nonlinear Oscillation (ICNO): 1962 in Warsaw, as a delegate of the Council of Science of the 

People’s Republic of Serbia; 1969 in Kiev; 1972 in Krakow, at the ’72 ICNO. 

 Between the 1963/64 and 1973/74 academic years he was Head of the mechanics section of 

the mechanical engineering department at the Technical Faculty in Niš, while giving lectures on all 

subjects from the mechanics group. Simultaneously, he taught mechanics at technical faculties in 

Kragujevac and Mostar and, for a while, also the subject of applied mathematics at Novi Sad Faculty 

of Mathematics. He accepted the position in Niš after being acquitted of the duty as a lecturer at the 

Faculty of Mechanical Engineering in Belgrade. The said acquittal was brought in by the Faculty in 

Belgrade, and was registered under the no. 67/8, in January 1964. Comments on the controversial 

decision are left to the others. For further reference readers should look into the book (*). 

 In 1974/75 he was arrested in Mostar, Bosnia-Herzegovina, and unjustly sentenced. 

Following the experience, he worked on new editions of his high-circulation textbooks, out of which 

the 10th edition of Mechanics I for university studies deserves a special mention as does the 15th 

edition of his handbook containing tables from the strength of materials. Last months of his life he 

spent preparing his textbook Elasticity Theory for publishing. It came out in 1985 but he did not live 

to see it. 

 He died, unexpectedly, on January 29, 1985 in Belgrade. 
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C





P





ZZ


C




T

A
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