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MILANKOVIC MILUTIN AND ASTRODYNAMICS

Vladan Djordjevi¢ wrote that Milutin Milankovi¢ ranks among those great
scientists of the world who marked the 20" century ....... The chief idea underlying his
longstanding work is that climatic variations on the Earth result from regular changes
in celestial mechanics (periodical change of the Earth's axis tilt, eccentricity of the
Earth' orbit and change of the ecliptic angle), which in turn causes cyclic changes in
the intensity of insulation [3].

In 1988., the fourth issue of the university book under the title Foundation of
Celestial Mechanics written by Milutin Milankovi¢[2], was published by scientific book
publisher «Naucna knjiga» on 97 pages. In Preface to the first issue from 1947. of this
book manuscript, the author wrote that the content of the book was in accordance with
the Program of the new curriculum at University of Belgrade, and also that the book
contained those parts of celestial mechanics which study the motion of the planets and
their secular perturbations. Also, he pointed out that by using own, proper results from
own papers published in 1939 and 1941 by Serbian Academy of Sciences, the main
attitudes of the expressed theory are obtained in a shorter and more synoptic way. This
university book contains the following seven chapters: Newton's law of gravity, Problem
of two bodies in celestial mechanics, Unperturbed planetary motions around the sun,
General integrals on the motion of N-bodies, General theory of planetary perturbations,
Introduction of vector elements in the calculus of perturbations, Review of the classical
theory of perturbations, Secular perturbations.

In the first Chapter of the manuscript under the title Kepler's Law, Milankovi¢
writes that by accepting Copernicus' heliocentric system and by using Tiho Brahe's
results of the motion of planet Mars, Kepler in the geniuses way derived own laws and
published the first two laws in the famous monograph Astronomia nova de mortibus
stellae Martis, 1609 and the third in the book Harmonices mundi, 1619. This university
book concludes by the following sentences: «Numerical calculations of the secular
change of the planet elements show that eccentricity and inclinations of the orbits of all
big planets oscillate between narrow, defined, boundaries, as it is supposed in theory of
the secular perturbations of the planets. In 1997 in edition Choose works of Milutin
Milankovié in the seven volumes, in third volume, Milankovié's Celestial mechanics
was published again.
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One of the first papers written by Tatomir P. Andjeli¢, an honorary teaching
assistant of applied mathematics at Faculty of Philosophy in Belgrade, and published in
1935, was a review entitled Celestial mechanics by M. Milankovi¢. The paper was
written after comments and presentation of this book by M. Milankovi¢ in Yugoslav
Professors society. Milankovi¢'s Celestial mechanics was the first book published in this
area of sciences, in which vector calculus was applied for expression, and assistant
Tatomir P. Andjeli¢ grow fond of this method, who obtained a good basis and
knowledge of vectors during the study at University in Heidelberg.

In March 1984, academician Tatomira P. Andjelica gave me his newly
published book Introduction to Astrodynamics [2], as a present with a sentence as a
dedication. This book was published in 1993, on 153 pages in the periodic edition
Matematicki vidici, in which special publications Monograph in a different area of
mathematics and mechanics was published at Mathematical institute of SANU. In
Preface to this book, the author writes that during a long period he gave lectures in
astrodynamics, as a one of the subjects in postgraduate study of mechanics at Faculty of
Mathematical and Natural Sciences in Belgrade. As a professor, he concluded that with
the current cosmic research and challenges, it is useful, not only in the specialist
publications, but also in postgraduate study, to point out the problems of astrodynamics.
This is an important way for a student to obtain basic knowledge for further education
and research.

In this sense, in this book academician Andjeli¢ presented in main an
introduction necessary for the next scientific research in the area of astrodynamics. His
book contains elements of rocketdynamics, astronomy, celestial and rational mechanics,
together with theoretical description chain of cosmic motion and some own results and
application examples.

References

[1] Milutin Milankovi¢, Kanon osuncavanja, Zavod za udzbenike i nastavna sredstva,
Beograd, 1997, pp. 401.

[2] Tatomir P. Andjeli¢, Uvod u astrodinamiku, Matematicki vidici, Matematicki institut
SANU, 1983., p. 158.

[3] Djordjevi¢ Viadan, Milutin Milankovi¢ (1879-1958), Booklet of Abstracts 6t ISNM
NSA NIS 2003, p. 23.

Katica (Stevanovi¢) Hedrih
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ADDREESS BY GUEST- EDITORS

Dear Reader of the Journal Scientific Review,

This Special Issue of the Journal Scientific Review published by
Serbian Scientific Society contains invited/selected full papers presented
at The Symposium Nonlinear Dynamics - dedicated to Milutin Milankovié
(Dalj, May 28, 1879-Beograd, December 12, 1958), Multidisciplinary and
Interdisciplinary Applications, (SNDMIA 2012), Belgrade, October 1-5,
2012., (Eigth Serbian Symposium in area of Non-linear Sciences),
(Cumnosujym HenuHeapHa AuvHamuka - MynTu U UHTepaucUMNUHApHe
npumeHe). Special Issue contains 7 full papers of Plenary Lectures, 6 full
paper of Invited Lectures and 17 full papers of Contributed Lectures. Eight
papers were authored by aboard scientist and other 22 full papers by
Serbian scientists and researchers. Selected papers for this Special Issue
are from different area of Nonlinear Dynamics: Nonlinear Mechanics,
Nonlinear dynamic in Physic-chemical systems, Nonlinear biodynamical
systems, Mathematical methods, and other area of sciences.

In Appendix of the Issue are few republished selected abstracts of
plenary lectures which contents are published in other scientific journals
aboard. Also, Appendix of the Issue contains brief review information about
Symposia in Serbia and a short scientific biography of Professor Danilo P.
Raskovi¢, under which influence started research projects in area of
nonlinear oscillations at Mechanical Engineering Faculty University of Nis.
He established first collaboration of researchers from Serbia with
academician Yuri Alekseevich Mitropolyskiy-important scientist from area
of asymptotic methods on nonlinear Mechanics and main founder of and
next International Conference of Nonlinear Oscillations (First ICNO Kiev
1961 - last ICNO Cracow 1990), now continued under the name European
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Nonlinear Oscillation Conferences (First ENOC Hamburg 2993- next ENOC
Wien 2014).

The Symposium Nonlinear Dynamics - devoted to Milutin Milankovié
(Dalj, May 28, 1879-Beograd, December 12, 1958), Multidisciplinary and
Interdisciplinary Applications, (SNDMIA 2012), Belgrade, October 1-5,
2012., (Eigth Serbian Symposium in area of Non-linear Sciences),
(Cumnosujym HenwHeapHa AuMHamuka - MynTu U UHTepaucUMNNUHApHE
npumeHe) was held in Belgrade, Serbia, and is organized by the Department
of Natural-Mathematical Sciences of the Serbian Scientific Society and
supported by Project ON174001 (2011-2014) coordinated through
Department of Mechanics at Mathematical Institute SANU, in the
framework of the scientific activities of the active researchers in area of
Nonlinear Dynamics in Serbia and Russia.

Scientific support to the Symposium Nonlinear Dynamics -
dedicated to Milutin Milankovi¢ (Multidisciplinary and Interdisciplinary
Applications, (SNDMIA 2012), Belgrade, October 1-5, 2012
(http://afrodita.rcub.bg.ac.rs/~nds/indexe.html) was given by following
scientific institution in Serbia: Project ON174001 (2011-2014) coordinated
through Department of Mechanics at Mathematical Institute SANU, Projet
OI 172015 through Faculty of Physical Chemistry, University of Belgrade
and IIT 45001 Institute of Chemistry, Technology and Metallurgy,
University of Belgrade, Department of Catalysis and Chemical Engineering,
Belgrade, Institute ,Vincha", The Society of Physical Chemists of Serbia,
Faculty of Physical Chemistry University of Belgrade, .Mihajilo Pupin
Institute” University of Belgrade, Faculty of Technical Sciences Kosovska
Mitrovica, University of Pristina with allocated place in Kosovska Mitrovica,
Serbian Society of Mechanics and Section for Nonlinear Phenomena and
Complex Systems (funded 27.02.1993 with President Slobodan Ani¢) and
Society Milutin Milankovic.

The objective of the SYMPOSIUM was to bring together scientists
and engineers working in different areas of science to present and discuss
recent developments on different problems of nonlinear dynamics with
multi and interdisciplinary applications.

MAIN TOPICS OF THE SSYMPOSIUM

A* Models and methods (analytical, numerical, geometrical,
experimental) in nonlinear dynamics.
Qualitative and quantitative analysis of nonlinear dynamic systems.
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B* Nonlinear dynamics of continuous, discontinuous and hybrid
systems.

C* Bifurcations and chaos.

D* Nonlinear stochastic systems.

E* Nonlinear dynamic phenomena.

F* Control of oscillations and chaos.

G* Applications in mechanics at different scales, and real problems
from any branch of engineering science including mechanical, civil,
electronic, electrical, communication, medical, materials.

H* Cross-disciplinary topics from applied mathematics, physics,
biophysics, genetics, nanotechnology, finance, medicine and earth sciences.

A ROUND TABLE: Research ethics and evaluation of scientific and
technological research results was held successfully and the following
participants took part with corresponding address talks: Marina V.
Shitikova, Pavel S. Krasilnikov, Hiroshi Yabuno, Mikhail Zakrzhevsky, Albert
C. J. Luo, Marina Shitikova, LJIIJGHG Kolar-Ani¢, Slobodan Anié, Alexandra
Maluckov, Ilya B. Simanovskii, Zarko Mijajlovic, Zeleo Cupi€, Stevan
Maksimovié, Alexander Zlenko, Katica R. (Stevanovi¢) Hedrih and other
participants.

Since 1992, the European Mechanics Society (EUROMECH)
organizes European Nonlinear Oscillations Conferences (ENOCs) through its
ENOC Committee. Actually, these events have a much longer tradition, since
they are successors of the former ICNO (International Conference on
Nonlinear Oscillations) series held from 1961 to 1990 in East-European
countries. Starting with the 1st International Conference on Nonlinear
Oscillations organized in Kiev, 1961, by Professor Yu. A. Mitropolsky, twelve
ICNOs were held till 1990. Then, starting with the 1st European Nonlinear
Oscillations Conference in Hamburg, 1992, six ENOCs were organized fill
2008 (Prague, Copenhagen, Moscow, Eindhoven, St. Petersburg). Details are
done in Appendix IT.

Professor 6. Rega was organizer last ENOC Rome 2011 and we point
out his sentences: "It is a great privilege to host the 50th Anniversary
Conference of the ICNO-ENOC series in Rome, for the first time in a
South-European country”.

First Serbian Scientific meeting in area of Nonlinear mechanics
(nonlinear oscillations and nonlinear dynamics) was organized by Serbian
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Society of Mechanics and Yugoslav society of Mechanics in 1984 in
Arandjelovac. Academician Yu. Alekseevich Mitropolsky attended this
Serbian Symposium and give one Plenary invited Lecture. Starting from this
period Series of the scientific Symposia or Mini-Symposia were organized
by Chair of Mechanics of Mechanical Engineering Faculty, University of Nis
supported, by Yougoslav or Serbian Society of Mechanics. Details are done
in Appendix IIT.

We are happy to report that our Symposium Nonlinear Dynamics -
dedicated to Milutin Milankovi¢ presented 88 abstracts of the nonlinear
dynamics contributions in different areas of sciences from 12 countries.

We would like to thank all authors - participants of Symposia for

their scientific contribution to Symposium Nonlinear Dynamics, as well as to
this Special Issue of the Journal Scientific Review of Serbia Scientific
Society.
Financial support in parts for publishing this Issue of Journal Scientific
Review of Serbia Scientific Society is given by Project ON174001 (2011-
2014) coordinated through Department of Mechanics at Mathematical
Institute SANU, Project OI 172015 through Faculty of Physical Chemistry,
University of Belgrade and IIT 45001 Institute of Chemistry, Technology
and Metallurgy, University of Belgrade, Department of Catalysis and
Chemical Engineering, Belgrade, The Society of Physical Chemists of Serbiag,
.Mihajilo Pupin Institute" University of Belgrade and Faculty of Technical
Sciences Kosovska Mitrovica, University of Pristina with allocated place in
Kosovska Mitrovica.

Guest- Editors of Special Issue of Journal Scientific Review of Serbia
Scientific Society

=1

..... and 2811
Katica R. (Stevanovi¢) HEDRIH and Zarko Mijajlovié

Chairs of Symposium Nonlinear Dynamics - dedicated to Milutin Milankovié

and member of Serbian Scientific Society
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CPABHUTEJBHDIN AHAJIN3 ACUMIITOTHYECKHAX
METO/IOB UHTETPUPOBAHMSI HA IPUMEPE YPABHEHUS
BEJIELIKOT'O

IMaBea KpacnibHukoB

Kadenpa " Tuddepentmanshsie ypapaenus', MAU BonokonaMmckoe mocce
4, Mocksa, 125871, Poccus  krasil06 @rambler.ru

Abstract. Small plane oscillations of the satellite in an weak elliptical orbit are
investigated. The equation of oscillations of the satellite contains two small
parameters: (an orbit eccentricity) and (a measure of a deviation of a phase point
from zero). It is shown that the traditional analysis using connection between yhem,
has some lacks. For example, these reduction leads to a set of the shortened equations,
therefore the combination of solutions of these equations is required. Moreover, if you
use the reduction then equation has not Taylor expansions in a small parameter. The
reduction does not allow, as a rule, to investigate a bifurcation of solutions in the
space of small parameters, to give completeness information on the oscillations, to
investigate the oscillations along arbitrary curves of space of small parameters.

The small plane oscillations are investigated with the help of the generalized
averaging method with small independent parameters. The oscillations in the first and
second approximations of averaging method are described. It is shown that researches
are free from reduction shortages.

Key words: satellite; plane oscillations; two small parameters; generalized averaging
method.

1. BBEAEHUE

OCHOBBI TEOPUM MANBIX HENMHEWHBIX KoneOaHWi HEOeCHBIX Tel Ha
Cnabo3JUTUNITHYECKON OpOuTe 3aI0KeHbI B paboTax Jlamraca Tuccepana, Payca [1] -- [3],
3aHUMABIIMXCA Teopuerd JBIKeHUs JIyHbl OTHOCHTENBHO ee IeHTpa Macc. bpuin
WCCIIEZI0BAHbl Pa3JIMuHble TUMbI JUOpaimid JIyHbl, aMIIMTy/1a KOTOPBIX MMEET NepBbId
MOpsiIoK  Manocth 1o e. IlepBele HccilenoBaHMs —BpallaTENbHBIX — JIBWKCHUN
HCKYCCTBEHHBIX CITyTHUKOB 3€MJIM Ha JJUIMITHYECKON opOuTe Mmpu e= | NpOBEICHHI B
cratbsix [4] -- [7]. OHH TIOBTOPSIOT B OCHOBHOM pe3yAbTAThl KIIACCHUECKHUX
WCCIIeIOBaHUM, KOTJ]a aHAJIN3 dKCHEHTPHUCHTETHBIX KOJeOaHH OCHOBAaH HAa YPaBHEHUSX
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JTMHEeHHOro TpHOImKeHus. B padorax [8, 9] comepXuTcst BBIBOX CTPOrMX ypaBHEHHI
IUIOCKHX KONeOaHWi CIyTHHKa Ha DSIJUIMNTHYSCKOH OpOUTEe W YpaBHEHHE MalbIX
KoJeOaHHH, WCCIeNOBaHbl SKCLEHTPHCHTETHBIE KONeOaHWs B TIEPBOM IPHOIKECHUU
METOZIa YCpeIHEHHs, MMOCTPOeHa OONacTh mapamerpudyeckux koieOaHuid. Padora [10]
MOCBSIILIEHA HCCIIEOBAaHUIO KBAa3WIMHEHHBIX HEPE30HAHCHBIX KOJIeOaHWH CIyTHHKA,
crathu [11, 12] comepxar pe3ynbTaThl MCCIEIOBaHMM, KOI/la B KauecTBE HE3aBUCHMOMN
MepeMEHHON MPHUHATA CPEJHSSA aHOMAJIMS, TIPU 3TOM ypaBHEHUS JABWKEHUs pa3jararoTcs
B panel Teiinopa u ®Dypwe, KoneGaHUs CIYTHHKA OMICHIBAIOTCA C TOUHOCTBIO 1O €.
IoapoOHBIii 0030p HUTHPYEMBIX padoT JaH B MoHOorpaduu [13].

[Mpu mccnenoBaHUM MANBIX KOJieOaHHH OOBIYHO MPEATIONAraroT (M0 YMOTYaHHIO)
HAJIMYUE CBA3M MEXIy MajbIMHM MapaMeTpaMu ¢ U &, Ile £ -- Mepa OTKIOHCHHUS
(ha30BOif TOYKH OT Hadaia KOOpJAWHAT, ONpenelsieMas KaK OTHOIICHHE XapaKTepPHOTO
pasMepa TO YIJIOBBIM MEPEMEHHBIM H CKOPOCTSM K (DHKCHPOBAHHBIM EIUHHULIAM
mmepennst (3amaHHeiIM B cucreme SI, CGS wmmm MKS). K mpumepy, Bo Bcex
PAacCMOTPEHHBIX BbIIE paboTax monaraercs £: e, T.e. €= e, Ille ( -- NOCTOSHHAs

BCJIMYMHA TIOpsJKa COWHUIIBIL. Hawubomee HUHTEPECHBIC HEJIMHEeUHbIe PE30HAHCHBIC

3(eKThl BpallleH i CITyTHHKA ObUTH OOHApYKeHb! B padoTe [14] Bonb KpuBoi &€ = ¢'*:

HCCIIEIOBAHA 3aJla4a O CYIIECTBOBAHHH, OM(ypKAUIX M YCTOWYMBOCTH MEPHOANICCKHX
JIBIDKCHHI CITyTHHKA C IIEPHOJIOM, PAaBHBIM MEPUOLY OOpAINCHHS €ro LEHTpa Macc IO
opowure.

Llenb paGoTHI -- MPOBECTH CPABHUTEIBHBINA aHAIN3 ACHMITOTHICCKUX METOIOB
HHTETPUPOBAHUS YPaBHEHHUsI IUIOCKUX KOJICOAHMIA CITyTHUKA, MCIIONB3YIOMIUX PEAYKIIUIO
W CBOOOJHBIX OT PENYKLWH, OMHCATh HOBBIE d(P(HEKTHl BpAIICHHI CIYTHHKA HA OCHOBE
0000IIEHHOTO METO/Ia YCPEIHEHHS ¢ He3aBUCHMBIMU MAITBIMU MapaMeTpaMHu.

2. BUjibl PEAYKLWI YPABHEHUS BEJIELIKOIO

HccnenyeM ypaBHEHUE IDIOCKUX KOJEOaHHMH CITyTHHKA
2

e —2esinvj—5+3n2 sin§ = 4esinv )]
v v

3nech TpHHATH chemyromme obosHauwenus: n’=(A—-C)/B., A,B,C --

(I+ecosv)

TJIaBHBIC NCHTPAJIbHBIC MOMCHTBI HHCPIHM allrapara, e€-- SKCHEHTPUCHUTCT 0p6I/ITI)I
CIyTHHKa, O -- YABOEHHBIH Yroa MeKITy paanycoM BEKTOPOM IIEHTPA MHEPLMH arnapaTa
U OCBI0 T, HaHpaBHeHHOﬁ O €ro riIaBHOM HeHTpaHLHOﬁ OCH MHEPLHUH, OTHOCHUTCIBHO
KOTOpOﬁ MOMCHT MHEPLUHU PABEH C , V -- ICTUHHas aHOMaJIu4.

Momaraem & wmameim: O =&0,0 =& . 3nech O, BETMUMHBI MOPAIKA
eIMHUILBI, £ -- MaJIbIi MapaMeTp. Y paBHEHHE KoeOaHUi CITyTHHKA HPUMET BHJL

o -

dvf —Zers'sinv%+a)2 sin(&d) = desinv, @=+/3n )

Jluneapusys 9TO ypaBHEHHE MO O, TOIYyYHMM CHHTYJISPHO BO3MYILIEHHOE
ypaBHEHHE

g(l1+ecosv)
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d*é
1+ecosv
( ) 1

—Zesinvﬁ+a)23=4£sinv, w=-/3n
dv £

YACTHBIM CITy4aeM KOTOporo (mpu £ =1) sBisercss ypaBHEHWE JIMHEHHBIX KojebaHuit

CITyTHHKA, TIOJTy4eHHOe B pabore [8].

PaccMOTpUM  PEIyKIMM 3ajaud, NPUBOIsIIME ypaBHenue (2) K BHIY,
CozlepIKaIlleMy OIIMH MaJblii MapaMerp. Byaem cuuTath, 4TO OJHONAPAMETPUYECKOE
cemeiictBo kpuBbX f(&,e,)=0, [f(0,0,0)=0 (& -- mapamerp cemeiicTBa),
TOKpBIBAET BCIO IUIOCKOCTh TApameTpoB {€,e}, korna ¢ mpoleraer obnacth

JIOITyCTUMBIX 3HaueHHH A . Broms xakmoi kpuBoi ceMelicTBa ypaBHeHHE (2) 3aBUCHT OT
OIIHOTO MaJIOro MapaMerpa.

Ilonenus ypaBnenwe (2) Ha (1+ecosV), pasnoXuM €ro B psn IO MallbIM
mapamerpaM &,¢. C 3Toif membio npencraBuM ¢yrkmun (1+ecosv)™ u sin(é’g ) B
BUJIE PSIIOB:

1 = U - )

———=) (-1)'e"cosV, sin(€d)=) (1)’ ——

1+ecosv nz::; ; 2k+1)!
[MpunumMas Bo BHEManue (hopmyny Komm nponsBeneHust psiioB

oo oo oo k
NDIENIMITE
i=0  j=0 k=0 \ s=0

MONTYYMM, TIOCIe TPeoOpa3OBaHUil, ypaBHEHHE IUIOCKHX KoleOaHWi CIyTHHKa B BHUJIE
psizia Mo He3aBUCUMBIM MaJIbIM IIapaMeTpaM &, € :

O +&8 = 25inV(eS’+Zﬂ)i(—l)”e"cos"v—
n=0 3)

-5 Zxé‘ 25+l

—(022 -1 cosVz

=0 cos'V(2s +1)!
3neck [ =e/E -- CHHTYISIpHBINA mapameTp. YpaBHeHue (3) U (4) CONEPIKUT €ro
KaK BEJIHYMHY HYJIEBOTO TOPSIKA, OCKOIBKY CyMMa IOKa3atelell ¢ W £ paBHA HYJIO.
Takoe ompenenenne MopsaKa MaJOCTH [/ sBisAeTcss (OpManbHBIM, HE yIHTHIBAIOIINM
€T0 CHHTYJISPHBIM XapakTep: 4HCIOBOE 3HA4YEGHHE [/ HeompeneneHo mpu e, € —0.
IMopsitok MayocTH /{ 3aBHCHT OT XapaKTepa CTPEMJICHHs MajbIX MapaMeTpoB K HYIIIO, B

YaCTHOCTH, OMpENEIAeTCs ACHMITOTHYECKAM ITOBEJCHHEM KpPUBBIX DPEIYKIHH B
oKkpecTHOCTH HyJIs1. Clle[OBaTENBHO, OH 3aBHCHUT OT BHIA PEAYKIIUM.

VepskuBasi WiEHB! 0 TPETHETO MOPSIKA MAIOCTH BKJIIOYHTENHHO IO ¢ U &,
OyJeM UMETh:
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2
S +a’d = 4,usinv+e[23’sinv+a)23cosv—2,usin 2V]+%a)233 -

—82 [S,Sin 2V+a)23coszl/—4/,[coszl/sinl/]+ )

2
+ 83 [Zg,coszl/sinl/ + a)zgcos3l/ - 4ll,[cos3l/sin Vj| —882 % 33 cosV

Jns npuBeneHuss ypaBHEHHs (4) K pErylspHOMY CIIy4al0 HEOoO0XOIUMO
WCKITIOYHTH (B TUIOCKOCTH MallbIX IapaMeTpoB) ocoOyio mpsmyto £ = (0 BMecTe ¢ Maoi
OKpeCTHOCTBI0. JIJIT 3TOro JOCTaTOYHO NOTpeOOBaTh, YTOOBI TIPH  ONpENeNeHHBIX
3HAYCHUAX (¢ KPUBBIE PENYKIMH IUIOTHO TPWIETAIXM K STOH Npsamol, (opMupys
O03HA4YEeHHYIO OKPECTHOCTB IIPU YCJIIOBUM OTCYTCTBHUS KacaHUs MX ¢ psAMoi £ = () B HyIIe.
B cimydae kacanms mMeeM £ =o(e), nodTOMy [ —>co mnpH e —> (0 BIOIL KpHBOi
PEIYKLMH, CIEOBATENBHO (I COXPaHAET CHHTYIAPHOCTH M 3a NpelelaMu yKa3aHHON
OKPECTHOCTH.

OTMeTHM, 4TO MapaMeTp &£ WrpaeT CyLIECTBEHHYIO POJIb MPH HCCICAOBAHUU
MaJlbIX KONeOaHWH CITyTHHUKA, HECMOTpS Ha TO, YTO HCXOmHOe ypaBHeHue (1) He
COIIEPIKUT €ro sBHO. JIerno B TOM, 9TO JUIsl OONBIIMHCTBA PENYKINHA 3aJa4l YKOPOUCHHBIE
YpaBHEHHMS, COJAEpIKaIlMe MEepBbIC INIABHBIE YJICHBI PA3JIOKEHHH B PsiJl, UMEIOT Pa3HbIHA
BUJI B 3aBHCHMOCTH OT BEJIMYMHBI £ . YBEINUUBAs £ HEMPEPHIBHBIM 00pa3oM, MOIyIUM
nepexo OT OTHOrO BHIA YPaBHEHHH K IpyroMy. B IONOTHEHHH K 3TOMY, TIPH JIIOOOM £
W3 JIOCTATOYHO MAaJIOM OKPECTHOCTH, MpHUMBIKatomeid k mpsmoit € = (), ypaBuenue (1)
SIBJISIETCS] CHHTYJLSIPHO BO3MYIIIEHHBIM, ecii ¢ # ().

HUccnenyem monpoOHO pasyinuHble BUIBI penyKuuH. J[ins Havama paccMOTpHM
MPOCTEHILINI €€ THII.

3. JINHEMHAS PEYKLIUS

Ilomoxum
£=we,

TIe (f - NMOCTOSHHAS MOJOKUTEIbHAS BEIMYNHA, MCHSIOIIASCS B MPEAEIax OT HYIS 10
OECKOHEYHOCTH (HAMOMHHM, YTO € W £ -- TOJOKHTENbHBIE BENMUUHbI). Ilycts & -
JOCTaTOYHAs Majas KoHcTaHTa. Tornma mapamerp =1/ BCiomy B INIOCKOCTH MaJIbIX
napaMeTpoB, 3a MCKIIOYEHHEM Y3Koi KOHHMYeckodl okpectHoctH 0, €< e
CHHTYJISIpHOU mpsiMoii € = (), MMEeT MHOPSIOK MAajOCTH, PaBHBIM CIMHHIBL, TaK Kak
yJoBJIeTBOpSAET ycsoBHIo monockl 0,, 4, 1/a .

3meck cieyeT OTMETHTh, YTO MOHATHE MAJOCTH 4 KaKk OQYHKIHMH IBYX
ApryMEHTOB ¢,€ MbI OIPEACIIEM Yepe3 YCIOBHE MOJOCH, TaK, KaK 3TO CAEIAHO B
paborax [15, 16].
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Onpenenenne. Oynximio  [(€,¢) Oynem HasbBaTh GyHKumedl k -- 1o

TopsAKa MaJIOCTH 110 £, e, €CIIA IJIA JIFO0BIX MAJIBIX IOJIOKHTEIBHBIX é‘l’ 52 CYHICCTBYIOT

nocrosuubie A (6,,6,)>0, A,(J,,8,)> 0 n mse ckanaprbie Gopmbl k -TO TIOpsIKA

— 1,52 — 51,52

F(g,e)= a, 5" Feeo= 3, B se'e
x1+S2:k x1+S2:k

MOJIO’KUTENIBHO ONPEIEIIEHHBIE B MOJI0XKHUTEIBHOM KOHYCE {g,e £>0,e> 0} , TAKHE, 4TO

BEHITIONTHSETCS YCIIOBHE TIOTTOCHT
A(6,,0,)F (g,e),, 1 u(e,e)l, A(5,0,)F,(,e), 5)
xorma 0<é¢,, 6,,0<e,, 0,
Urak, cudraeM, 410 £ ...(0 ¢. IlofcTaBuM B ypaBHEHHE (4) BRIpaKeHHE (e

BMECTO & , NOITYYHM:

O +@’s = isin1/+e 23’sinv+a)23cosv—£sin2v -
a a
2
—¢* S/Sin2V+a)23coszl/—iCOSZVSiHV—%a)ZS3 + (©)
o

= . = 4 . & o=
+é 2§/COSZVSIH v+ w2§c053v - c053V81n 14 —? @W’'d° cosv
a

3neck ¢r... . PenyumpoBanHOe ypaBHeHHe (6) 3aBHCHT OT mapamerpa o,
OJTHAKO TOPSIIOK MAJIOCTH OTJEIBHBIX €r0 YJIEHOB OT (¥ HE 3aBHCHT, CIIE/IOBAaTEIbHO, BH]
YpaBHEHHsS HE MEHseTCA NpU W3MEHEHHH (. Bapbupys « HempephIBHBIM 00pa3oM
MOYKHO HCCJIEZ0BATh BIHMSHHE MAJbIX IAPaMETPOB £,¢ HA XapakTep IIOCKUX KoieOaHHi

CIlyTHHKa, HO C OrpaHW4YeHHsAMH. [le70 B TOM, 4TO JIMHEHHAs CBSA3b MEXAy £, ¢ Neaer
HEBO3MOKHBIM HCCIICTIOBAHHE KOJIeOaHHH BJIONb HENMHEHHBIX KpUBBIX f(&,e,a) =0,
KOTOPBIMH YacTO CBSI3aHBI HAHOOJIee HHTEPECHbIe HEIMHEHHbBIE 2P EKTHI.

[IpenenbHOe ypaBHEHHE HMeEET BHUJ JHMHEHHOrO HEOIHOPOJHOIO YpaBHEHUS
BTOPOTO TOps/IKa:

o e 4
8+ @S5 =—sinv
a

4. HEJMHEWHAS PEJITYKLIUS B SIBHOM BUJIE
PaccmoTpuM  3aBHCHMOCTH  MEXAYy MaIbBIMH  IIapaMeTpaMH B BHIE
NOKa3aTeabHON QYHKIHH
e=¢"
Ilpy @ >1 ypaBHeHne (2) ABNAETCA CHHTYISPHO BO3MYIUEHHBIM (TaK Kak [/

CHHTYJISIPHO), HepaBeHcTBO O < &,, 1 OTBevaer peryisipHOMY CItydaro.

11
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HecnoxxHo BHIETH, YTO, €CIIM B NMPaBOM YaCTH yAep>KaTh NEPBbIH TIIaBHBIHN WieH
pa3NOXKEHUs, TO PEAYyLHPOBAaHHOE YpaBHEHHE HMeEeT, B 3aBHCHMOCTH OT OOJIaCTH
W3MEHEHHS (¥ , CIIeAyIomye (OpMBI MPEeICTaBICHUSL.

Pecynapuviii cnyuaii

2°g <3
O<a<t d §2+a)25:a)2e2”’5— M
dv 3!
2°¢ <3
a=l d ‘Z+a)2§:e% @2+ 4siny @®)
3 dv 3!
V=
l< a<l d f+w23=4e1’” sinv )
v
d’6

. —2esinvﬁ+ @35 (1—ecosv) =4(1-ecosv)sinv (10)
dv dv
Cuneynsapuulii ciyyai

d’s

V2

_ k-1
+ @8 = (1) 4sinv Y (k=1,2,3..) (D)

a>l,aelk,k+1) o
e

B BeIpoxieHHOM citydae, korna e = (), a mapameTp (& YAOBJIETBOPSIET CTPOTHUM
HepaBeHcTBaM () < ¢ <1 (mepBbIe TpU ypaBHEHHS), HMeeM
d*s

V2

+@’5=0 12)

DT0 ypaBHEHHE ONMKCHIBACT MaJble MOPOKIAMOIINE KOICOAHMS CITyTHHKA Ha
KPYroBOil OpOHTE B OKPECTHOCTH MONOKEHHs paBHOBecHs O = (. Ero jerko moydauts
m (1) ¢ momompio mpenensHOro mepexoma ¢ — () W HOCIEIYIOIEro Pa3IoKEHHUS
OCTaBIIKXCS (PYHKIHMHA B P 110 O .

Crny4yait =1 crour ocodHsikoM. Ero mpenensHoe ypaBHenne (e =() umeer
BH[

d’6

—+ @5 =4sinv, (13)
v

orimmaHbd OT (12). YpaBuenue (13) Henmb3s moxyduTh 3 (1) ¢ IOMOIIBIO MPENEITEHOTO
nepexoga e —>(0 W MOCIENYIOIIErO YAEpPKAHMSA WIEHOB MOpAIKA O, IOCKOIBKY
yKa3zaHHas MOCJIEA0BATEIBHOCTh ACHCTBHI TpeIoaraeT BBIIOTHEHUS YClIoBusS <1,
TaKk Kak wieHbl ypaBHeHusa (1), conmepxaimye S3KCLHEHTPHCUTET € COMHOXHTENEM,
JIOJDKHBI CTPEMUTECS K HYJIIO ObICTpee, 4eM O . Ypasrenue (13) MoxkHO momyauts u3 (1),
BBIJICJISIS TJIABHBIE WICHBI TIOPSIIKA SKCIIEHTPUCUTETA -- 5;',(025 " 4esinV (HaIOMHUM,

aT0 O =ed ).

3amernmM, 4To ypaBaeHue (13), B ommuame ot (12), HEMB3s paccMaTpHUBaTh Kak
YpaBHEHHE MaJIbIX KOJNCOAHWI CIyTHHKA Ha KpPYyroBoil opbOure. ITO ypaBHEHHUE
OIMUChIBaCT (B MEPBOM MNPHONMKEHHUH MO MAaJOMy MapaMeTpy e€) HEKOTOpbIe Malibie
KoJieOaHUsl CIyTHUKA Ha C1a00-3JUTUITHYECKOW OpOMTe, MpHYeM STH KOoleOaHHs HUKAK
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HE CBsI3aHBI C €r0 OTHOCHTENILHBIM pPAaBHOBECHEM, Tak Kak HH ypaBHenue (10), HU ero
npenenbHbIi ciydaid (13) He IMeroT pemeHus J = const .

Uccnenyem obmacta  (a3oBOro MNpOCTPAaHCTBA, OTBEYAIONINE YPAaBHEHHSIM
peryisipHoro ciaydas. C 3TOi LeNbI0 pacCMOTPUM OTOOpaXkeHHe (ha30BOro MPOCTPAHCTBA
Ha ce0st:

0=¢0,8=¢°5, e<<l (14)
BapbUpys IapaMeTp (¢ B Npeerax OT HyJs 10 OECKOHETHOCTH.
[Iyctp

Kla,b]={6,0":a’,, 5°+5”, b’}
€CTh KOJIbIIO, TpHHAIeKamee (pa3oBOMy MPOCTPAHCTBY. 31eCh a - €ro BHYTPCHHHI
panuyc, b - BHemHH# paauyc. [lomaraem, uro a,b: 1. B atom cinydae, konsuo K[a,b]
6y11eT npeacTaBIATh C06OI71 MHOXECTBO TOYCK (1)330BOF0 MMPOCTpaHCTBA NEPEMCHHBIX
g ,3’ , OTCTOAIINX OT Ha4YaJla KOOpAWHAT Ha PACCTOAHUAX MTOPAAKAa CAUHULIBI.

OueBHIHO, YTO TMPU KaKIOM (PHUKCHpOBaHHOM ¢ oroOpaxenue  (14)
MOpOXKIaeT Mpeodpa3oBaHUe KOJIbBIA B KONBIO:

Kla,b] = K[e”a,e®b]
Kombiy K[e“a,e®b] cootBercTtByeT 00NacTh B (pa30BOM IPOCTPAHCTBE HMCXOIHBIX
nepeMeHHbIX J 0 , yIaJeHHas OT HA4ajla KOOpAMHAT HA BEIMUYUHY mopsaka e .

OTKpeITOMY HHTEpBaly 1< ( <+oo COOTBETCTBYET OTOOPa)KEHHE KOIbIA BO
BHYTPEHHOCTB Kpyra pajguyca eb (e” — 0 mpun @ —> oo, ecn e <1):

Kl[a,b] — K][0,eb]
Unrepany 1/3 < a <1 oreeuaer orobpaxenne K|[a,b] — K[ea,e"*b], a unreppany
0<a<1/3 -- orobpaxenne K[a,b] — K[e"a,b]

Ecmu Hamectn Bce 3t 00passl kombna K[a,b] Ha (a3oBy0 INIOCKOCTB, TO

NOJMYdMM HeKoTopoe cemeiictBo G Koel, KOTopoe CXeMaTHIeCKH MOKHO MPEICTABUT
Ha0opPOM COOTBETCTBYIOIIUX OTPE3KOB ocH O (cM. puc. 1).

L & L & & & 5 —»

=+
=

0 ea  eb ea e’'b
Puc.1 Cemeiicto G

Konbo K[m,n] npencraBieHo 31eck oTpe3koM [m,n]. U3 pucyHka ciemyer, 94To
Klea,eb] = K[0,eb] N\ K[ea,e"’b], K[e"*a,e"*b] = K[ea,e"*b]1N K[e"a,b]

310 3HauwT, yro "morpanudnoe’ MHOXecTBO K[ea,eb], orBewaromee criydaro o =1,

MPHHAUIEKAT TakkKe 00JacTsM (ha30BOro MPOCTPAHCTBA, U KOTOPHIX 1< (X <o H

3 3
a.6"b], oreeuaromee

1/3<a<1. Ananornuno, "morpaHudHoe" MHOXecTBO K[e
crygato & =1/3, npuHagnmexut obmactsM (a3oBOro NPOCTPAHCTBA, UISI KOTOPBIX

1/3<a<1lul<a<l/3.

13
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U3 3TUX pacCyXIeHWH ClienyeT, YTO OKPECTHOCTh Havaja KOOPIHMHAT (ha30BBIX
/
nepeMeHHbIX J,0 (TouHee b - OKPECTHOCTB) pa30OMBaeTCss HA [MSATh KOIBIEBBIX

obnacTeli B 3aBUCUMOCTH OT 3HadeHmd mapamerpa ¢« . Kombiy K[0,ea] otBewaer
yKopodeHHoe ypasHenue (11) cuarymaproro coydas. Komsnam Klea,e'*b],K[e" a, b]
OTBEYAIOT YKOpOUeHHBIe ypaBHeHHs (9), (7) coorBercTBeHHO. "IlorpaHndHbIM " KOJIBLIAM
OTBEYAIOT HECKOIBKO YpaBHEHWH onHOBpeMeHHO. Tak komeno Klea,eb] cBs3aHo ¢
ypaBueHussMu (9),(10), (11), a xombro K[e"3a, e"3b] - ¢ ypaBuenusmu (7), (8), (9).
IocnenHee oO3Ha4aer, 4YTO HCCIENOBaHWE pelleHUd u3 obmactu  Klea,eb], mbo

3 3 o
K] [e” a,e” b] MOXHO MPOBOIHTH € MOMOIIBIO JIFO0OTO U3 TPEX ypaBHEHHH, OTBEYAOIINX
BBIOPAaHHOMY KOJIBILY, TOJILKO HAJ0 CICIUThH 3a TEM, YTOOBI MmapameTp & ObLI OJH30K K
a =1 B nepBom citydae, u Kk & =1/3 - BO BTOpoMm.

3amMeruM, uTo pemias 3agauy Komm s ypapHenus (2), HeoOXOIUMO CIICAUTH 3a
MOMEHTOM TIepeX0/ia U3 OJIHOH KOJIbIIEBOW O0JIACTH B JIPYI'YIO, TIOCKOJBKY 3TOT MEPEXO
COIMPOBOXK/IAETCS CMEHOM THIIA YKOPOYCHHOTO YPABHECHHSL.

[MponomkuM aHaNM3 ypaBHEHHH PEryJsIpHOrO — Ciiydas, yAEpXKHBas B
PEOYIMPOBAHHBIX YPaBHEHHSX WICHBI 00J€e BBICOKOTO IMOPSIKa MAlocTH mo e. Jus
5TOTO MOACTABUM €” BMECTO € B ypaBHEHHeE (4), IIOTydHM

O+ = 461"”sinv+e[23’sinv+a)zgcosV]—Zez’“sin2v+

2°S3
vy OO

+e - [S,Sill 21/+a)zgcoszl/:|+4€3_acoszl/sinl/+ (15)

2
= . = - . [
+ 63 |:2§,COSZVSIII v+ a)2§c053l/:| - 464 acos3VSIII V- eHza ? 53 cosV

Pacemompum  cayuainQ,, ¢ <1/3. Torma COOTHOLICHHS MEXIy MalbIMH
rmapaMeTpamu MpaBoi YacTu ypaBHeHus (15) 3amatoTcsi HepaBeHCTBAMU

> >e> > >t > >’ > et
Ecnu orpaHUUYHUTBCS IEPBBIMU TPEMS TTOCIIEIOBATEIFHBIMY WICHAMH MPaBOi YacTH, TO, C
Y4IETOM ITHX HEPaBEHCTB, MOIYIUM

<3
O+ =e* wz%+4e“” sinv +e[23’sinv + a)zgcosv] (16)

JlanpHelmmii aHaiW3 MNOKa3blBaeT, 4TO yIep)KaHWE B ypaBHEHUHM (4) Bcex
YJICHOB JI0 4-T0O MOpsJIKa MaJIOCTH BKIIOUMUTEIBHO BHOCUT CYILIECTBEHHBIE KOPPEKTHUBHI B

ypauerue (16). K mnpumepy, wien 4-ro mopsaka @'O°€'/120 mnpuBomutcs, ¢

TNOMOIIBI0 PEIYKIMH, K BHIy, COIEpIAlleMy Majblii mapamerp e*® COMHOXKHTEIEM.

DTOT COMHOXHTEITh YAOBJIETBOPACT HEPABCHCTBAM

2a 1-a

_ 1 1 1
e >e' >e™  npm 0<0t<§, > e >e Hpng,, 0!,,1

- 1 1
e>e'*>e”™  mpm Z<0t<§,
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MO3TOMY COOTBETCTBYIOIIMH €My WIeH HeOOXOOUMO yaepXKaTrb B IpaBOM dacTH
ypaBHenus (16). OcraibHblC WICHBI ypaBHEHHS HMEIOT 0oJiee BBICOKHH TOPSIOK
Maioctd. Toria ykopoueHHOe ypaBHEHUE 3aIHIIETCS B BUIEC COBOKYITHOCTH YpaBHEHUN

2°C3
O<a, — 3”+w25=e“ﬂ+e4”£35+4e"”sinv
5 6 120
2°C3 2
1<0!,, 1 5”+w25‘=62”’7w5 +4esiny +¢'t 253
5 4 6 120
<3
i <a< % & +a*d = e“sza+4el"’ sinv+e(25’sinv+w23cosv)

7.6
Unen mecroro mopagka @’ €°/7) Takke okasbiBaeT BIMsHHE Ha ypaBHeHue (16),
korma O< ¢, 1/7, yBenuuuBas 4uciO ykopoueHHH. OKOHYATENbHO, YTOYHEHHOE
ypaBHeHue (16) mpencraHeT B BHJIE CHCTEMBI YPaBHEHUH

2 ¢3 2 2
0<a,, 1 6”+a)25=e2“ﬂ+e4“£55+e6“£57
7 6 120 7!
2°S3 2
l<a,, 1 5”+a}25=e“’ﬂ+e4“£55+4e"“sinv
7 5 120
2°S3
—-<a, 1 5”+a)25=ez’”ﬂ+4el’”sinv+e4”i55
4 6 120
<3
" < a<% O +w'S = ez”’sza+4e"“ sinv+e(25’sinv+a}25cosv)

Ha ostom 3akonunmm pabory c¢ ypaBHeHuem (16). Ecnu B ykopoueHHOM
YpaBHEHHHU yAepKaTh OOJbIIEe YHCIO WICHOB (YETHIpe, ISTh WICHOB M Tak Aajee), TO
noTpedyeTcst TOCIeNyIoNIas ero KOPPEeKTUPOBKa C YIETOM WIEHOB YETBEPTOrO, ISTOrO,
LIECTOrO TIOPSIIKOB 110 ¢, £ U BbIme. OCHOBHAsI NPUYHHA TAaKOTO d((QEKTa COCTOHUT B TOM,

YTO MpaBasi YacTh ypaBHEHUA (3) COIEPIKUT P
- k
2 =D 2k S2k+1
w> U g
o 2k+1)!
KaKIbIH YICH KOTOPOTO BIMSET HA YKOPOUEHHOE ypaBHEHHE, pa30uBast GUKCHPOBAHHBIN
uaTepan (0, 1/3) u3MeHeHWss (¢ Ha Bce Ooliee MENKHE YacTH M YBENMUYHMBAs YHCIO

b}

o 2k 2k
YKOPOYCHHBIX YpaBHCHUMU. Be13BaHo 310 TEM, 4TO & =¢€ “ CTPEMUTCA K CAUHULIC ITPU

a — 0, modTOMY KaXIplii WIEH 3TOrO psja MPOSBISCT ceOs Kak OOWH M3 TJIaBHBIX
YIEHOB Pa3lIOKEHHS.

Wrak, YKCIO YKOPOUYEHHBIX YPAaBHEHHMH DE3KO BO3PACTAET C POCTOM YKCIA
VICP)KHBAEMBIX WICHOB, YTO BEChbMa 3aTPyAHsET aHanu3 cucreMbl. CIOKHOCTh
UCCIENOBAHUI CBS3aHA TAKKE C HEMeWwIOpO6CKUM PA3NOKEHUEM TPABOM dacTH
YPaBHEHHS B Psiji [0 MajOMy MapaMmerpy ¢ W C MPUHIUIAAIBHON HEBO3MOKHOCTHIO
NPUBEJEHHs TAKOTO Psijia K CTAHJAPTHOMY BHJy TEOPUM BO3MyIIEHMHA. B camom nere,
paccMOTpUM, K IpUMEpy, YKOPOUCHHOE ypaBHEHHe, oTBevaromnee unrepsany (1/4, 1/3)

mMeHeHHs (/. OHO CONEPXKHT Maible mapaMeTphl Buma e°%,e'™*, e. CraHmapTHoe

NpeaACTaBJICHUEC npaBoﬁ JaCTu TMpeamnojgara€tT HaAJIMYUE MaJIOoro napamMerpa A,
YAOBJIETBOPAIOMICTO YCIIOBUAM
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2, 1-
e =A"e *=A"e=A"

roe n,m, p -- UeIble 4YHCIa, MOTYMHEHHBIE HepaBeHCTBaM n<m < p. Otciona
SIBCTBYET, YTO

__ p—m

"3 p—n—2m’
MO3TOMY (X -- paudoHanbHOe umcio. CIenoBaTeIbHO, NPH (¢ MPPALHMOHATBHOM

TpUBE/IEHHE TOCTEI0BATENLHOCTH e°%, ¢! e K CTaHJapTHOMY BULy HEBO3MOKHO.
IpenenbHOE ypaBHEHHUE UMEET BHJI JIMHEWHOTO OCLIAILIATOPA
O +@d=0 (17)
Ilyems  o=1/3. Tonoxum A=e"?, Torma ykopoueHHOe ypaBHEHHE,
cozepyKallee TPH IITaBHBIX WICHA Pa3JIOKECHHS, UIMEET BH]I

2 2
S +@8 =N 4sinv+%53 +A3(25’sinv+wzﬁcosv)—A4%55

IMpaBas yacTh TOr0 ypaBHEHUs TPHBEICHA K CTAHIAPTHOMY BHIY TEOPHH BO3MYIICHHH,
npenensHoe ypaBHeHue umeet Bua (17).

Paccmompum cnyuaiil/3 < ¢ <1. DnemMeHTapHbIl aHAINM3 TOKA3bIBAET, YTO
BUJT YKOPOUSHHBIX YPaBHEHUH 3aBUCHT OT 00JIaCTH U3MEHEHUS (X :

1 1 < 2 l-a : 2a w233 EN <
g<a,, 5 O +@ =4e “sinv+e T+e(25 smv+a)zﬁcosv)
2°S3
%<a,, % O+ @5 =4 sinv+e(25'sinv+a)zgcosv)+e2“%
%,, a<l 8+ @S =46 sinV+e(23'sinV+a)zgcosv)—Zez’“ sin 2v

Tak ke Kak M B IPEIBIIYIIEM CITydae TpeIcTaBIeHHE MPABOi YaCTH PSIOM MO ¢ HMEeT
HETEHIOPOBCKUH BHJ NPU HPPALMOHAIBEHOM (¥ , TIPEAEIbHOE YpaBHEHHE OIHMCHIBAETCS
dopmyoit (17).

Cnyuau o =1. TloncraBum B ypaBHenue (15)a =1, momyunM, ynepxuBas
TIepBbIE TPH TIIaBHBIX WICHA PA3JIOKEHHS,

S +a’s = 4sinv+e(25'sinv+a)zgcosv—2sin 2v)+

+€2 %33 —S’Sin2V+4c()szVSinV—a)zgcoszv

3aMeTI/IM, YTO PCAYHHUPOBAHHBIC YPABHCHHA MOXHO PACKIIAAbIBATH TAKKC B pPAd
m &. HJISI OTOro AOCTaTOYHO BBIPA3UTHh MaJIbIi napamMeTp € 4epe3 &£, HCIOJIb3YyH
PAaBCHCTBO, ONPEACIIAIONICE PEAYKLHIO, U MOACTABHUTHb 3TO BBIPAXXCHUE B YKOPOUCHHBIC

YpaBHCHHH. Y,E[ep)KI/IBaﬂ TNEPBLIC JIBa IIaBHBIX YICHA Pa3JIOKCHUA, 6yI[eM HUMETH, IpU

v
e=¢g"“
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1 d*s = 5’
O<a<— - +w'S=we —
3 dv 3!
2¢ <3
a=1 d52+a)25=62 @S L asiny
3 dv 3!
27 p—
—<a<l —+@’5 =4 siny
v
d*s

0 —2£sinvj—6+a)23(l—€cosv) =4(1—gcosV)sinv
% %

AHAJIOIMYHO MOIYYAIOTCS YKOPOUEHHBIE YpaBHEHHS 0ONee BBICOKHX TNPUOIHKEHHUIA.
OTHOIIIEHHE TIOPSIIKA MEKIY MaJIbIMK IAPAMETPAMH B PA3JIOKEHHUE 110 ¢ COXPAHAETCS U
B Pa3JIOKEHHE 110 € , TAK KaK U3 HEPABEHCTBA

ef () > eg(a)
cnemyer, ipu & >0,

8f<a)/a > €g<a)/a

VKakeM TaKkKe Ha OJHY XapaKTEpPHYI0 OCOOEHHOCTh penyKiuu: 5(pdext
nBotictBeHHOCTH. CYTh €r0 COCTOUT B TOM, UTO BJOJb KaXI0M KPHBOM £ = ¢ pemnykimn
CHHTYJISDHBI MapaMeTp [ JOMyCKAeT JIBA Pa3HbIX 3HAYECHHs TOpSAIKA MANOCTH: ¥, IO

euy,mn £,Te.

p=e', pu=e?, n=y,

JlercTBUTENBHO, UMEEM

e_ e - £ 1-a)!
=_=_a= a, /u=_= =€( ala
E e E E
Orcrozia ciemyer, 9To
l-x
n=l-a y=
o

C 1pyroi CTOPOHEI, CYIECTBYIOT Pa3IHYHbIE KPHBEIE, BIONb KOTOPBIX [/ HUMEET
OIMHAKOBBIN Nopsnok Manocty (1— ). B camoM zene, nonoxum
&= el/(Z—a)’ &= ea
Brones nepBoii kpuBoil IMeeM
e &7 o
& &
BTOpas KpMBas [JAa€T 3HAYCHUE [/ B BUIE [ = e,

5. HESIBHBIN BUJI HEJIMHEMHON PEAYKIIMA ()

HccrnenyeM pemyKiMud, IMpeACTaBICHHBIE B HESBHOM BHIE. J[JIsi TOro, 4ToObl
MOJTY9IUTh ypaBHEHHWE OTHOCHTENEHO KPUBBIX PEAYKIHH, HAIOXKHAM JIOMOJHHUTEIHLHOE
TpeOOBaHME HAa TApaMeTp /[/: MOPANOK €ro MajoCTH IOKEH OBITh IIOCTOSHHOMN

17



IMABEJI KPACUJIbBHKOB

BEJIMYMHON BO BCell 007aCTH HM3MEHEHMs BEIMYUH e, £ 3a HUCKIIOYCHHEM MaJjion

okpectHocTH mpsMoit € = (. [lonoxkum, K mpuMepy, 3TOT MOpsOK, paBHbIM 2/ 3. Torna
/L JIOIDKEH YIOBJICTBOPSTH YCIOBHIO IIOJIOCHI

0. f” Ae?? + De?? (18)
£

npu yCJIOBUH, 4YTO (I)opMa, crodias B npaBoﬁ JaCTUu HEPABCHCTBA, IIOJOXHUTEIIbHO
3HAKOOIIPEACICHA B IIOJIOXKHUTCIIBHOM KOHYCE &£ > 0, e>0.

KpHBBIE PEAYKIMH OIPEIETHM PABECHCTBOM
f(e,s)Ee—S(Aem+D£2/3)=0, (19)

OIMUCHIBAIOLIMM OJIHY U3 rpanuil obnactu (18) (mpyras rpanuma -- ock ¢ =0).

Ha puc. 2 m3o0paxkeHO ceMeiicTBO KPUBBIX, OMHMCHIBAEMBIX ypaBHeHHEM (19),
korma A=1, a D wensercs B mpenenax or 100 Ge3pasMepHBIX CAWHHIL IO MabIX
OTPHULATENBHBIX 3HaueHHH. KpuBBIE MOKPBHIBAIOT BCIO IUIOCKOCTH MAIBIX MapameTpoB,
npu 3ToM opma

(ez/s +D£2/3)

OyZIeT MOJOKUTENBHO onpeaenenHoi npu D > 0 u 3HaKkonepemenHol, ecn D < 0. Ipu

. 3
D > (0 KpHBBIE PEYKIMH 3aMETar0T 00IaCTh, OrPAHUUCHHYIO CBEPXY KpuBOil &€ = e,

OTBEUAIOICH HyJIeBOMY 3HaueHHIO mapamerpa D . B asroii obmactu BIOJIb KaIou
KpHMBOH ceMelicTBa OPAIOK MaJIOCTH Mapamerpa 4 paseH 2/3. Boiee Toro, Bcrory BhIIe
mMoO00H M3 ITHX KPUBBIX [/ HMMEET TOT K& TOPSJOK MAJIOCTH, TaK KaK BBIIONHAETCSA
ycioBue monock (18).

CeMeicTBO KpHUBBIX, OTBCYAIOLICE OTPpULATCIIbHBIM 3HAYCHUAM D .

o o 1/3 o
NPpUHAIJICIKUT 06IIaCTI/I, PACnoJIOKCHHOM BBIIIC KPUBOM £ =¢ . BI[OIIL M000i M3 ITHX

KpuBBIX ycioBue monockl (18) mpu A =1, D < ( TepsieT cuity Kak onpeziesieHie opsiaKa
MaJOCTH /L. DTOT k€ BBIBOJ CIIE[yeT M3 TOBEICHHS KPHBBIX: OHM HE IPOXOMIT Yepe3

HOJIb 1 ITIO3TOMY HE MOT'YT 3aJ1aBaTh MOPAAOK MAJIOCTH [/ B OKPECTHOCTH HYIIA.

51 p=01  D=03

O=5
E: 10C

o 1 3 5 e

Puc.2 Kpusbie penykunu pu A = 1



CPABHUTEJIbUI AHAJIN3 ACUMITTOTUYECKUX METO/IOB UHTEI PUPOBAHUS HA ITIPUMEPE VPABHEHIS BEJIELIKOI'O

IomyuuM SIBHYO 3aBUCHMOCTb € OT €, OTPaHUYUBAACH IOJIOXKUTEIbHBIMU
3HaYeHWsAMH mapamerpa D). Paspemmm ypaBHenwe (19) ortHOCHTENBHO £,
paccmatpuBas A, D Kak NMpoW3BOJbHBIE MapameTpsl. Jlerko BuaeTh, 4To fg‘ (e,6)=0 B

Touke e = £ = (), mo3TOMY TeopeMa 0 HessBHOH (pyHKIMH HENPHUMEHUMa.

Bocrnone3yemcst METOJIOM MHOT'OyTOJIbHHKA HeroToHa. TMonoxum
u = 8“3, A=¢". Torma ypaBuenwue (19) nmpumer BUA
g, A=A A +Du -1 =0 (20)

Bynewm uckats pemenrie U =1 (A) B Buje

N a, a.

U =cA+c A+, a, >0,

OmpenennM ¢, , UCXOIS M3 YCIOBHS TOXIIECTBEHHOTO OOPAIIEHHS YPaBHEHHS
(20) B HOMB TIPH TIOJICTAHOBKY B HETO UCKOMOTO PEIICHUS:

3 5
o, . o, .

A/lz(clﬂ 14,47 +) +D(c1/1 T 4,472 +) -2*=0
PackpbiBass CKOOKH, BUIUM, YTO HAMMEHBIIYIO CTENCHb MMEET OJUH MU HECKOIBKO
YJICHOB, BXOIAIINX B CYMMY

515 2 3 43 3
DA+ AL G AT - A
Ytobwl ypaBHeHHE (20) OBUIO TOXKICSCTBEHHO PABHO HYJIIO, HEOOXOIHUMO, YTOOBI

YJIeH ¢ HaUMEHBIIMM TIIOKa3aTeJIeM CTENEHH He OBl €IMHCTBEHHBIM, TaK KaK HHAYe
3TOMY 4IIEHY He ¢ 4eM cokpartutbes. [lostomy ¢ cnemyer BBIOHpATh TaK, YTOOBI Cpean
MoKa3aTeJei

S5¢y,2+3a,,3 2n
napamerpa A 10 KpaiiHell Mepe JBa MMENIM OJHO M TO )K€ 3HAUCHHE, OCTalIbHBIE
MOKa3aTeu JODKHBI MMETh OoJbliMe 3HaueHWs. [IpupaBHHBas MEXIy cOOOH Mapbl
TIOKA3aTeNEH, TIOTyIHM CIIETYFOIIEE MHOKECTBO BO3MOYKHBIX 3HAYEHHH ¢, :

31
573

Jlerko  BumeTh, YTO  ToNbKO TapameTrp ¢, =3/5  ynonerBopser

o =1

1

JIOTIOJTHUTEIbHOMY ~ YCIIOBHIO MHHHMMAJBHOCTH 3HAYCHHWH COOTBETCTBYIOIIECH —Maphbl
{50,/1 , 3} Ha MHOXecTBe moka3ateneit (21). OueBnuaHO, 9TO ypaBHEHHE OTHOCHUTEIHEHO G

HAMeeT BUJ
DA =24 =0
Orcrona crenyer, 4to ¢, = D', mosromy
35
e
e=| — ST
D

ecmi D # 0. dns coyqas D =0 umeeM £ = e,
IMoctponMm crenyroniee npuOIMKEHHE IUTs KpUBOH € = £(¢e) , korma D = 0. s
3TOTO MOJIOKUM
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W=D,
M BBEIEM JONONHUTENBHOE o6o3Hadenne 6 = A"°. B HoBBIX MEPEMEHHBIX YpaBHEHHUE
(20) mpumer BUA
Dz’ +5D*°6°z" +(10D™°¢° + A" ) 2’ +(10D™°¢° +3AD™°6" ) 2 +
+ (5D1/5912 + 3AD72/5916 ) 7+ D73/5A919 =0
Wiem perieHue 7 B BUE
7=c6"

Ecnu TENEPb MOACTABUTDH 3TO BBIPAXKCHUE B MMOCJICAHEC YPABHCHHUEC U BBIACIIUTD B KaXKJIOM
H3 NICCTH €0 MOHOMOB TJIaBHBIC CJIara€MbIC, IMOJTYYHUM COBOKYITHOCTH YJICHOB BUJA

505 4/15 4 n3+4 3/5 3 n6+3 215 .2 n9+2 1/5 12 -3/5 19
Dc@7, 5D*>c*6°7 10D c*68°7, 10D™°c*8°*7, 5D 67, D™ A@
HeCnoKHO BHIETB, 4TO MpU ¥=7 TOCIENHAE JBA CIAraeMblX MMEIT OTMHAKOBBIHA

MOKa3aTeb CTENEeHN BEJIMYMHBI €, MHHUMAaJbHBIA Ha MHOXKECTBE BCEX IOKaszarteneil 6
JUISL BBIMMCAHBIX WieHOoB. ClegoBaTeNbHO, YTOOBI YHOBJIETBOPHTH aireOpandeckoMy
YPaBHEHHIO OTHOCHUTENBHO Z HEOOXOAMMO CYMMY TOCIEIHHX JBYX WICHOB ITOJOXKHTH
paBHOI1 Hymt0. B pe3ynpraTe nmeeM ypaBHEeHHE OTHOCHUTENBHO C :

5D1/5C012+}/ +D_3/5A019 — 0’ 7/= 7

Orcroza ciemyer, 4To

c= _éDws, 4 =DV —éD_4/5/17/5,
5 5
MO3TOMY
e= D5 _3_AD—6/5813/15 e 22)

5
[omyaum ypaBHeHHs KOJIeOaHUI CITyTHUKA BIOJIb KPUBBIX peayKIuH. st aToro
MOZICTABMM HAM/ICHHOE 3HA4Y€HHE £ B INPaBYIO YacThb ypaBHEHHsA (3) M pa3iiokuM ee B

pan o e. bynem nmern
2

O +@*8 = 4D sinve® +£Asinl/e”3 +E —
5 250" 23)
= . ’T 108 A . @07 s
+(25 sinV+ @ é'cosv)e+ — sinV+———
125 D6/5 6 D6/5
3I[GCB CJIEAYCT TIOJIOXUTH A PaBHBIM €JUHHULEC, €CJIIM pacCMaTpyuBaThb KpPUBBIC,
n300pakeHHbIE Ha puUC. 2, Torna D -- mapamerp peayKUud. 3aMeTHM, YTO OH BXOJHUT B
3HAMCHATCIIb MHOI'MX BLIpa)KeHPII)’I HpaBOi/lI 4JacCTy, IpHA 3TOM ITOKa3aTejib €ro CTCIICHU
HCTIPEPBIBHO PACTECT. CHGHOBHTCHBHO, €ro BJIMAHUC CHUHIYIAPHO B OKPECTHOCTH TOYKH

D=0:c YMEHBIICHHUEM 3TOI0 IapamMerpa HeO6XOI[I/IMO YACPKUBATh YJICHBI BCC Goiee

/3
BBICOKOI'O IMOpsAKa MaJIOCTHU IO €. Hpe,[[CJ'IBHaﬂ KpuBas € = e ~, OTBEUaKOIas 3Ha4CHUIO

D =0, siBusieTcst 0co00i i1t ypaBHEHHsT bernenkoro: BUI ypaBHEHHs BIONb 3TOM KPHBOH
PE3KO MEHsIeTCS ¥ IPHHUMAET (hopMy
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O+ =e¥? 4sinv+%é_‘3 +e(25’sinv+w25cosv)—64’3%55+---

Kpome TOro, eciu OrpaHHYHTh YypaBHEHHE Ha KpHUBBIC, PACIIONIOKEHHBIE B OOJIACTH
D <0, TO ypaBHEHHE TepseT CWIy AaCHUMITOTHYECKOTO OIMCAHUS ABWKEHUH IpH
e—0,&6 >0, Tak Kak KpHUBbIE PEOYKIHH HE INPOXOIAT Yepe3 TPHUBHAIBHYIO TOUKY
e=¢=0.

3aMeTHM, 4TO MepBbIC WICHBI MPaBoi YacTH ypaBHeHu# (23), (24) oOpa3oBaHHBI
u3 BeIpakeHUs 44/sin(V), MO3TOMY OHHM JODKHBI MMETh IODSJIOK MAajOCTH, PaBHBIH
2/3. ChpaBeyIMBOCTh 3TOr0 3aMEYaHHs O4YEBHIHA JUIs ypaBHeHus (24), OIHAKO
ypaBHeHHe (23) yKa3bIBaeT Ha TO, YTO MOPSIIOK MAaJIOCTH Mo ¢ paBeH 2/5. B atom Her
MPOTHBOpPEYHs, TaK KaK BIOJIb KpuBoH (22), orBewaromeit mapamerpy o =3/5,
mapaMeTp 4 uMeeT, B cuiay dbdekTa  JBOHCTBEHHOCTH, IIBa IIOpPSIAKA MAalOCTH:

V,=1l-a=2/5n0ewn y,=(1-a)/a@=2/3 no &.IT0 3HAYMT TaKKe, UTO KPUBBIE

/3 <
E=e u (22) HaxXo4ATCs B IBOMCTBCHHOM OTHOLICHHMHU: BIOJb HUX [/ HUMCCT OJUH H

TOT e MOPSIIOK MaJIOCTH, PaBHBIN 2/3.

6. HEABHBII BUJI HEJIMHEAHOW PEAYKIWU ().

PaccmoTpuM Temeph OAHONAPaMETPUUYECKOE CEMEHCTBO KPHBBIX, 0000IIaoIee
HEITMHEWHYIO PEYKIHI0 £ = %, HCCIEOBAHHYIO BINIE. J[JIst 3TOTO MOIOKHM
- -
(e +4e™)
(1+A)
3nech A cunraeMm 3aJaHHOW BEIUYMHON, (¢ -- APAMETD PEAYKIHH.
U3 ompeneneHus mopsiika ManocTd (GYHKUMH JBYX MEPEMEHHBIX CIEAYET, 4TO
TIOPSZIOK BENUUMHBL [l = e/ € paeH (1— ) B 3aMKHYTOH oOIacTH
(el’“ +Ae"™ )

0, ele,, ——~ (26)
(1+ A)

orpaHM4YeHHON KpuBoi ¢ = () u KpuBoH (25).
Crnydali ¢ >1 oOTBeYaeT CHHTYISAPHBIM 3HA4YEHUAM [/, TI0OITOMY IOJIaraeM

F(e,e)=e— =0, A...0 (25)

ae€ (—oo,1]. IlIpu A=0 wu3 npencrasiaeHus (25) crnemyer KiIaccuuecKas pemXyKIHs

£=¢" ¢ orpannuenusvu B Buge 0< ¢, 1. Takum 0Opasom, 06OOIIEHHAS PEMYKIHS
CHUMaeT OTpaHMYCHHUs] HAa 00JIaCTh M3MEHEHWs (¥ , CUMTas HYDKHUH Ipenes M3MEHSHUs
& paBHBIM OECKOHEYHOCTH.

Ha puc. 3 n300pakeHO CeMeHCTBO KPUBBIX penyKimu (25) npu GUKCHPOBAHHOM
3HAUEHUU IIapaMeTpa A, KOrja BeIMYMHA (¢ MEHSETCA B Ipelienax oT —o° JI0 SAMHMIIBL.
Ipu duxcupoBanHOM ¢ obnacTh (26) pacronokeHa BbIIe KpHBO# (25).
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[omyaum siBHOE TpencraBienne kpuBoil F'(e,£€) =0 npu a € (—oo,1) (cayqait
o =1 TpuBHaneH, Tak Kak uMeeM ¢ = £ ). O4eBHIHO, UTO

OF _ ™ "+Ae™ A . a_F_l_(l—afji

== _(l-a)——e"", -
o€ 1+A 1+ A de 1+A

Ortcroa cnezyer, 4To nmpousBonHas ot F' nmo £ pasHa Hymo ipu e=£=0, B
TO BpeMsl Kak Mpou3BojHast oT F 1o e HeonpezeneHa npu e =€ =0, korma 0<a <1.
Takum oOpasom, QyHKimS F(e,£) HeaHaAIUTUYHA B HyJe, MOITOMY KiIaccHueckKas
TeopeMa O HesIBHOW (DYHKIIMHU HE TPUMEHUMA.

3ameTM, 49TO TPOM3BOAHAS OT [ 1O e, BBIUUCIEHHAs BIONHL KpHUBOM (25),

NPpUHUMACT KOHEYHOC 3HAUYCHUEC B HYJIC:

oF el-a ., -
Rl et =1- — —>11pu e,e -0
de el+A

1+A }
e %+ Ae

ea

1+A{

=1

=02

o=l

0 1 e
Puc.3 Kpussie penykunn mpu A=0.1 u «,, 1

DTO 00CTOSATENHCTBO HABOIUT Ha MBICIb, YTO BO3MOXKHO NPENICTABIICHHE ¢ OT £ B BUJE
psna mo & Urak, Oynem uckath e(€) B BUIE (HOPMAIBHOrO penieHus ypaBHeHUs (25),
KOTOpPOE MBI 3aIIMILEM B BHIE
£ L A,
e— e = 7% A>0 27
(1+A) 1+A

3aMeTHM, YTO €CM W3 JIEBOH YacTH ypaBHEHHS OTOPOCHTH BTOPOW WIEH, TO
pelleHre ypaBHEHUS] HaXOIUTCS cpasy:
— A 82—(1

1+A

IIpu moAcTaHOBKH 5TOi (opMmynsl B ypaBHeHue (27) wieHsl mopsiaka &%
OCTaHyTCS HEKOMIICHCHPOBAHHBIMH. Y UHUTBIBAsL, 4TO MPU & < |

e

2-3a+3
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€a2—3a+3 — 0(82—0{)
OPUXOAUM K BBIBOLY, YTO MOIy4YEHHAs (GOpMyna ULl ¢ SIBISCTCS TMEPBBIM UICHOM
(OpMaITBHOrO psilia PELICHHUSI UCCIIEAYEMOro ypaBHeHHs. ECin B3STh BRIpaKeHUe

I-a
A 3043
2—,

(1+ A"
B KQueCTBE BTOPOr0 WICHA psifia IONYYHM, YTO HEKOMIICHCHPOBAHHBIC WICHBI MMEIOT
nopsanok Mmanoctu @ —3a+3+(a—1)>, Gonee BhicOKHii, ueMm (0,/2 30+ 3) .

CrenoBaTenbHO, TPHOIIKEHHE MCKOMOTO PEIICHHs YKa3aHHBIMH JIBYMsI WICHAMH psila
HMMEEeT aCUMIITOTHYECKHH XapaKTep.

Ipomomkast 3TOT Tpolecc Hajee, MOIYIMM CICAYIOMUA BHA (GopManabHOro
peuieHus (pa3iokeHne He TEHIIOPOBCKOe):

A d 2_ —1)2
o= e +zan£a 3a+3+n(a-1) 28)
1+A pr
3nech
A A 1-o)2-3a) A"
ty=——>,, a;=(1-) 32a a2=( X ) 3a
(1+A) (1+A) 2 (1+A)

OrpannunMm ypaBHeHue bemernkoro Ha kpuBble penykiwm (28), yaep>kuBas
niepBbIe 1Ba WwieHa psija (28) v nepBhle IAITh TIIaBHBIX WICHOB MPAaBOil YacTH ypaBHEHHS:

3-+/5
2

—o <<

p— — I-a p— —

S rars=4] A gy 4 — g 3042 Gy A e (28"sinv + @5 cosv)
1+A (1+A)* @ 1+A

g 253 AT 8a2—30{+3 (

=S+ ———— 25"sinv + @8 cosv)
6 (1+A)

p— — I-a p— p—

S rars =42 gay A — gr 3042 sinv+i£2‘“(25’sinv+w2500sv)
1+ A (1+A) 1+ A

2

1-a _ _ _
A 8“2_30{+3(25’sinv+w25 cosv)+‘%(o253

+72
(1+ A

l,, a<l
2

p— — l-a p— —
5 s =4 A g4 — g2 302 |Gy A g (28"sinv + @5 cosv)
1+ A 1+ A 1+ A

A]—af

2
+ m ga2—30{+3 (2S'sin V+ @S cos V) — 2(%) £ gin 2y
’ +
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Urak, ucciemyemoe ypaBHEHHE DPaclallaeTcss Ha COBOKYITHOCTh YKOPOUEHHBIX
ypaBHEHHH, B 3aBUCUMOCTH OT O0JAacTH W3MEHEHHs (. [IpaBple yacTH ypaBHEHHI
TPEe/ICTaBIICHbl HETCHIIOPOBCKUM PSIIOM TI0 € .

7. BAKJIIOYEHUE

AHanuM3 penyKuuid ypaBHEHHS IUIOCKHX KoJeOaHHH CITyTHHKa Ha Ci1a0o-
SIUTUNITHIECKOH OpOUTE IPUBOAUT K CIESAYIOIINM BBIBOAAM.

1°. PemympoBaHHOE YpaBHEHME HE OSKBUBAJIEHTHO HMCXOAHOMY. IlodTOMYy,
nmro0oe MpUBeNEHHE MCCIEIYeMOro YpaBHEHHS K CIydal0 OJHOTO MAJIOro mapamerpa He
JIaeT TIOJTHOW KapTHHBI MaJbIX KOJeOaHWH CITyTHHKA, B YaCTHOCTH, MCKITIOUAET BCSKYIO
BO3MO)KHOCTh HCCIIEIOBaTh IBIMKEHHH BIOJIb KPUBBIX, HE BKIIIOYEHHBIX B CEMEHCTBO
peayKuui

2°. PemynupoBaHHOE ypaBHEHHE KONEeOAHHH pacrajaercs, Kak MpaBIo, HA
CEMEWCTBO YKOPOUEHHBIX YPaBHEHWH B 3aBUCUMOCTH OT OOJIACTH M3MEHEHHs IapameTpa
PEeOYKIMH; YHCIO TAaKUX YpPaBHEHHH pE3KO BO3pacTaeT C yBEIMYCHHEM 4YHCIIa
YIEP’)KUBAEMBbIX TJIABHBIX WICHOB Pa3IoKeHHs

3°. TIlpexncraBieHne YyKOPOYCHHBIX YpPaBHEHWH B BHIE psAAa IO MajoMy
rapamMerpy 4acTo MMeeT HETCHIIOPOBCKMH BHJ, YTO BeCbMa 3aTpPYyAHSET NpHMEHEHHE
METOIOB TEOPUH BO3MYILIEHUH B MPUOIMKEHUSX BEICOKOTO TIOPSIIKA

4°. PemylmpoBaHHbIE YKOPOYEHHBIE YPABHEHHsS MAJbIX KONEOAHWH OTBEYAIOT
Pa3HBIM KOIBIEBBIM 00JIACTSIM (pa30BOTO MpOCTpaHCcTBa. [109TOMY HEOOXOAMMO CIIETUTH
3a MOMEHTOM Ilepexojia W3 OJHOH KONBLEBOW OOJNAaCTH B JPYIyIO, TOCKOJBKY 3TOT
Mepexoyl COMPOBOXKIACTCS CMEHOW THUIAa YKOPOUCHHOT'O YPaBHEHHMS, U CIIMBATh PEIICHUS
B MOMEHT IIepexo/ia.

5°. Tlpu pemyKiuu HEBO3MOKHO HCCICAOBaTh OWU(YpKAMKM  PEIICHHUIT
MOJIETIbHBIX YpaBHEHHH TEOPHM BO3MYILECHHH, 32 UCKIFOUCHUEM BBIPOXKJIEHHOTO Cirydas,
KOTJja CeMEHCTBO KPUBBIX PEIYKIMH ITOKPHIBaeT OMU(YpKAaIIMOHHYIO TIOBEPXHOCTBH (CM.

(16])

8. PE3OHAHCHBIE KOJIEBAHUSI CIYTHUKA TTPU HE3ABUCHUMbBIX MAJIBIX TAPAMETPAX.

1. Konedanusa npu pesonance @—1=(0. Hccienyem Maible pe30HaHCHbIE
KoJIeOaHMs CIyTHHKA, ONHCHIBAEMBIE ypaBHEHHEM (2), KOTJa YacToTa () paBHA 4acTOTe
BBIHYXKJatome cumsl 44sinV , 1.e. @w=1.

Ecmu i =e /& mMeer NOpANOK MAJIOCTH PaBHBIN EIMHHIIE, T.€. YIOBJIETBOPSAET
YCIIOBHIO TIOJIOCHI

0” ﬂ” K £
rne K - mo0oe KOHEYHOE YHCIIO, CKOJIb YTOAHO OOJNBINOE, TO, MIPOBOIS YCPEIHEHUE TI0
OBICTPOIf TIEpEeMEHHOH V ¢ Y4eTOM MEIUIEHHOTO HM3MEHEHWs] DPE30HAHCHOH (a3bl,

NOJIyYMM YpaBHCHHUE C HCEONPCACICHHBIM BPEMEHHBIM CPEIHUM. HGHO B TOM, 4YTO
HUHTErpal, OMUCHIBAIOIINI BPEMCHHOC CpeaHee, COACPIKUT YJICHBI BHIa
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cos(@xT),cos(@+3T), npenen KOTOPBIX He cymiecTByer npu T — oo (mapamerp K

Ha 3TOT PE3yJNIbTAT HE BIUSET).

Jis Toro, uTOOBI OOOMTH O9TH CIOKHOCTH, H3MEHMM YCIOBHE IOJIOCHI,
paccmatpuBas f/ Kak Maiblii mapamerp nopsmka (1—7), toe ¥ -- no6oe umcIo,
MeHblIlee €IMHUIIbL. JTO 3HAUMT, UTO £/ YHOBJIETBOPSET HEPABEHCTBY

1- 1-
(e "+ Ae 7)
099 /'l” K s (29)
(I+A)

3a7aloIeMy HEKOTOPYIO 3aMKHYTYIO 00JIaCTh B TNIOCKOCTH MAIIBIX NMapameTpoB e,€ . JTa

00J1aCTh JISKUT BBIIIE KPHBOM
- -
e (e "+ Ag 7)
—=K—~, (30)
£ (1+4)
KOTOpas TOX0Xa Ha KpHBYO (25). O0IacTh CHHTYISIPHOTO M3MEHEHHS [/ PACIONOXKEHa
HIDKE 3TOH KpHBOH. YMeHpIas ) mpu QUKcHpoBaHHOM K, UMEeM yBEIMUEHHE ITOH

00JIacTH BCIIEICTBHE BO3PACTAIOIIETO NOpsika kacaHust KpuBoi (30) ¢ ocblo € B Hyse U
yBeNMMUeHHsT MakcuMyma KpuBod. OpHako npu Oompomx K kpuBas (30) cribHO
nprwxuMmaercst Kk ocu e¢. Takum obOpasom, mpu K ? 1 Bciogy B 000l 00macTH,
pacnonoxeHHOi Bbimie kpusoi (30), mapamerp 4 Oyoer MMeTh NOPSIOK MallOCTH

(1—9), 3a uckIroYeHNEM OYeHb y3KOH OkpecTHOCTH ocu £ = 0, exaniel HixKe KpUBOi
(30).

bynem cumrate 4 W £  HE3aBUCHMBIMH MajbIMH  BEIHYHHAMH,
IPUHAUIKAIIMMA ~ 3aMKHYTOH 0OJIaCTH B IpPOCTPAaHCTBE IApaMeIpoB  [L,E,

orrceiBaeMoi HepaBeHCTBOM (29). Torma e, Kak 3aBUCUMBIN TapamMeTp, BEIYUCISIETCS IO
dopmyne e = pe. OueBHmHO, UYTO ¢ -- BENMYMHA BTOPOTO MOPSIKA MAaJOCTH.

YPHBHCHI/IG IUIOCKUX KOJIEOaHUH CITyTHHKA, ¢ TOYHOCTBIO OO YJICHOB TPETHLEro IOpsAAKa
MaJIOCTH, IPUMET BUJ
2

< = . = . = £ <

é'”+§=4ys1nv+,u£[2§'smv+§cosv]+€53 (31)
l_[OpO)KL[aIOHlee YPaBHCHUE UMECT BUJ YPAaBHCHUA TapMOHHUICCKUX KoJIeOaHUIH:

0’+5 =0

BBenieM HOBbIE KOOPAMHATEL @ 1O opMyiam

S =acos(6+V), & =—asin(@+v)
TOFI[a YpaBHCHHA ABMKCHHUSA IPUMYT BU

& =—fO.V)sin(@+Vv), 6 =—- F(8.v)cos(E+V)
o

31nech
2

f(6,v)=4usinv— pea[2sinvsin(@+v)—cosvcos(6+V)] +%0{3 cos(@+v)*

25
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IMABEJI KPACUJIbBHKOB

VYcpenHeHHbIE ypaBHEHHUS IEPBOTO MPHOIMKEHHST IPHBOIUTH He OyIeM, Tak Kak
OHHM OIHCHIBAIOT XOPOIIIO H3BECTHEIE KOJIEOAHNS TIPH JTMHEHHOM pe30HaHCe

0+ 0 =4usinv, (32)
IUIL  KOTOPOrO XapaKTepHO HEOrpaHWYCHHOe IJIMHEHHOE HapacTaHHe aMILTHTY/bI
KOne6aHuii 10 yriy o .

PaccMoTpEM BTOpOE TIPHOMIKEHHE METOa yCpeaHeHHs. MICIonb3ys CHMBOJIHKY
YCPEAHEHHS CTAHAAPTHOM 10 BOroI060BY CHCTEMBI CO MHOTMMHE MAaJIBIMH TTapaMeTpaMu,
cunras x = (&, 0), y =(a,6), nonyuum

dx
E=,uXm(x,v)+£2X20(x,v)+u£X“(x,v)
31ech
a3
—4sinvsin(6+v) ——cos’(8+V)sin(6+v)
X (x) = s X)) =

o —isinVcos(9+V) ® o,

a ——5 cos (6+v)

X a(2sinvsin(8+v)—cosvcos(8+v))sin(8+v)
xX) =
11 . .
(2sinvsin (6+v)—cosvcos(8+v))cos(6+V)

IlpoBonmst ycpemHeHHWE MO CXeMe, OmucaHHOW B pabore [16], modyuum
YCpeTHEeHHBIE YpaBHEHHST BTOPOrO MPUOIMIKEHNS B TIEPEMEHHBIX (¥, B BUIE

o =-2ucosé
g - o ot o
o 16
Cucrema ypaBHeHn# (33) nMeeT mepBEIi HHTETpal
£ a'—128ausin=C (34)

@Da30BbIl OPTPET CHUCTEMBI B MEPEMEHHBIX (r,f I 3HaUEHHI MapameTpoB
1 =0.004, £=0.01 usobpaxen Ha puc. 4. JKHpPHBIM 1IBETOM BBIJIETIEHa CETIEpaTpHCa,
oTBevaromast 3HaueHuto koucrautel C = 0.
CraluoHapHBIM pEIICHUsIM O = ¢, ,6 = 6, OTBEYAIOT ypaBHCHHS
. 2
ducosh =0, 2 _p2 % g
a, 16

Orcrozia ciemyer, 9To

6= ikx, a =12 " (35)
2 £

Koncranta C,, oTBedaromas NoJIOKSHUIO paBHOBeCHs X = ¢, ,0 = 0,, paBHa

C.=-1923/4u* ™"

KpI/IBEi}I CCTICPAaTPUCHI UMECT IBC BETBU:
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a=0. a=+41 sn6
€

* kv
OTCIOL[a CIeQYECT, YTO MAKCUMMAJIbHOC 3HAYCHUE (X aMILIUTY/IbI Kose0aHuil B 30HE

>
e

8]

C
<

e
&

Puc.4 ®azoBrrit mopTpeT npu pe3onance @ =1

III/I6paI.II/II/I OIMMCBIBACTCA PAaBECHCTBOM

2u 32
la |=4 — = 4
& &
TeHepB MOXEM CACIAaTh BBIBOJBI. Mamnsie PE30HAHCHBIC Kojebanus CITyTHHKA B

(36)

OKPECTHOCTH O0CO0OH TOUYKH 0=0=0 uwmeror HEOTpaHWUYCHHBI XapakTep, ecin
KoJeOaHUsl MCCIICNAOBATh B JIMHEHHOM NPHONMXEHHH (TIEpBOC NPHOIMKEHHE METola
ycpenHenus). HenuHelHble diIeHBI, BXOJSAIIME BO BTOpOE TNPHONMKEHHE METO/a
YCPEIHCHHUS, MEHSIOT XapakTep KOJCeOAHH: MOSBIISIFOTCS 30HBI JIMOpAIMHU, B KOTOPBIX
aMIUIATyOa KojeOaHWMii ( W pe3oHaHCHas (asza 6 MeHIeTcI CO BpEMEHEM
MEPHOIUUECKAE B OKPECTHOCTH CTAllMOHAPHOW Touku (35), mocThras MaKCHMAalbHBIX
3HaueHuid o ammumryae (36) npu @ = @,, ¥ pOTaHOHHBIE (BpaIlaTeIbHbIC) ABUKCHHUS,
OTBEUAIOIIHE  HEMPEPHIBHOMY POCTY PE30HAHCHOW (ha3pl TPH  OrPaAaHMYCHHBIX
MEPHOTUUCCKUX KOJICOAHUAX aMILTUTYIbI (X .

Kak cnemyer u3 ¢dopmynsl (36), amminuTyna KoneOaHWMil mMeer mo [ U £

TIOPSIIOK MaNocTH paBHBIM (—1/3). DTo 3HA4MT, 9TO MEpemMeHHas O = & JIOCTHTAET
BEJIMYMH nopsiaka 1/3 no e, wmm 2/3 mo 4 u €.

B 10 5x€e Bpems, BIOIb KPUBOH [ = £ (e= e ), IpuHayIexKamiel oonactu (29)
, MakKCHMaJlbHasl aMIUTUTyJa o JTUOPAIMOHHBIX ~ KONeOAaHWH ¥ 3HAYCHHE (I,

cTalMoHapHOW ToYkH (35) He 3aBHCAT OT £ W, CIEAOBATEIILHO, pa3Max KoJeOaHHH Mo
yrry O OymeT Tropas;o MeEHbIIE -- HOpsAgka £ . bomee Toro, BHOIb KPHBOM

M= e, (7> 0) u3 obmactu (29) aMmMTya KonebaHUH (¢ CTPEMHTCA K HYIO, KOTZa

27
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IMABEJI KPACUJIbBHKOB

€ > 0! Takoe aHOMaNbHOE TIOBEICHUE CHCTEMBI B OKPECTHOCTH CHHTYISIPHOM TOUKH
d=08"=0 o0bsacHsieTcs npeobnagaHueM (BAONb YKA3aHHON KPUBOH) HeNTMHEHHOro

qjIeHa 8233 /6 Hang ciaraeMbIMU 44 sin v,lug[Zg' sinv +9 cos v} , TO3TOMY

ypaBHeHHe KoneOanui (31) mpuHEUMaeT BUA BO3MYIIEHHOTO ypaBHeHus Joddunra.

Bce 310 03Havaer, yTO pa3Max KoieOaHMI TPH pe3oHaHce @ =1 CyIEeCTBEHHO
3aBHCHUT OT COOTHOIICHHH MEXTy MalbIMH IapaMeTpaMu /I, £, HECMOTPS Ha TO, YTO
KOIIEOAHHS 10 YIIIy O 3aBUCAT TOJIBKO OT NIapaMeTpa e.

PesynbraTtel 1Mo HWcCClIEOBaHUIO pe30HaHCA @=1 MerToJaMH YCpEeIHEHHs C
ONHUM MalbM TapaMeTpoM e omucanbl B pabore [17]. CpaBHHUTEIBHBIN aHAIH3
Pe3yIbTaTOB HCCIEIOBAHMS IIPHBOANT K CIESAYIOIINM BBIBOAAM.

1. UccnenoBanms B.B. Benenkoro otHocsiTes k ciydaro £ =1 (ypaBuenus (31)
,(33)coBmanaroT ¢ COOTBETCTBYIOIIMMY ypaBHeHUsAME U3 [17] npu € =1)

2. Kak cnencrBue, ypaBHenust (33), omuchIBarompe KoiicOaHHsS BO BTOPOM
OpUONMAKEHUM METOJIAa YCPEJHEHHs ¢ ByMsl MalbIMU HapaMeTpaMu /I, £, COBMNAJAIOT C
YCPETHEHHBIMH YPaBHEHUSIMHU TIEPBOTO TIPHOIIIKEHUS IUTUPYEMOH pabOThI

3. HccrnenoBanne koneOaHWil ¢ IBYyMs HE3aBHCUMBIMH MaJbIMH MapaMeTpaMu
conepkaT OMNHCAaHWE HOBBIX O(QQEKTOB, OOYCIOBICHHBIX BIUSHHEM & : yBEITHUCHHE

o o Ed
MaKCUMaJIbHOH aMIUIUTYIbl KoneOaHui (¢ B 30HE JHOpauuM ¢ yMeHbIIeHHEM & (U
cuntaeM ()UKCHPOBAHHBIM), YTO HEMOCPEACTBEHHO CBS3aHO C SIBJICHHEM BHEIIHETO
pe3onanca (cMm. ypaBHeHue (32)) B Maioil oOkpecTHOCTH To4uku & =(); HammIue
“"aHOMAJBHBIX" KPUBBIX B IIJIOCKOCTH MAPAMETPOB [, £ .

OTMeTHM Tarke, 4To Ooiee MoApoOHOE MCCIeIOBaHHE BIUSHHS Iapamerpa &
Ha pe30HaHCHBIe KoJieOaHMsl CITyTHHKA ONMMCaHO B padore [14], korma majble mapaMeTphbl

/3
CBsI3aHbI PABCHCTBOM £ =¢€ .

2. Konedanusi npu pe3onance 2—1=0

Hccnenyem Koje0aHWs CIyTHHKA B TIEPBOM W BO-BTOPOM TIPHOIKEHUSAX
METO/Ia YCPETHEHHs, KOrla 4acToTa () €ro COOCTBEHHBIX KOJeOaHWil paBHA IOIIOBHHE
9acTOTHl BEIHYKAawomed cmisl 44sinV, T.e. @=1/2. C 3Toif Hempo mpencTaBuM
ypaBHEHHE (4) B YNPOIIEHHOM BHIE, TIPEATIONaras mapaMeTp // BEITMIHHOH HYIEBOro
nopsizka manocta: 0,, 4,, K, rae K -- mocTosHHas, JOCTATOYHO OOMbINAs BEIUIMHA.

Y,[[ep)KI/IBaﬂ WICHBI 10 BTOPOI'o NMopsAJKa MaJIOCTH BKIIFOUUTEIIBLHO, IMOJITYIUM:
=7 L . =7 . 7S . 82 23
+wd = 4ﬂsmv+e[25 sinv+ é'cosv—2ﬂsm2VJ+€a)5 -

— 82 [S,Sin 2V + (()zgcoszv —4ﬂcoszl/sin V:|
3mech, B OTIMYME OT pe30HaHCa @ =1, BO3MyIIAlOmMMKH 4iIeH 44sinV He
ABJIACTCA PE3OHAHCHBIM, ITOOTOMY IMOPOKAANOIICE YPABHCHUEC 6epeM B BHU]JIC
O +w'S =4usiny

Ero PEHICHUE OIMUCBIBACT IEPUOIUICCKUE KOJIeOaHMs BH1a
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4u . ., .
~—siny, ¢ =-awsin@+
o -1

d=acosp+ 4ﬂlcosv,

W -
e ¢ =wv+g,.

Ucnonb3yst 5TH paBeHCTBAa KaK 3aMeHY MEPEeMEHHBIX 0,0 — (f,(, TPUBELEM

ypaBHeHus Kojebanuii (37) k crnenyromei popme:

do 1 . d 1
—=——f(a,p,V)sin @, @ o—— f(a,p,V)cos@
dv w dv am
3nech
fla,pv) = e [—2awsin vsin o+ ?,u | sin 2V + @’ crcos v cos (p} +e’[awsin 2v sin ¢ —
w —
) 3
w sinvcos¥ — @ cosVa cos (p} e %[acos o+ i’u [sin V:l
a— a) —
Bomum B paccMoTpeHue PE30HAHCHYIO paccTpoiky

A=2a)—V(A=e7/,0,, Y 1) U pe3oHaHCHyI0 (azy 6 =2¢—V, MeUIeHHO
MEHSIOILYIOCS CO BPEMEHEM. B HOBBIX TEpeMEHHBIX (F,§ ypaBHEHHs KojeGaHuit OyayT
umeth Buj (38) mpu ycnoBuu 3ameHsl @ Ha (6+4V)/2, 3aMeHe epBOro CIaracMoro B
YPaBHEHHH [0 @ Ha A C yIBOEGHHEM BTOPOIO CIAragMoro.

IlepBoe npudaM:KeHHe MeTO/1a yCpeAHeHUsl

st Toro, 4TOOBI MONYYHTH YCPEIHEHHBIE ypaBHEHHS MEPBOTO MPUOIMKEHUS,
yaepxuM B GyHKIMH (38) wieHsl mepBoro nopsaka Manocty. [locie yecpeaHeHus paBbIxX
qacTe 1o V , MOJy4uM CHCTEMY YpPaBHEHUM, He COlepXkKalylo £ :

da w-2 .
—=— eorsin @
dv

40 _A_272 Gne,
dv

VYuureiBast, 4T0 W= (A+1)/2, TepBIii HHTErpan yCpeIHEHHBIX YpaBHEHWH NpPUMET
BH]I
a’[-4A+ecosB(A-3)]=C (39
CHavana paccMOTPHM CIly4ail CTPOTOro Ppe30HAHCA, KOTJa pPE3OHAHCHAs
paccrpoiika A paBua Hymo. Torma ammmuryna kojebaHuii Oyner 3aBuceTs oT &
CIEYIONHUM 00pa3oM:

C

3ecos @

Orcrona cienyer, uto npu 6 =7 /2+kx ammwmryga ¢f TpUHAMaeT OECKOHEUHBIE
3HAYCHWs, YTO MPUBOAUT K HENOIMYCTUMOW packadyke KoieOaHWi cryrHHKa. MOKHO
MOKa3aTh, YTO aMIUTHTYJa KOJNeOaHUH PacTeT CO BPEMEHEM IO SKCIOHEHTE MPH JIF00OM
MaJloM e, TO3TOMY KoJIeOaHHs SBISIOTCS MapaMeTPHYECKIMU.

a=,|-

29
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IMABEJI KPACUJIbBHKOB

Ecnu M3MeHHTh 4acTOTy (@ TakuM 00pa3oM, YTO PE30HAHCHAs pacCTporka
CTaHeT OTJIMYHOW OT HYJIs, 30HAa DKCIOHSHIIHMAIFHOTO pOCTa KOJEOaHWH COXpaHHTCS,
BMECTE€ C TeM, IOSABUTCS 30HA OrpPAaHMYEHHOr0 HM3MEHeHus « . [leiicTBUTENBHO, U3
unHTerpaia (39) ABCTBYET, YTO B Cllydae

4A

TENE (40)
(3-A)e|’

aAMIUIATYZId (f CTPEMUTCS K OECKOHEYHOCTH Npu @ — @ , TIpU YCIIOBHM, YTO 3HAYECHHE

6° BBrUHMCISICTCA 11O hopMyIIe

_4A
e(A=3)

Ecnu HCPAaBCHCTBO (40) BBITIOJIHACTCA C IMPOTUBOIIOJIOXKHBIM 3HAKOM, KOJIeOaHHs

cos @' =

HAMEIOT OTPaHMYCHHBIN XapakTep, Tak Kak KO3(QQHIHEHT, CTOSIMHA Tpu o’ B nesoit
qacTu uHTerpaa (39), OTIIHYeH OT HyJIsl IPH JTFOOBIX 3HAYSHHsIX @ H €.

DNeMeHTapHbI aHallM3 MOKa3bIBaeT, 4TO HepaBeHCTBO (4(0) SKBHBAIEHTHO
HEPABEHCTBY

2—(1_6) <w< 2—(1+e),

4—e 4+e

OIPEACIISAIONIEMY 00TaCTh MApaMETPHUYECKOTO PE30HAHCA.

BTopoe npuéukeHne MeTOAa yCPeTHEHUS

Hccrenyem kose6aHus CIlyTHHKA BO BTOPOM MPUOJIIDKEHUE METOA YCPEIHCHHUS.
Yrtobel mpuBecTH ypaBHeHus (38) k craHmaptHomy 1o bBoronro0OoBy BuUIy, BBEIEM
JIOTIOTTHUTENbHEIE TIEPEMEHHBIE Z,l/ TI0 hopMyIte

2=0-y, y=Av
Tornma ypaBHenus (38) mpumyT BUA

da 1 . 2+ +v d 2 +y+v d
—= ——F(a,z,w,V)smi, = ——F(a,z,y/,‘/)cosi, &V ef
dv 0] 2 dv aw 2 dv
rae
Z+Y+v
F(a, Z,W,V) = f(a,L’V)
[Monaras BexTop cronber x paBHBIM (&, Z, l//)’ , IpeoOpasyeM 3TH ypaBHEHUS K
CIIEIYIOILLIEMY BHIY:

dx
— =X, +&X,, +e’X,,
dv

3mecs  OpuHATHL  ciefylomue  obosHaueHus (yron @ =(z+WY+V)/2

HCIIOJIb30BaH JId COKpAIICHUSA 3aHI/ICI/I)Z
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2asin1/sin¢——ﬂ sin 2V — o cosV cos ¢ |sin ¢S pt
(@ —1)
. . 12u .
Xy = 4s1n1/sm¢—a e sin 2v —2@cosV cos @ |cos @5 pt|,

B

. 3
—Q{a cos @+ 4/128111 V} sin @5 pt
6 o -1

@ 4usiny ’
X, =|[-—| acosp+ cos @S pt
20 30!|: Q o —1 :| Pop

0

[ 4u01+2u)
cos —a)(a)z—l)

sinV + @wa cos ¢j —asin2vsin ¢} sin @5 pt

Xy, =|l| cos™ Msinv+2a)cos¢ —2sin 2vsin ¢ |cos @5 pt
aw(w —1)

0

[IpoBens ycpennenne >Tux ypaBHeHHH ([16]), comeprkamux JBa HE3aBUCHMBIX
MallbIX Mapamerpa e,€, TOMy4HM YCpPEIHEHHbIE ypaBHEHHS BTOPOrO NPHOIMKEHHS,

3aBHCAIINAE TOJIBKO OT OJHOI'O MaJIOIr'o ImapaMeTpa e .

dg _ e .
o 4((o 2)Bsiné,

2 2 2 2
ﬁ=A—E(a)—2)cos€—w{ﬂ—+%}—e—{w—m} @1
dv 2 8§ (w-1) 2 8

3neck [ =éeq, @ =z+Y -- pe3oHaHCHas (a3a.
VpasHenus (41) nomycKkaroT HHTETpaT
F(B.6)= B (1967¢” +18 8> +144eA cos O —432¢cos §—5T6A)=C  (42)

Paccmorpum cmydait  crpororo pesonanca: A =0. Torma wunrerpan (42)
YIPOCTUTCS:

G(B.6)= B (1967¢” +188> —432ecos §) = C
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IMABEJI KPACUJIbBHKOB

Cremyer pa3nudath JBa NPUHIMIHAIGHO Pa3HBIX CiTydas Konebanuid. B mepBom
cllydae BBIpa)KEHHE, CTOsIee B CKOOKaxX, OONbIIe HYINs NpU JIFOOBIX 3HadeHHsX 6 wu,
CIIeIOBATENbHO, & MOXKET MEHSTBCS HEMPEPBIBHBIM 00pa3oM OT —o0 JI0 +oo, IPH 3TOM
ammmryga [ Oymer orpaHMdeHHON (GyHKIMEH pe3oHaHCHOH (asbl, (ha3oBbIe KPUBbLIC
HE3aMKHYThl. Takoe IOBEIEHHE DEIIEHUH YCPEIHEHHOH CHCTEMBI BO3MOXXHO TOJBKO
TOrza, Koraa

2

1967¢"—432¢>0

T.e. IIpU

432
e, =——
1967

Bo-BTOpOM Cilydae BeIpajkeHHE, CTOSIIEE B CKOOKAX, MOXKET 00paliaTsCsi B HOIb
NpY HEKOTOPBIX 3HAYEHUAX &, 4TO OTBEYaeT HYJIEBOMY 3HAYEHHIO MOCTOSHHOH C .
IosiBisirorest 06:1acTi Ha (Ha30BON IUIOCKOCTH, COACPIKAIIME MOIOKCHHS PABHOBECHS H
3aMKHYTBIC TpaeKTopud. Takum 00pa3oM, xapakTep KoaeOaHHil YCIOXKHSICTCS, TaK Kak
Hapsily C YHCTO BPAINATCIBHBIMH JABMKCHHSIMH MPEIBIAYIIETO CIydas MOSBIISIOTCS
MEPUOMYECKHE KOICOa s

Jnst moctpoeHust (a3oBOro moprpera HEOOXOAMMO HAWTH BCE MOJIOKEHHS
paBHOBecust ypaBHeHuit (41). Ilpomie Bcero 3TO CHeiaTh, €CIHM  BOCIONB30BATHCS
Teopemoil Payca, KoTOpas YTBEpXKIOAaeT, 4YTO €CIM MEPBBIi HHTErpan ypaBHCHHIH
JIBIDKCHHSI IPHHUMAET HEBBIPOXKACHHOE CTAL[IOHAPHOE 3HAYCHHE B HEKOTOPOii TOUKe (Ha
HEKOTOPOM MHOT000pa3uH), TO 3TO TOYKA MPEICTABISECT COOOM MOIOKEHIE PaBHOBECHSI
crcTeMbl (MHTErpaibHOE MHOTOOOpa3He).

Ycnosus crauuonapsoctr Gynkunn G(f3,6) umeror Bux

e>

€,

9G B(728> —864ecos§+3934¢” ) =0
B 43)
3—(; =432f%esinf=0

Ortcrozia creyer, 9to

6 =2kn.p = 126—@62
3uauenns 6 = (2k+1)7r MBI oTOGpackiBaeM, MOCKONbKY WM OTBEYAeT KOMILTEKCHOE
3HaYeHHe aMIUNTY/bL. OUEBH/IHO, YCIOBHE CYIIECTBOBAHNE [3 3a1aeTcs HepAaBEHCTBOM
e<e,.

U3 ypaBHeHuit (43) Tarkke CIEIyeT, YTO YCIOBHIO CTALMOHAPHOCTH (DYHKIIMH
G(f,0) ynoBnerBopseT HylIeBOe 3HAYGHHE AMIUIMTYABI [3. DTO 3HAYHT, HTO

mHoroo6pasue 3 = 0 sBIACTCS MHTETrPATBHBIM.
Ha pucynke 5 n300pakeH (ha3oBblil OPTpeT KoneGaHWH B IepeMeHHBIX [3,0.
JKupHbim
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[

NN\

[ b

Puc. 5 ®a3oBsIit mopTper npu pe3oHaHce 2@ =1 1 ciiydaeB e<e, U €...e,

YepHBIM [BETOM BBIJENEHA cenepaTpuca, orBedaromas 3Hadennto C =0. Ee
IapaMeTpHYecKoe IpeCTaBIcHHe clenyer u3 uurerpana G(f5,0) =0:

1967

2
e

B(0) ==,[24ecos O —

Otrcrona BBITEKaeT, YTO MaKCHMajbHas aMIUIUTyla KoJeOaHWd B 30HE JMOparmu
BBIYHCIISIETCS TIO popmyIe

\432¢-1967¢°
IBmax (e) =
V18
HecoxHO HaiiTH CTAlMOHAPHYIO TOUKY STOi QYHKIMH U 3HAYEHHEe MaKCHMyMa B Heif:

36+/3934

C =B (e.]2)="—"""—""=1.14793
IBmdx IBmdx( ) 1967

HNuterpan G(f3,6) = C 1no3BOIseT HCCIeIOBaTh JBONIOLMIO KOTEOaHMIl MpH

W3MCHCHUHU TIapaMeTpa e. Pacuetst MOKa3bIBaXOT, 4YTO MNpPU MaJIOM 3HAYCHUU
OKCHCHTPHUCUTETA MOABJIIACTCA 30HA MNEPUOAUYCCKUX L[BI/I)KGHI/Iﬁ BONIM3H OCH IB =0 c

MaKCHMaJIbHOW aMIUTHTY/ION KOJIeOaHui ,Bmax. ®da30BbIii MOPTPET KOJICOAHUH UMEET BUJI,
M300paKEHHBIA Ha JIeBOM 4acTH puc. 5. [Ipu yBelWYeHHH e BBICOTA 30HBI KOJIcOAHHI
BO3pAcCTaer, IOCTUrasi MaKCHMyMa ﬂ:m mpu e =e, /2. [locnenyiomee Bo3pacranue
SKCLEHTPUCUTETA BEAET K €€ YMEHBLIECHUIO BIUIOTh O HYJIEBBIX 3HAUCHUU NpU € =e¢,.
3oHa JUOpalMK KWCYE3aeT U MPH ¢ ...e, MOPTPET KoieOaHWi MpeNCTaBlIeH Ha MpaBoi

TOJIOBHHE pUC. 5.
®dazoBbie KpHUBBIE ypaBHEHHH (41) OMUCHIBAIOTCS] paBEHCTBOM

33
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\/43260050—196762 +\/(43260059—196762)2 +72C
B©6) == g ,

cnexpyromnym u3 unrerpata G(f3,6) = C. Otciona sSBCTBYeT, 4To M3MeHeHne 6 Ha 2k

(44)

pajMaH COXpAHsCT 3HAUCHIE aMIUIUTYAB! [3, MOITOMY CIIydail MOHOTOHHOTO H3MCHCHIL
6@ (cM. He3aMKHYTBIC KPUBBIC HA PUC. 5) OyJeM paccMaTpuBaTh Kak MEPUOTUUCCKUMN, TaK
KaK yKa3aHHBbIC TPHPAILICHUS MO0 @ COXPaHSIOT 3HAYCHHS MPaBhIX YacTeill ypaBHEHHI
(41) 1 MBI OKa3bIBAEMCS B TEX K€ YCIOBHSAX, YTO M B HAaYalbHbIH MOMEHT V =0 (Ha
WJIHHAPUYECKOH  (Aa30BOM  TMOBEPXHOCTH € JIOKAIBHBIMH  KOOPJHHATAMHU
B,6(0,, 6 <2x) xpussie = [3(6) GymyT 3aMKHYTBIMH).
BepHeMcs K TIepeMeHHBIM J, O , 3aBUCAIINX OT B.6:
O+v  de 0+v  de

. , .
J = fcos +———sinv, & =-pwsin +———cosV (45)
o -1 -1
OueBHIHO, YTO MHTErpaibHOMY MHOrootpasmio =0 orTBedaer 27 --MEPHOAUIECKOE
peIIeHnue
4e .
d=———sinv, & =——cosv, (46)
o -1 o -1
CTalMOHapHBIM ToukaMm @ = 2k7T, = 8 - 47 -- NephoMHecKue peleHus

de
a)Z

S=-D'p cos%+ 1sin v, & =D ,B*a)sin%+ .

e
cosv,
1

JIBIDKEHHUIO B10JIb cenepaTpuckl C = () -- 1BOSKO aCUMIITOTHYECKas K (46) TpaeKTOpHs.
Onnomapamerpuaeckomy cemeiictey = f(6,c),c = f(0) nepruomugeckux
penrennii u3 o6nacTH TUOpAIMK OTBEYAIOT KBasumepuomudeckue bynxuun O(V),d (V) ,

3a WCKIIOYEHHeM Cilydas CYIISCTBOBAHHS PAIl[HOHAIBHBIX COOTHOIICHHH MEXIY
nepuopoM T'(c) yKa3aHHOrO ceMelcTBa M MEePHOAOM H3MEHeHUs pyHKuuit (45) 1o sBHO

BXOL[S[H.IGMy aprMeHTy V. 3TO COOTHOIIICHHUE UMECT BHU
T(c)=L 4z, (47)
q

TIe p,q -- B3aUMHO IIPOCThIE YHCIIA.

[Ipy BBINOJIHEHWH 5TOTO PAaBEHCTBA TepeMenHsie O,0 Oynyr 4pr --
neprofMYeckuMH QYHKIMAMH V. YuursiBas, 4To cemeiictBo [ = fB(6,c) sBusercsa
mimysoBckuM  (uHTerpanl  G(f3,6)) TONOXUTENBHO ONpPENCICH B  OKPECTHOCTH
0=2krm,f=/ npn e<e,), MOKHO BOCIOIb30BAThCS H3BECTHOI (OPMYIOH s
Bruancienus neprona T'(c). Torma us pasercrsa (47) maxonuM S(0) = ¢, uHTerpuUpyem
ypaBHeHus (41) ¢ HAUAILHBIMHU YCIIOBHAMHU ,3(0) =c, 6(0)=0, moxcrapiss HaljneHHBIE
peutennit S(v),0(v) B dopmynsl (45), nonyuum 4px -- nepuomuueckue (GyHKIHH
oW),5W).
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Cityyait MOHOTOHHOrO YOBIBaHMS € WCCIEAYeTCs MOXOKUM obpasom. Ilyctsb
T (C) -- npomexyrok usmenenus vV (C -- MOCTOSHHOE 3HAYECHHE MEPBOro MHTErpaja
G(f3,6)), no ucredennn KOoToporo yroa @(V) HOIyd4UT HpHpalleHue, paBHoe (—47T).
Torna, ecm T (C) xpaten 47, 10 O(V),5 (V) -- 47 --nepuonnueckue QyHKIMA V .
Taxum 06pa3oM, YCIOBHE TIEPHOANIHOCTH PEIICHAI eCTh

T(C)=4kx

nipu yenoBuy, 4to T (C) BeMHCISIETCS 110 HOpMyIe

- :“‘I” deo

2 2 > —,
0 A_e(a)—z)cose_a{ﬁ(e)Jrj‘ez}_e{w_(ww}
2 8 (0" —-1) 2 8

BBITEKAfOLieil U3 ypaBHeHuil (41) mocie pasmenenus mepeMeHHbIX. 3neck [(6)

BhIUHUCIsIeTCs o popmyrie (44).
IMockonbKy B 00JIaCTSIX MOHOTOHHOTO M3MEHEHUsI @ XapaKTepHBIN pa3Mep yriia
[ cocraBisieT BeIMYHHbBI IIOPSIKA SIMHHMIIBI, 3 PABEHCTBA (45) clielyer, 4To 3aMKHyTas

/ /
(azosas kpuBas O = O (J), YAOBIETBOPSIONIAs YCIOBHIO TIEPUOIMYHOCTH, OIU3KA MO

(bopMe K 3ILTUIICY

52 5’2

—+——=1

B (Boy

Teneps MOKeM CIENATh BBIBOABL MICClenoBaHue MaNbIX KoleOaHui HAa OCHOBE
00OOIIEHHOr0 METO/ld YCPEIAHEHUs C HE3aBUCUMBIMH IapaMeTpaMH JIaeT MOJHYIO
HHPOPMAIMIO O KOJEDAHHAX CIyTHHKA B TEPBOM W BTOPOM IPUOIMKEHHH METOJA
yepenueHus. TOYHOCTh MPHUONKEHHUST €CTh BEIMYMHA BTOPOrO MOPSIAKA MAJOCTH IO
MaJIbIM TIapaMeTpaM Ha AaCUMIITOTHYECKH OONBIIEM MPOMEXYTKE BPEMEHH MOPSIKA
1/P(u, €)P B ciyuae pesoHanca @ =1 u Ha npoMexyTke BpeMeHu nopsiaka 1/P(e, €)P

npu pe3oHaHce @ =1/2. Pe3ynbraThl HccienoBaHni CBOOOIHBI OT PEIYKIMH, COIEPIKAT
JIOTIOJHUTENBHYI0 MH(pOpMaNuio (B CpaBHEHHH C KIIACCHUECKOH CXEMOH yCpemHEHHs) O
BIIMSTHUM MaJIOTO TIapaMeTpa £ Ha XapakTep KoieOaHWil mpy pe3oHance @ =1.
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Abstract. Starting from the idea of classical Lagrange method of variation
constants for solving non autonomous linear differential equations describing
forced vibrations of linear oscillators, in this paper a generalization of
Lagrange method of variation constants in combinations with averaging
method for solving nonlinear differential equations describing free and forced
vibrations of fractional order nonlinear oscillators, with small nonlinearity is
presented.

Key words: generalization of Lagrange method of variation constants;
fractional order derivative, nonlinear terms; particular solutions; fractional
order nonlinear oscillator; fractional order like cosines mode; fractional order
like sinus mode; average values; slow changing; fast changing; full phase.

1. INTRODUCTION

The main idea is to develop a generalization of the method of variation
constants that is inspired by classical Lagrange method of variation constants for solving
non autonomous linear differential equations describing forced vibrations of linear
oscillators for the case of arbitrary external excitation force. A classical Lagrange
method of variation constants is presented in classical monograph university book [1]
Theory of Ooscillations written by Raskovi¢. Also, the same mwthod is presented in
References [2] and [3]. In these cited references Lagrange method of variation constant
is presented for solving the following linear non autonomous differential equation:

ir)+ apx(e) =hf (1) (1)
describing linear forced oscillations under an arbitrary external excitation depending
only on time in the form F (t ): F.f (t ) = mhf (t ) Particular integrals of

homogeneous linear differential equation jé(t)—f- a)g x(t ) =0 are T, (t) =cos@y and
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Tz(t)=sin )yt , where @), is eigen circular frequency of free harmonic oscillations.

Solution of the linear non homogeneous differential equation (1) is proposed in the form
of sum of products between particular solutions, 7 (t) =cos @yt and Tz(t) =sin ayt , of

linear autonomous differential equation and amplitudes:

x(r) = C(t)cos apt + D(t)sin yt 2)
where amplitudes C (l‘ ) and D(l‘ )are functions on the time, under the condition that
first derivative of this solution is the same as in the case that amplitudes C (t ) and

D(l‘ ) are constants. In reference [1] solution of linear no autonomous differential

equation (1) is presented in the form:

x(t)= C, cos yt + D, sin wyt + e I f(z)sina,(t—7)dr (3)
a)() 0

For initial conditions: at ¢ =0, initial elongation x(0)= X, and initial velocity

x(O) = X, previous solution is in the form:

. t
x(t) = x, cos ayt + 20 gin TONES e I f(z)sinay,(r —7)dr “)
a)() w() 0

In the same Reference [1] for the case that linear no homogeneous differential
equation is in the form:

%(2)+ 28(r) + af x(r) = f (¢) (5)
describing linear forced oscillations with energy system linear dissipation under
arbitrary external excitation depending only of time in the form
F (I)ZFOf(t)thf(t). Particular integrals of homogeneous linear differential
equation ¥(¢)+28k(r)+ @ x(t)=0 are T;(t)=e* and T,(t) =™, where A.i=12
are eigen characteristic number of free damped oscillations and roots of system
characteristic equation 2,2+2§7/ + a)o2 =0. Roots of system characteristic equation

depending on the relation between ¢ and @, are 2,1’2 =-0F 1/52 —a)g , for
o> @, or 21’2 =—0F i\/a)g - ,i=+/—1 for o< @, . Solution of the linear no

homogeneous differential equation (5) is proposed in the form of sum of products
between particular solutions, Tl(t) =e* and Tz(l‘) =¢® of linear autonomous
differential equation and amplitudes:

x(t)=C(t)e™ + D(t)e™ (6)
where amplitudes C (t ) and D(t )are functions of the time, under a condition that first

derivative of this solution is same as in the case that amplitudes C (l‘ ) and D(l‘ ) are

constants. In reference [1] solution of linear non autonomous differential equation (5) is
presented in the form:
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h t t
$(1)= Ce™ + Dy + FER e[ flek=Par| @)
el {

For the case that O < @, when eigen characteristic numbers are conjugate complex

21,2 =—0Fiy a)(f -8 i=+-1, previous solution take the following form:

x(t)=e™* (C0 cos pyt +D,sin pot)+ N I f(T)e"‘S(H) sin p, (t—7)dr ¥
P,

00

where p, = a)j -5,

2. EXTENSION OF THE LAGRANGE METHOD OF VARIATION CONSTANTS FOR SOLVING
NON HOMOGENEOUS FRACTIONAL ORDER DIFFERENTIAL EQUATION DESCRIBING
FORCED OSCILLATIONS OF THE FRACTIONAL ORDER OSCILLATOR

First, we should point out very comprehensive review papers [4-6] written by
Rosikin and Shitikova, containing review and results achieved in the field of
supplementing fractional order derivative in mechanics. From these papers and personal
literature search, we can conclude that the results presented here are original and new.

Let’s extend the Lagrange method of variation constants for solving non
homogeneous fractional order differential equation describing forced oscillations of the
fractional order oscillator. Then, we start from non homogeneous fractional order
differential equation in the following form:

(1) + @i xle) + @D [x(e)] = hf (1) for 0<a<1and @ #0 ©
describing fractional order forced oscillations with energy system fractional order
dissipation energy and under the arbitrary external excitation depending only of time in
the form F (t)= Ef (t)= mhf (t) Previous fractional order differential equation

contain term with fractional order derivative, where & 1is fractional order number
between zero and unit, 0<a <1, and sr”’[O] is a differential fractional order operator

defined by expression:

el 4@ 1 d (o) (10)
D7 [x(1)]= e r(l—a)Zl(,_T)adT

where 0 <a <1 is defined by material fractional order properties as a constant, and

C C S .
a)02 =2 a)j, =—% | ¢, and c, are material rigidity constants and m .is mass of
m

the oscillator.
Solution of homogeneous ordinary fractional order differential equation:

$()+ &2 x(t)+ @’®%[x(t)]=0, for 0O<a@ <1 and a#0 (11)

is in the following form (see References [7-13]):
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_27t

- k ok 2k S
e S are SN

k=0 j=0
oo k(k w—Q./t—aﬂ
+x 1 w2kt2k+] i a
) ZU @ 'T(2k +2- )
for 0<a<land a#0 (12)
or in the form:

x(t,@)==x,T. (t.a)+ x,T, (), for 0< <1 and o #0 (13)

cos sin

where T ( ) and T, (t,a)particular solutions of fractional order differential

Ccos sin
equation and fractional order modes cosines like and sinus like modes of corresponding
fractional order oscillator with one degree of freedom, in the form:

2/ -
T, (t kgt ! 14
cos( a) kZ(; C() Z[ ] Z/F 2k+1 ag) ( )
oo 72/1, aj
T (o)=Y (- 2k 241 15
(R ;( ‘@] ZU i 2-) (15)

and x, = x(O) and X, = x(O) integral constant determined by initial conditions.
These modes are quasiperiodic cosines like and sinus like modes with equal half period
of oscillations for for 0 < @ <1 (approximately equal from approximation of solution)

and degreasing amplitudes with time for 0 <@ <1 and & #0.

For solving non homogeneous fractional order differential equation (9) solution
is proposed in the form (13) where TCOS( ) and T, (t ,0{) are particular solutions of
homogeneous fractional order differential equation (11) and fractional order modes

cosines like and sinus like modes of corresponding fractional order oscillator with one
degree of freedom, in the form (14) and (15) , but integral constants x, = C (t ,a)
and X, = D(t,@) are function of time:

x(t,a)=C(t, )T, (t,a)+ D(t, )T, (t,x) (16)
First derivative X(f)and fractional order derivative D [x(t )] for 0<a <1 and
a # Qare proposed same as in the case that constants, now function time are
Xy = C(l‘, 0{) and X, = D(l‘, 0{) are constant, and on the that basis we can write:

ilt,a)=Ct,a)T, (t,a)+ Dt )T, (t,c) (17

o [x(.a)l=Cl.a)? [T, (n.a)l+ D) [1,, (1. 2)] (18)
under the following conditions:

Cta)l, (t,a)+ D, )T, (r,a)=0 (19)

et 2, (t.a)+ DI, (1.a)=0 (20)

Previous condition (20) must to be satisfied, and in boundary condition for
a=1 and a #0, is same as (19).
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After introducing proposed solution x(t, 0{), by (16) and corresponding
derivatives, first derivative x(f,&), by (17) and fractional order derivative
D [x(l‘, 0{)] for 0<a <1 and @ #0, by (18), and second derivative

ita)=C(t, @)l (t,a)+ D(t,a)T, (t,0)+ C(t, )T, (t,0) + D(t, )T, (1, x) 2D
into non homogeneous fractional order differential equation (9), and taking into account
that particular solutions TCOS( ) and Tsm( ) identically satisfy the following
conditions:

(s, 0:)< (ha)+@T, (1 o)+ @[T, (¢, 0:)]> =0
D, a)< (o) + T, (o) + kDT, (¢, 0:)]> 0
third condition is obtained in the following form:

Ct, )T, (t,@)+ D(t,)T, (t,0t) = hf (¢) (22)

Then determination of unknown functions: C (t ) and D(t ) is defined by three
conditions: (19), (20) and (22). This system is along first derivative of the unknown
functions: C (t ) and D(t ) Determinant of this system is:

A(t’ a): Tcos(t’a .sin (t’a)_j;in (t’a .cos(t’ 0{)7& 0 23)
And solutions of the unknown functions - amplitudes C (t) and D(t) are in the

following forms:
[ /), ()
Clt,a)=C,—h|——F"<—d
(t 0!) 0 I A(T 0() 3
Dta)-D, +th o), (24)
Alr.a)
Solution of the ordinary fractional order differential equation (9) is in the
following form:

T

o\, (.@)T, (t,0)-T, (r.a)T, (1.)] ir (25)
1.z, (r,a)-T, (t.@)T. (r.0)

cos sin sin

Taking into account that A(t’a)zT (o), (t,a)-T, (t.a)T, (t,a) 20 is

cos sin

x(t,a)=C, T, (t.a)+ DT, ( ta+h.[f

cos

slochanging function approximate calculation is possible to take for determinant of the
system the following form:

A(t,a):%((l—a)A(t a=0)+aA(r,a=1)) <1 AN + @ +oe |} ——w >¢O

3. EXTENSION OF THE LAGRANGE METHOD OF VARIATION CONSTANTS FOR SOLVING
FRACTIONAL ORDER DIFFERENTIAL EQUATION WITH NONLINEAR TERM DESCRIBING
NONLINEAR OSCILLATIONS OF THE FRACTIONAL ORDER OSCILLATOR

3.1. For approximately solving nonlinear fractional order differential equation
as it is:
i)+ @ x(t)+ 2D [x(t)] = 2 (26)
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and

~4
Po)+oipl) @ lpll= oip, ~ar@lolegi T 27)
P
or in the form:
£(0)+ 02xl(r)+ @22 [x(0)]= £ef (x) for 0<a<land a#0 (28)
containing term with fractional order derivative, where & is fractional order number
between zero and unit, 0 < @ < 1, and sr“[o] is a differential fractional order operator

defined by expression (10) and *+ &f (x, x,)@ta [x(t)] is nonlinear function and £ small
parameter, it is possible to use combination of the Lagrange’s method of variation
constants and averaging method. For beginning, as in the previous part we use
particular solutions Tcos(t,a') and T, (t,a') of the homogeneous fractional order

differential equation (11) defined by (12) and approximate solution is supposed in the
form(13) in which constants C (l‘ ,0() and D(l‘ ,0{) are time functions. Using same

approach ad in the previous part first derivative )'c(t)and fractional order derivative
D7 [x(t)] for 0< @ <1 and @ # 0 are proposed same as in the case that function of

time, C (t,a) and D(t,a), are constants, and on the that basis we can write first

derivative in the form (17) and fractional order derivative in the form (18) under the
following conditions (19) and (20) as in the previous part. After introducing proposed

solution x(t,a’), by (16) and corresponding derivatives, first derivative )‘c(t,a'), by
(17) and fractional order derivative ®*[x(r,&)] for 0< @ <1 and @ %0, by (18),

and second derivative in the form (21) into non homogeneous fractional order
differential equation with nonlinear term, presented by (28), and taking into account that

particular solutions 7T} (t,a') and T, (t,a'), identically satisfy the homogeneous

cos Sin
fractional order differential equation, as in the previous part, the following three
conditions :
()., (o) + 2Dl (a)=0 for <@ <1and a#0
Cta)l, (t,a)+ D, )T, (t,a)=0 (29)
C(t’ a 'cos (t’ 0,/) + D(t’ a 'Sin (t’ 0’/) = iéf(c(t’ a)’ D(t’ a)’ ]::Os (t’ a)’ T;in (t’ 0’/))

are obtained for determination of the unknown functions: C (t,a’) and D(t,a'). First
derivative of the time functions C (l‘ N4 ) and D(l‘ N4 ) amplitudes of the

C(t,a):is# f(ct,a).D(t,a)T, ()T, (1,a)T, ()

A ( t, a) cos sin

f(cl.a).D(t.a) T, (1.a). T, (1.a),,(.a) (30)

cos

. 1
D(t, a) = igm

where determinant A(l‘, 0() is in same form as in previous part defined by (23).
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In obtained previous system of nonlinear differential equations along first
derivatives of C(t,a) and D(l‘,a), we separate slowchanging functions and fast

, T
changing function along one half period — = of corresponding
o+
1 1 1 1 amort 7[ 7[
harmonic oscillations for & =0 or for one half period —%* = — = —1 of
roe- el
4

damped linear oscillations. Slowchanging functions are C(t ,0!) and D(t,a),and
determinant A(t,ar)=T, (1, )T, (t,)-T.

cos sin

oscillatory functions are: f (C(t,a’),D(t,a’),T (t,a’),Tsin (t,a’))Tsin (t,a’) and

cos

f(ct a).D(t, )T, (t.a)T, (t.a)T, (t,a) . It is visible from numerical

Ccos cor

(t,a)T(t.a)# 0. Fast changing functions as

analysis and graphical presentation ( see graphical presentations in Appendix) as well as
from supposition that function f (C (t, o ), D(t, a),T (t O ),T (t, o )) is also an

cos sin
oscillatory function.
As period of harmonic oscillations is shorter, then for one period of harmonic

. o 27 27 .
linear oscillations, Tharm =————=—— for & =0, we can take averaging of
Jo+w, O

functions at right sides in system (30) along a period of harmonic oscillations, taking
~ ~_ [ 2 2 . .
full phase <1>(t): wt, where W =+/@, +®, , circular frequency, and in interval

<1>(t )E [O,Z]Z' ] which correspond to period of T, . But, also, it is possible to take for

arm *

T
averaging integration a period of basic harmonic oscillations: To, harm — —— » When full

0
phase is ®(r)= @yt , in interval ®(r)e [O,Z]Z'], and also it is possible to take for
averaging, integration a period of damped oscillations: T =2l = 2z ,

amort
1
P el

when full phase is ®(r)= pr , where p= /(Uf _iw; ,in interval ®(t)e [0,27Z'] .
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Fractional order modes TCOS( ) and Tsm( ) are particular solutions of

aa

fractional order differential equation (11), and quasi periodic with half period , for

0 <a <1, ininterval: M < T < Tonpries , or

2 27 2 rw) ;T"w

Then for one of the possible averaged approximation of the solutlons for

integral constant — time functions C (t N4 ) and D(t o ) for the case of fractional order
differential equation with nonlinear term (28), we can made averaged values of

functions f(C(t,a’),D(t,a’),T (t,a’),T. (t,a’))T (t,a’) and

cos sin sin

f(ct,a).D(t,a).T, (t,0).,T, (tr,))T (t,c) in the right side in the system of

cos s cor

differential equations (30) for one of the period T, , for 0 < <1 of the fractional

order differential equations depending of @ and in interval ®(¢ [0 2z ] Averaged
values  of functions  f(C(r,a@).D(t,). T, (t,),T. (t,@))T. (t,cr) and

cos s s

f(C(t,a’),D(t,a’),T (t,a’),T (t,a’))T, (t,a') in the right side in the system of

cos sin cor

differential equations (30) along full phases <1>(t): @,!, in interval from zero to
T

harm

=27, or @, T =2zror w,, T, =27 or pT =27, depend of

0.harm aa ~oo amor

value 0 <@ <1. Then, taking into account that functions C(f,&) and D(r,) are
slowchanging, as well as determinant A(r,@)=T, (t.@)T, (t.)-T,, (t.@)T., (t.c) # 0,

cos sin

and that functions 7, ( ) and T, (t a) are fast changeable the action of averaging

cos sin

in corresponding interval <1> [0 27 ] along full phase <1>( ) ,t, we take that
functions C (t N4 ) and D(t N4 ) as slowchanging are constant in relation to the action
of averaging, and integrating, along corresponding full phase q)(t): @, !, system of

averaged differential equations is possible to write in the following form:

c‘(w):ngmf(c(z,am(z,a>,nos(¢(z>,a>,nm (@) )1, (@(e). aklr)
D(m):ingﬁf(c(z,axD(z,a),nos@(z),a),nm(¢(z>,a))nos(¢(z),a)d¢(z) SR

where
&)=, t for 0<a <l

> 2k w;z g [(b(t )]70# wg;
)=t () Z[ ] @' T(2k +1- ) 42

k=0 mx
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r o)) Zislop 3| SO

= - =\ Jj) @0 T(2k +2-0j)
Ata)=T, (1), (t,a)-T, (t.a)T. (r,0) # 0 Slowchanging function  (34)

cos s
Taking into account that determinant (34) is slowchanging function, the
corresponding approximate system of averaged differential equations is possible to write

in the following form:

)=l S el e, (@00)a) 7, (007 (@)l

Bla)=+5 LT fct.a)nb.a)lr, @0a T, @0, @6 G

27 Alt, @) )

3.2. Using the same approach as in the previous part, applying generalized
Lagrange method of variation constant and method of averaging along full phase to the
following fractional order differential equation with a nonlinear term depending of
coordinate and first derivative of coordinate, in the following form:

#(0)+ oix()+ @21 )]=tef ()  for 0<a<land @ #0 (36)
it is possible to obtain approximation of the solution in the form (16) in which
amplitudes C (t N4 ) and D(t N4 ) as time functions are determined by the corresponding

approximate system of averaged differential equations, which is possible to write in the
following form:

)=l el D)L (B0, (B0l @)l (B0 1 (B0l

2z

B2 £ L TrlClalpha . 0@ (P0a) . (oLl (Ghhalr (o0 aiol)
37

where
> 2k-1 (2k —aj)w, ZI[CI)( N o Dy 38
=2 z,fx ot 3] Zfr(zk+1—og) o

ki(l < folp 3 1| P U ek o

g, P 2T (2k +2 - aj)
Ordinary fractional order differential equations with nonlinear term * & (x)

(28) and *&f (x, x) (36) present nonlinear, fractional order oscillator in state of free

fractional order oscillations, containing a mass particle with one degree of freedom
coupled by a standard light fractional order element and a parallel nonlinear elastic
spring in first case (28) and with one additional parallel nonlinear dissipative element in
second case (36). Both cases are very important for engineering practice and
investigation od engineering system dynamics.
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4. EXAMPLES

Example 1.

For first example, we can take fractional order differential equation with
nonlinear cubic term:

£(0)+ @220+ 2D [x(0)]) = tew? x’ for 0<a<1and @ #0 (40)

Previous fractional order differential equation (40) described a fractional order
oscillator with small cubic nonlinearity. Physically this oscillator contain a mass particle
mass /7 moving along ideal horizontal line and with one degree of freedom defined by
coordinate X and coupled for fixed point by standard light nonlinear elastic and
fractional order element with constitutive force-dilatation relation in the form:

F, (03[0 )]) = co(0)F ey + ¢, 2 [x(0)]

E0 S )= n(ois)F s sz l)

C

> _ G 2 _Cy 2 _
where , @) =—, @,=— and W, =

N and ¢, coefficient linear elasticity,
m m m

¢, coefficient of nonlinear elasticity and c,and « coefficients of fractional order

properties.

Then, taking into account previous presentation of the combination of
generalized Lagrange’s method of variation constants and averaging method along full
phase for one period, we propose approximation of the solution in the form (16) in

which amplitudes C(t ,0!) and D(t,a), as time functions are determined by the

corresponding approximate system of averaged differential equations, which is possible,
according with (35) to write in the following form:

Clet) =% £ f(Cla, (000, DU (00 7, () ko)

2 2r

D(t,a) =+ [(Clt, @), (). @)+ D, @)Ty, (@), @) T, (@), )i (r) 42)

N
3
2
2

Sub-example 1.1.
For determinant A(s,a)=T, (¢, )T, (t,@)-T.

cos sin

(r,a)T (r,x) %0, we can take that

for @ =0 determinant of the system is in the following form: A(r,a=0)=a,

=4/ a)(f + a)j s because for a=0, particular solutions are:
os (t,a’ = O)Z cos@t and T, (t,a’ = 0)= sin@tt. We see that determinant

sin

a3

Alt,a=0)=@ is constant, and amplitudes C(l‘ ) and D(t) are, also, slowchanging

function of time determined by system of averaged differential equations first order in

the form (42) where full phase is taken in the form <I>(t) =, D= a)(f + a)j :
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C(t):-*—gw" I<[C () cos® @(r)+3[C(r)] cos? ®(¢)[D(t)]sin ®(¢) + 3[C(¢)] cos D(1)[D(r) sin> () + [D(¢)] sin® ®(r )> 1{cos D(1))

270
D(r)= i% I<[C(t)]z cos® ®(t)+3[C(t)] cos® D()[D(¢)]sin ®(¢) + 3[C()]cos®(r)[D(¢ )] sin® @(r) + [D(¢)] sin® <I>(t)>d<sin<1>(t)>
Taking into account that is:
2J{[cos3 @(¢)d{cos @(t)) =0 Jircos2 ®(¢)sin CI>(z)d<costI>(t)> - 2?”
fcos @(t)sin® (¢ )d(cos P(t))=0° .[sm ®(1)d{cos ®(t)) = %4”
fcos3 ®(¢)d (sin (1)) = 3;[ ’ f t)sin ®(t)d(sin d(t)) =0
ercos ®(r)sin> <I>(t)d<sin <I>(t)> = % > Ism D sm Dt )> 0

approximate system of averaged differential equations along unknown amplitudes
C(r,a=0) and D(t,cx=0), which are function of time, are determined by following

system of averaged nonlinear differential equations first order in the form :

Clea=0)=7 f“’N<[c(ta o) +[Dle.cx=0))[Dr.=0)]

Dlr.a=0)=+ <[C(ta O +[D(.a=0)F )lcl.a=0)] “3)

After transforrnatlon previous system of averaged nonlinear differential
equations first order (43) into:
_ Cl,w=0) D(t,a=0) _ e ) (44)
=~ + C 0 D(t,a=0
" [D(t,a=0)] [C(t,a=0)] 8@ <[ (a=0)F +[D(r.=0] >
it is visible that is valid the following relation
[C(r,a=0)] +[Dt.a=0)f =[Ct=0,a=0)] +[D(t =0, =0)f =al =const ~ (45)

From previous relation (45), we conclude that amplitude of nonlinear vibrations

in approximations is a02 = const constant , and equal to amplitude at initial moment.

a, =[Clt.a=0)} +[D(r,a=0)} =+[Clt=0,a=0)} +[D(r =0, =0)f =const (46)
Full phase of nonlinear vibrations in first averaged approximation is:

=0) . D\t,a=0

D=~D+ arctg Q =t +arctg Q (47)

Clr,a=0) Clt,a=0)
Circular frequency a)m,m’ =0 Of nonlinear vibrations in first averaged
approximation is in the form

~ + . d Dit,a=0

@, ina—o = P =0 +—arctg —( ) (48)
t Clr,a=0)

or
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D(t,a=0)C(t,a=0)-D(t,a=0)C(t,ar = 0)
(Clt,a=0))’ +(D(t,a=0))

and taking into account obtained relations (44) —(45)-(46), frequency of nonlinear

=P ~a+

wnanlin,a:()

vibrations finally is nonlinear function of amplitude as well as of initial amplitude @, in

the quadratic form:

) =d=~@p+t

nonlin,a=0 ~ 0

(49)

Previous result is known in numerous References in nonlinear mechanics as
well as in nonlinear oscillations, and obtained by different methods. One of source
method is asymptotic method of nonlinear mechanics, known as asymptotic method
Krilov- Bogolyibov-Mitropolsky (see References [14-23]).

Approximation of solution of nonlinear fractional order differential equation in
degeneration case to the conservative nonlinear differential equation, for @ =0, is in
the form:

x@zC@a=0ﬁm@a=m+D@a=0mm@a=m=qpm«®i3m&%}+5Q

for a =0 (50)
Sub-example 1.2.

For @ =1, determinant A(r,a)=T, (i), (t.a)-T, (t.a)T (t.2)#0 of the

system is in the following expression: Alt,a=1)= pe—Z«i:e-W2f wé—lw“ 20
’ 4 a

p= wj —lw; and, 20 = a)j, , because for @ =1, particular solutions are:

T (t,a=1)=¢¥cospt and T, (t,a=1)=e¢¥sin pt . We see that determinant

s

Alt,a=1)= pe* = o v @} —%a}; +0 is slowchanging function of time, and

amplitudes C(r,a=1) and D(r,¢=1), also, are slowchanging functions of time
determined by system of averaged differential equations first order in the form (42),

where full phase is taken in the form &(t)=pr, p= /a){f _1 Wt
4 @

2 27

C@z?f—@%Ik@azﬂf%m¢@+D@a:Dé%m¢@ﬂ”ﬁmM@@
T pe
2 27
D&:_;—aﬁaIk&a:Déaam¢@+D&a=Dé%m¢&Wé%mmw¢®
T pe

Clea=) =T = 4 plea= P [ol=1)
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D)= i%qc(z,a:l)r (a1 lct.a=1)] (51)

After transformation previous system of averaged nonlinear differential
equations first order (51) into:
_ Cla=1) D(t,a=1) +3(3(0;,(” N 5
= =+ Clt,a=1 D\t,a=1
FDlea=tl] [Can) " g (= Pla=f)
(52)
it is visible that is valid the following relation
[Ct,a=1] +[D(t,a=1) =[Ct=0,a=1)] +[D(t =0, =1)} =a’ =constr (53)

From previous relation (53), we conclude that amplitude of nonlinear vibrations

in approximations is aé = const constant , and equal to amplitude at initial moment.

a, =[Clt.a=1)F +[D(r,a=1F =4[Clt=0,a =1 +[D(r =0, = 1)} = const
(54

Full phase of nonlinear vibrations in first averaged approximation is:
D(r,a=1) - D(r,a=1) 55)

Clr,a=1) Clr,a=1)

,of nonlinear vibrations in first averaged

d~P+ arctg

Circular frequency @

nonlin,a=

approximation, for & =1, is in the form:

@D pinas =@ =p +jtarctggg”g:3 for a =1, (56)
or
_é- D(t,a:I)C(t,a:1)—D(t,a:1)C(t,a:1)
(Clear=1)) +(Dlear=1))
and taking into account obtained relations  (52)—(53)-(46), circular frequency
&'),mh.w:] of nonlinear vibrations, finally, is nonlinear function of amplitude as well as

of initial amplitude @, in the quadratic form, and elso og time:
. 2 24 2wk
&')nonlina:l:(izp+3‘5‘w7ag= w()z_lw; ikwid(?
| 8p 4 8p
Previous result is new, and is not known from literature, only from Reference
[24] as a result in solving nonlinear differential equation of dynamics of coupled two
oscillators, and also in Reference [25-26] as two pages extended abstract in ICTAM
2012.

(57)

Approximation of solution of nonlinear fractional order differential equation in
degeneration case to the conservative nonlinear differential equation, for @ = 1, is in
the form:

)= Cloa =17 (ca=1)+ Dlt.a =7, (r=1)=a &cos<[pz+*€f’65;a;]+&>o>

for ¢ =1 (58)

49



KATICA R. (STEVANOVIC) HEDRIH

or finally

716)&, 3ew? ~wlt - for @ = (59)
x(t)=ape 2 cos | 1, wj—lwginieaj +®,
4 > , 1oy
4

Some comments and comparison of the approximation of solutions. Some
comments are necessary. Previous obtained approximation (59) is approximation of
solution of the following nonlinear differential equation:

i)+ & x(e)+ @2x(r) = 2ew? x° for ¢ =1 (60)
obtained from fractional order differential equation (40) for & =1. One of possible

first approximation of this nonlinear equation (60) is known from numerous classical
books in nonlinear oscillations and nonlinear mechanics in the form:

s L lewpe” x 61
x(t):aoe"'cos<(a)0t+ gf)g’; a§j+¢>0> (61)

of free nonlinear damped oscillations is:

where circular frequency @

nonlin

2 20
D, =t ewye a; (62)
166

nonlin

and amplitude

o

alt)= a,e” (63)

but different them obtained heir. Then it is necessary to compare these two obtained
approximations of the same nonlinear differential equation and which two
approximations of same solution.

By using two asymptotic methods from References [14] and [19], and also their
proposed combination of the generalized Lagrange’s method of variation constants with
method of averaging and used in particular in References [24-27] starting from known

analytical solutions x(t) = R(t)eﬂi Cos(pt + ¢)(t)), P =4 a)g -0’ and
x(t)= a(t) cos[a)ot + ¢)(t)] , two same first approximations of the solution of

nonlinear differential equation (60) are obtained in the following forms:

3
x(t)=Re™” cos{pt F— f,laoz(e"w’ —1)+ CIDD} ford#0,e+0,

165
@ >8", p=\af-5 (64)

x(t)=a,e”® cos| wtF La),zvlaf (e’w’ —1)+ P | for 6#0,
166,
£#0, W, >8> (65)

for corresponding initial conditions. For the case that damping coefficient tends to zero,
from both first approximations (64) and (65), same analytical approximation of the
solution for conservative nonlinear system dynamics are obtained. For the case that
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coefficient of the cubic nonlinearity tends to zero, from first approximation of the
solution in the form (64) give known analytical solution of the linear no conservative

system dynamics in the following form: x(t) = Roe_’i COS(pt +Q, ),
for#0,6=0,0; >0, p=+@f -8 ,@, =0, but from the second

approximation of same solution form (65) obtained solution

- . e . . .
x(t) =aq,e COS(C()OI + 0(0) is not correct. This is visible that this expression is not

solution of the differential equation: X(t)+ 2&(t)+ a)gx(t)=0. Then we can

conclude that, starting different known analytical solutions, for obtaining first
approximations are acceptable, but limited by corresponding conditions. Approximation
of the solution of nonlinear George Duffing differential equation (60) in the form (64) is
better them (65) known from numerous literatures.

Comparison 1. Taking into account results presented for sub-examples 1 and 2
, and also form graphical presentation of the particular solution for O <@ <1 (see

Figures 1 and 2 in Appendix), it is possible both particular solutions 7 ( ) and

cos

T. (t,a) defined by (14) and (15), of homogeneous fractional order differential

s

equation (11) take in the form as in the case for & =1, T (t,a’ = 1)= e % cos Dt

and T, (t ,a = 1) =¢ % gin p,t » making the following comparisons:

Sin

o —21 -aj
2k 2k t e %t
(@)= C it — et e % osp t (66)
; ng( J @ T(2k +1- 0j) Pa
o k(k w—ZJt—Oa
t 0( _ 2k 2k+1 ( Ja ~ o 0 sinp,t (67)
; JZ[; j )@ T2k +2 - aj)

where ¢ is coefficient of energy dissipation and p , circular frequency for the case of

fractional order system energy dissipation depending of ¢ in interval & € (0,1) and

time, and we can write the following relations:

’zlt’al 2
T, (o) = 1) ¥ r* % L | Lo Mcos?p t (68)
[ Lus( )] |:; z( ] 211" 2k+1 W)j| e cos " p,
. . 2
i ) I L A R R )
=) @' T(2k+2~aj) ’
Then the following relations are valid:
e =[1, (e} +[1, (wt)]2 (70)
e = 3 et i N W Sk (O;z'/'t_g"/ ?
LZ ZO[ J @ 'T(2k +1- ) " kz /Z;' j)@'T(2k+2-aj)

and
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1 [n,ae)] 1 ko S\ )@ Tk+2-aj) (71)
P,=—arctg—— ——3=-arctg —
rkal l)wz A
“ S\ e Tk +1-0j)

Comparison 2. As it is Al,a=0)=d=+w;+@’ for a=0 or

Al,a=1)= pe™® = ¢ /wg _iw; 20 for a@=1, then determinant A(t, 0{) for

arbitrary @ in interval O < @ <1 is slowchanging time function and it is possible to
take that this function is not under the action of averaged process along full phase in

interval Pe [O,Z]Z']. Then, for solving averaged values of the functions
flct,a),Dt, )T, (¢, a)T, ()T, (t ) and

cos sin sin

f(ct,a).D(t, )T, (t,0),T, (t,))T, (f,c) in the right side in the system of

Ccos sin cor
differential equations (30), for arbitrary @ in interval O<a <1 , and for

simplification if the, we take approximated value of that determinant A t, 0!

A(t,a)z%<(l—a)A(t a=0)+aA(t,a=1)) <1 o)+ @ +oe |} >¢O (72)

and as a slowchanging time function no depending of phase angle, for snnphﬁcatlon of
averaging integral we can take into account the following differential equations in
averaged approximation:

Cl.a)=7 - ! [ r(ct.a) Dl T, (o) T, (L, () akiel)

- 1
<1 AN + @+ | —— 4>”

4

; (.0,
<1 amm \/ﬁ> e

(73)
1.a) T, .a) T, ()T, (@().a)kel)

Dlr.a)=2*

Comparison 3. Also, it is good to make a comparison between particular

P 72mt am . . .
solution like cos mode T (na)= z 1) o Zkz — and its derivative
F(2k+1 am)
. . . . ~ o
in the form minus like sin mode i (ha)=3 (1 1 @it Zkz 25 am)w"
@"T(2k +1-am)
Comparison is visible in Figure 1 and 2 in Appendix. Also, it is good to made a
comparison between particular solution like sin mode
= x 2mgen and its derivative in the form like cos
L) =3 ey )t
o =) : =} @"T(2k +2 - am)

k=0 m=0

k=1 m=0
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rnode [ ] 2k +1-am)w>"r™ . Comparison is visible in Figure 1 and 2
m

@"T(2k +2 - am)

i 1< 21< 2I<Z

k=0 m=0
in Apendix.
Then from these comparisons it is visible that determinant A(t ,a’) is slow

changeable as we conclude in start.
Sub-example 1.3.

A conclusion on the basis of the previous comparisons and analysis for
considered example with cubic nonlinear term and for O < @& <1 naturally appears.
Approximation of the fractional order differential equation with nonlinear term in the
form (16) in which amplitudes C(t,a) and D(t,a/) are determined by system of
averaged differential equations along these unknown amplitudes C (t N4 ) and D(t o )

- functions of time is possible to rewrite in the following form:

) ¢ 1 27 \
Clra)=3 < (aNatsor s o Jar 7%w;> { (., (®().a)+ D(t.a), (@().)) T, (@) a)io(r)
D(ra)=++ ! 2j”(C(t,ov)T (@(r).2)+ (@)1, (P0).a)'T,,, (@(r). )i ()

2z <(l aN @ + @} +ae™ a)f,——ja);> 0

(74)
For obtaining corresponding values of terms in sum of integrals, we need the
following integraIS'

j 7., (@)} T, (). akel): m.n(a)if[m P [T, (@() 2 d(:)
kmm(a)=T[Tm(cb(r),a)][nm(q>(r),a)]3dq>(r) j 1., (@().a) do()

j [, @0.alfde(): .. j[ ()P [r, @0).a()

2z

Erans (a)=2f[n%(<1>(z),a)12 (@@ ae) ko @)= [T @I (@0 T a()
Kocosaon () = j [7,, (@), a)'d(t): Ky j [7.,.(@(1). )} d(r)

Zu)s 2sln _[[ cos ]2 [ sln » a)]qu)(l) (75)

Averaged dlfferential equations along corresponding full phase s are:

27’<1 am+0fe \/f>

fecrin @U@ + 380 (@ Dl @) 3 @U@ [Pl @F + s (@)Dl

Clta)=7F

53



54

KATICA R. (STEVANOVIC) HEDRIH

Dt,a)=*

< mm o —ar)

focnon (@NCE @ + 3k (@NCE (D @) 3 (@@ DT + Ko (@Dl 2T }

Example 2.
Let consider the following fractional order differential equations with nonlinear
term:

o)+ )+ @3 ()= i p, + 3 (o, ]+ 9] ”0() n

describing distance between two mass particles coupled by standard light fractional

order element, when system is moving in a plane, where Q,length of standard light
fractional order element in no stressed state, and ,50 distance between mass particles at
initial moment of two mass particle motion and ¢0 relative angular velocity of relative
rotation one mass particle around other in plane at initial moment of motion.

2p0

0]

For beginning, the nonlinear term ¢ developed in the following

approximate Taylor’s series around distance P, :

2 po zpo po 12 2po 2 2p0 3
-3 5 t)-p,) —— -p,) +..
R (p() P+ B o (p(t)-p,) 2,3,% o (p(t)-p,)

| 1 1 :
‘/’5,;62) ¢§';2 <1—3p(p—po)+6/)2(p—po)2—5/)3(p—po)*+...>. (78)

9 0 0 0
Then ordinary, fractional order differential equation with nonlinear terms is possible to
express in the following form:

A0+ p(t)+ w03 [p(r)]

3 1 1 1 :
~ &y p, + 2 p ]+ & f;; <1—3p(p—po)+6p2(p—po)2 —5?(/7—/70)‘ +>

9 0 0 0

(79

If we introduce the following denotation
2 po
(p—p,)=p and e =@t 2L
0
Then previous ordinary, fractional order differential equation with nonlinear terms is in
the following form:

ple)+ a)§<1+3€°>p(t)+ @D p(1)]~ .07 <1+6p S%p3 +> (80)
Po o Po
For obtaining approximate solution of the fractional order differential equation
without nonlinear terms (80, we start from corresponding homogeneous fractional order
differential equation in the form
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/')'(t)+w§<1+38“>p(t)+wi®f’[p(t)]zfow§ @)

(@
with solution in the following series time form'

o k 2][
‘, — + _ 2k[2k

J

(32)
k (k a)—2/[—04
i 2k £k Y
X ZO @IT 2k +2- )
where
2 ) 2< 80 >
Wy, = wy{ 1+3— (83)
Po

or in the form:

p([7a)=80+x0];05([7a)+x0];in([’a) (84)

For obtaining approximate solution of the ordinary, fractional order differential equation
with nonlinear terms (80), we use generalized Lagrange method of variation constants

in the form:
plo.t)= &, +Cle.T,, 1.0+ D(t.a)T, (1.) (85)

where unknown amplitudes C (t N4 ) and D(t o ) - functions of time, are approximate

determined by following system of differential equations:

Cla)=+ 1(Cle.a)T, (@().a)+ DT, (B(t). )T, (9(r). a)dd(z)

e 1
“or | o)
D)= 2 [ b (.l o))+ D, @O )T @0 anl) OO
where

p(@(r).a)=¢,+C(t.a)T,,,(®(t).a)+ D(t. )T, (®(r).) (87)
flg,+Cle.a)T,, (@().a)+ D(t.a)L, (().a)) =

L e +Clualt @)+ D, @) ¥

2
0

<6—5 ! (e, +C(t, )T, (®(t), @)+ D(t, )T, (P ()a))+>
Po

= 6‘0(00

5. CONCLUDING REMARKS

In the paper a generalization of Lagrange variation method of
constant and in combination with method of averaging for nonlinear cased,
is presented by use series of the examples, and especially for fractional
order differential equations.
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Then in general, it is possible, to extend generalization of the
Lagrange variation constant to the series of differential equations in the
following forms:

Lix(t)}=nf (1)
N{x(e)y = hf (¢) (81)
L{x()}+ @27 [x(0)]=hf (1)

Lx(e)}y=ehy f (x, %)
N{x(t)}= eh f (x. %) (82)
L)+ @27 [e)] = oy (. %)

Lix(c)y=eh, f (x. 2.1)
N{x(e)y= e f (x. 5.1) (83)
L{x(e)}+ a7 [x(1)] = ehy £ (x. 2.1)
where L{#} linear differential operator, N{:} nonlinear differential
operator, ®/ [*] fractional order differential operator.

For applying generalized Lagrange method of variation constants,
it is necessary to known two particular solutions 7(;) and 7,(;) (or 7,(,e) and
7,(c.)) Of the corresponding homogeneous linear or nonlinear or fractional
order differential equation defined by:

Lix(r)}=0

N{x(r)}=0 (84)

Lix(}+ &2 [x(1)]=0
Then, proposed solution in the form of combinations of known particular
solutions and amplitudes C(r) and D(r) as functions of time, satisfying
condition that first derivative of generalized coordinate is same as that
amplitudes C(r) and D(¢) are constants. Results of the applications of

generalized Lagrange method of variation constants to the different non
homogeneous linear or nonlinear or fractional order differential equations
are listed in the following form:

1* Non homogeneous non autonomous linear differential equation:

L{x(t)}=nf (¢)
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with known particular solutions () and 7,(;) of the homogeneous linear

differential equation.
Solution is in the form
alr)=CO)T; (r.a)+ DT (1)

and amplitudes are:
cl)=c, - hj f (ZE)(T) dr

Dlt,a)=D, [ L (?(1;)(’) dr

where system determinant is defined by:

At)=T,(e)T, (1) - T, (), (c) = 0

2* Non homogeneous non autonomous nonlinear differential
equation

N{x(0)}= e (t)
with known particular solutions () and 7,;) of the homogeneous non
linear differential equation.

Solution is in the form

alr)=CO)T; (r.a)+ DT (1)

and amplitudes are:
c(r)=c, —hj%dr

D(z,a>=uo+hj%d,

where system determinant

At)=T,(e)T, () - T, ()T, (c) = 0

3* Non homogeneous non autonomous linear fractional order
differential equation

L{x(e)}+ a7 [x(0)] = hf (1)
with known particular solutions 7(;,¢) and 7,(;,«) of the homogeneous linear

fractional order differential equation.
Solution is in the form
At a)=Clt,a)T, (t.a)+ D(t, a)T, (t,a)
and amplitudes are:

(),

C(z,a)=co—hjf(A(T 2 T
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I...(7.2)

D(t,a)=D, +h:[f(TA(T ) dr

where system determinant is slowchanging function
A(t’ a): ’Z-::os(t’ a)lzin (t’a)_’Tsin (t’a)]:z:os(t’ a);t 0

4* Non homogeneous autonomous non linear differential equation
with small nonlinearity:

Lix{e)y=eh, f (x.%)
with known particular solutions () and 7,(;) of the homogeneous linear
differential equation.

Approximation of the solution is in the form:

xr)=C(e)1; t.@)+ DT (¢)
and approximation of the amplitudes can be determined from the
following system along unknown amplitudes C(t) and D(z):

Clo)= ¢8$ FC@). DT @OV (@) T, (@7, (@) (@(0)

D(r)= i8$ F(C@). DT @OV (@) T, (@) T, (@) (@)

where system determinant is slowchanging function

Alr) =T, ()1, (1) - T, (e)7, (1) % 0

5* Non homogeneous autonomous non linear differential equation
with additional small nonlinearity:

N{x(0)}= ey f (x. %)
with known particular solutions 7() and 7,(;) of the homogeneous non
linear differential equation.

Approximation of the solution is in the form:

alr)=CO)r; 1)+ DE)T (1)
and approximation of the amplitudes can be determined from the
following system along unknown amplitudes C() and D(z):

Clo)= ¢8$ FC@). DT @OV (@) T, (@) T, (@) (@(0)

D(r)= i8$ F(C@). DT @OV (@) T, (@) T, (@) (@)

where system determinant is slowchanging function

Alr) =T, ()1, (1) - T, ()7, (1) % 0
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6* Non homogeneous autonomous non linear fractional order
differential equation with small nonlinearity:

L{x(0)b+ 037 [x(1)] = ety £ (x. %)
with known particular solutions 7 (,¢) and 7,(;,«) of the homogeneous linear
fractional order differential equation.

Approximation of the solution is in the form:

xt,a)=Ct, )T, (t, @)+ D(t, )T, (t,0)
and approximation of the amplitudes can be determined from the
following system along unknown amplitudes C(t,r) and D(t,cx):

Clr.a)= ?sﬁ 7lct.a).p(.a) T, (@0).a) T, (@().a) T, (@().a) 1, (@), )T, (@().a)

o

Al )

where system determinant is slowchanging function
A(t’ a): T;:os(t’ a)i;in (t’a)_’Tsin (t’a)]:;:os(t’ a);t 0

D(r.a)=1e £lcl.@). D) T,.. (@) @) T, (@().a) 7., (@().a) T, (@) ). (@().a)

7* Non homogeneous non autonomous nonlinear differential
equation with small nonlinearity:

Lix(e)y=eh, f (x. 2.1)
with known particular solutions () and 7,(;) of the homogeneous linear
differential equation.

Approximation of the solution is in the form:

xr)=C(e)1; .@)+ DT (¢)
and approximation of the amplitudes is possible to determine from the
following system along unknown amplitudes C(t) and D(z):

Clr)= ?eﬁ ). D). T (@), (@) 7, (@) 7, (@) () + o)) (1))
D(r)= ieﬁ Fe@). D). 1,(@()). 1, (@)L, (@) T, (@)l )+ )7 (@(r))
where system determinant is slowchanging function

At)=T,(e)1, () - T, ()T, (c) = 0

8% Non homogeneous non autonomous non linear differential
equation with additional small nonlinearity:

N{x(e)} = ey f (x..1)
with known particular solutions 7() and 7,(;) of the homogeneous non
linear differential equation.

Approximation of the solution is in the form:
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xr)=C(e)1; .@)+ DT (¢)
and approximation of the amplitudes is possible to determine from the
following system along unknown amplitudes C(f) and D(r):

Cle.a)= ¢€$ FC0). DT (@ONT, (@()).T, (@) T, (@()). () + (o)1 (1)
D(r.a)= ifﬁf (C(e). O)T (@ (). T (@ T, (@) 72 ()0 (r) + 9(0)) (1))

where system determinant is slowchanging function

Alr) =T, ()1, (1) - T, (e)7, (1) % 0

9* Non homogeneous non autonomous non linear fractional order
differential equation with small nonlinearity:

L{x(e)}+ a7 [x(01)] = eny f (x. 2.1)
with known particular solutions 7.(;,¢) and 7,(,¢) of the homogeneous linear
fractional order differential equation.

Approximation of the solution is in the form:

xt,a)=Ct, )T, (t,a)+D(t, )T, (t,c0)
and approximation of the amplitudes is possible to determine from the
following system along unknown amplitudes C(r,&) and D(t,):

Clr.a)=7e A(tl o (c(@).D(.a) T, (@0).a)T, (@().a) 7., (@()a) T, (@)a). o)+ g0, (@().a)

Dlt.a)= ie?ﬁ £lcl.@). Dl ) T, (@().a) T, (@) ) 7., (@) ) T, (@(0), ), @) + g, (). )
where system determinant is slowchanging function

A(t’a)z T;:os(t’a)i;in (t’a)_’lwsin(t’a)]i:os(t’a)i 0

In the cases 7%, 8* and 9* external excitation function is periodic
functions with full phase o}(t)=Qt+ %, =D(t)+4(r) , where Q is

external excitation circular frequency in resonant range of eigen circular
frequency @,of corresponding linear or nonlinear free vibrations described

by corresponding homogeneous differential equation, and &(r)= a,t full

phase along which it is necessary to followed averaging procedure, taking
into account only fast change function under integral, as it is take in the
examples 1 and 2. Slowching functions under the integrals as it is A(r) or

A(t, ) are no under the averaged procedure for nonlinear systems.
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APENDIX - ADDITION TO THE PAPER.

The time functions — solution of a fractional order differential equation
The fractional order differential equation in the form:

p0)+a;p(t)+ @7 [p(t)]=0 (A1)
is linear part with a fractional order term (in left hand side) of the fractional differential
equations (9) and (26)-(27) and (77) along independent coordinate p(t) , distance

between mass particles, in both considered case of the two mass particle fractional
order system dynamics in plane.

As the obtained fractional differential equations (26) , (27) and (28) are
nonlinear, and that for small oscillations around equilibrium configurations is possible
to considerate approximation of their solution around known analytical solution of
linearized nonlinear fractional order differential equation as well as around other known
analytical particular solutions it is possible to start with analytical solution of fractional
order differential equation (A.1) and by using generalized approach of the variation
constant. Then it is important to present analytical solution of the fractional order
differential equation (A.1) or in the form (se References [4-13]):

7(e)+ 2T (e)+ 2T ()= 0 (A2)
This fractional-differential equation (A.1) or (A.2) on unknown time-function T(t), can

be solved applying Laplace transforms (se References [7-10]). Upon that fact Laplace
transform of solution is in form:

. (A.3)
T0)+T(0
2(p)=elr)=— PTOTO
P’ +w§[l+%R(p):|
0
where 2[9“[T(z)]]:R( p)e[r(t)] is Laplace transform of a fractional derivative ﬂ(l)for
' dr”
0 < <1. For creep rheological material those Laplace transforms the form:
. dafl . dafl
2[33 [T(t)]]: R(P)Q[T(l)]—FT(O)Z p Q[T(l)]—FT(O) (A.4)
L d'T(r) . .
where the initial value are: — = 0, so, in that case Laplace transform of time-
dr*
=0
function is given by following expression:
efr( )= LlotTo (A.5)
"t p

For boundary cases, when material parameters  take following values:
a=0 and a@=1 we have the two special simple cases, whose corresponding
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fractional-differential equations and solutions are known. In these cases fractional-
differential equations are:
The solutions to equations (A.2) and (A.1) are:

I* ) TZ) . [3, ~—, for a=0; (A.6)
T(t)=T,cost\ @, + @, + ————sint\ @, + @, °’ ’
() 0 \/ﬁ [7§+~§ 0 0

*k 2 .
2% a. 7”)7‘r R wl4 ];J ] R a)IA (A7)
T(t)=e T, cost,| Wy ——— +——=—=sint,| @y ———
4 : 4
2 a)l
w; ——-
4

for =1 and for w, > lwf- (for soft creep) or for strong creep:
2

2% b, (A.8)

T(t)=e 2! TCht,——a)0 Sht,——a)0
ml

for & =1 and for wo<%w12'

For critical case:

2%cor(r)=e w'z {T +2T }za a=1 and za a)Ozla)f- (A.9)
o} 2
Fractional-differential equation (A.2) for the general case, when & is real
number from interval 0 <@ <1 can be solved by using Laplace's transformation. By
introducing for initial conditions of fractional derivatives in the form (A.4), and after

taking Laplace's transform of the equation, we obtain the following solution:
2/t

T(t)zgl{T(t)}zToi( 1) w2t ZkZ[ )m (A.10)
2k 2k+1 k (;zjt
g

Jj=0

or

)= T(}=3 (1) kakz“ZU 72/;, [ L, Ty } (A.1D)

= = r2k+1-aj) T(2k+2-0j)

Graphical presentation of the modes of fractional order oscillator with one degree
of freedom

l.a* Mode like cosines is defined by expression
0o k k a)—2ml—wn . . . .
T  (t,a)= 2k 42k _ %! and for =0 vibration is linear
s,c.os( ) ;( ) a)(a mg[ j a)szmr(Zk + 1_ )

and periodic and modeis T, _ (t,ax = Cos(t | + a)(za_l) ) and for « =1 vibrations
X = =1)s
are damped and in the form: for @ =1, particular solutions are:

%wzr 1
Tsvcm(t,othz1 =e cost.|@] —Za)
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Figure 1.a* Mode like cosines is defined by expression
i @ 2ki k gt and for «=o vibration is linear and
l COS k=0 m=0 ngF(Zk +1- am)

periodic and mode is 7, (t,axa_o = cos(t |} + a)(zazl)s) and for « -1 vibrations are

damped and in the form: for @ =1, particular solutions are:

T, (t,aj =e7;w;tcost1 cz)(f—lw4 :
5,C08 a=1 4 o

1.b* Derivative of the mods of like cosines
—2m ,—om
s Wit . . . .
T (t,a)= 2 2" 12k 2 )S— is minus like sine mode
S’COS( ) k=0 =0 zmr(2k +1- 0””)

7 0.@)=3 (1 ”z[ ] okl

@ "T(2k +1—am)

k=1 m=0

Figure 1.b* Derivative of the mode of like cosines
i 1 @t 2ki k Dyt is minus like sine mode
Fi = Pl m) @ T(2k +1-am)

oo k —2m —am
(a :Z( 1 katZkZ(kJ(Zk am)a, """
=1

\m) @"T(2k +1-am)

63



64

KATICA R. (STEVANOVIC) HEDRIH

Figure 1.c* Comparison: Like cos mode

T Z Y, uz o™ and derivative in the form minus like
@"T(2k +1-om)
sin mode i s ”Z k) 2k — am)a?"t ™
= “\m) @"T(2k +1-am)

Figure 2.a* Comparisson
Like sin mode 2% 2k k Wt and derivative in the form
T \t,a ———
anlt )= ;‘( 1 et %( @?"T(2k +2 - am)
like cos mode S PR LK) 2k +1-am)a, "t
T, t &
wlt@)=2 1) @ Z[ @"T(2k +2 —am)

k=0
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Abstract. The difference between linear and nonlinear reaction systems was
explained on two simple examples and elaborated on autocatalator as
minimal model of the reaction system as well as on the model of the real
complex process: the Bray-Liebhafsky oscillatory reaction.

1. Introduction

The nonlinear reaction systems with feedback being far from thermodynamic
equilibrium can be in different self organized states. This is of crucial importance for the
living systems, although this phenomenon can be found everywhere. What is the
nonlinear reaction system with feedback? The difference between linear and nonlinear
reaction systems will be explained on two simple examples (Sections 2, 3 and 4) and
elaborated on autocatalator as minimal model of the reaction system (Section 5) as well
as on the model of the real complex process: the Bray-Liebhafsky oscillatory reaction
(Section 6).

2. Linear reaction system

One typical example of linear process is the following homogeneous chemical reaction
realized in isothermal closed reactor:

A ::W X (RL.1)
-1
X 2o B, (R1.2)
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In this reaction scheme that we call model, reactant A transform to product B via
intermediate X. The rate constants of forward reactions are denoted by k; and kj,
whereas the ones for reverse reactions are denoted by k; and k.,. The reaction rates are
the product of corresponding rate constants and concentrations of all species that take
place in considered reaction (v,=k;a, v_;=k_;x, v,=k,x, and v_,=k_,b where a, x
and b stand for concentrations of A, X and B at any time ). [1-9]

Since both reactions are reversible, the overall process can be described by the
summarized stoichiometric relation A — B if initial concentration of B is relatively
small, or B — A if the concentration of species B is high enough at the initial moment.
Hence, depending on initial conditions species A and B can be either reactants or
products. As such these species are external ones and their concentrations a and b
determine the dynamic state of the system and can be considered as one kind of the
control parameter. On the other side, the intermediate X as the internal species does not
appear in the stoichiometric relations A — B or B — A. Therefore it reflects the state of
the system in any arbitrary moment ¢.

2.1. Equilibrium stationary state

In the equilibrium stationary state, the detailed balance of the reactions must be attained.
In other words, all particular reactions (reaction steps) must be in equilibrium, that is,
for every reaction in the reaction model, the rate of reactions in both directions would be
equal. Such state may be attained when time tends to infinity. In the considered case, the
equilibrium stationary state is reached when both relationships between reaction rates
vy =v_, and v, =v_, are simultaneously satisfied. Thus we can write:

Kylq = K_q (1.1)

qu

KyXog =K _ybyg - (1.2)

Here, by Aeq s Xeq and beq, the equilibrium concentrations of mentioned species are
denoted. The above relations give us the equilibrium concentration of intermediate

species X ( Xeq )

k k_
xeq :k—jlaeq =k_22beq (2)

as well as the ratio between the equilibrium concentrations of reactants a., and by,

=4 3)
k 1k72 aeq

It means that the equilibrium stationary state is defined by the ratio of rate
constants of particular reaction steps or by the ratio of the concentrations of the external
species.
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2.2. Nonequilibrium stationary state

Beside the equilibrium stationary state, in the above reaction system we can also analyze
the nonequilibrium stationary states in which system can be during the course of
reaction, that is, between =0 and r — o. They are realized when the intermediate
species X is in the stationary state. The time evolution of the concentration of this
species is defined by the above model. Following the law of mass action, it is described
by the following differential equation

%=v1—vf1— vy +vy =kja+k ,b—(k +ky)x @
t

which can be written in the form

dx
—=A-kx. 5
P &)

Here k=k_,+k, is a constant and A=k, a+k_, b is the parameter that changes

during the course of reaction since it depends on the concentrations of external species A
and B, and hence, depends on time.
In the nonequilibrium stationary state dx/d¢=0 whereas dr/dt#0 and

db/dt+0. The stationary concentration of the intermediate species X ( x ) is given by

the expression

A
Xgg = E . (6)
Dependence of the stationary concentration of the intermediate X ( x,) on the

parameter A, which is a measure of distance from equilibrium of the above considered
reaction system, is given schematically in Fig 1.(a). There is a range of x, values, that

is, there are a number of non-equilibrium steady states of the one system for different
values of A. As A is a function of the reactant concentrations, there are a number of non-
equilibrium steady states for different values of them. In linear reaction systems, for
selected value of control parameter A, there is only one x,. Consequently, we are

dealing with monostability.

In the closed reactor (batch conditions) the stationary concentration of
intermediate changes in time since the concentrations of A and B evolve during the
course of reaction until their constant values at equilibrium, such that a = a(f) and b =
b(1)). Therefore, in this case, the concentrations of intermediates are only quasi- or
pseudo- stationary.

In open reaction systems as it is the CSTR (Continuously fed well Stirred Tank
Reactor), where concentrations of reaction species can be controlled from outside in
desirable period, the nonequilibrium stationary states are really stationary and parameter
A, which is function of selected initial concentrations of species, does not change in
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time. In this case we are also dealing with linear dependence between x, and A with

slope 1/k. Therefore, such reaction systems are linear.

Nevertheless, the considered example (R1) that can be written in the form
Al X[ B is also linear. Its dynamic states are described by the equation (4) which
is first order linear differential equation. From kinetic point of view, the reaction where
one molecule transforms to the other ones is the first order reaction. Besides considered
example the first order reactions are also A —- B, Al B, A— X — B and all others
similar reactions but under the condition that they are all isothermal. As all other
reactions are nonlinear, we can see that the number of nonlinear reaction is
incomparable larger than linear ones and that we need to analyzed them with particular
attention. In general, for such systems, the stationary concentration of the intermediate
X (xg) is nonlinear function of the parameter A, Figs 1.(b) and (c). However, in

nonlinear reaction systems, for selected value of control parameter A, can be one
(Fig.1(b)) or more (figl(c)) values of x. In last case we are dealing with multistability.

e

Figure 1. Steady-state
concentrations of the intermediate,
Xss» as a function of the parameter A,

/ (a)
% which denotes the distance of the
(b considered dynamic state from the
equilibrium. (a) Linear dependence;
(b) nonlinear dependence of the
Jg/ (c)
Y A, A

monotonous form (monostability);
(c) nonlinear dependence of the
nonmonotonous form
(multistability); dashed line denotes
the region of instable steady states,
that is, the instable nonequilibrium
stationary states. (The figure is
taken from ref. [9])

3. Nonlinear reaction system

The nonlinear dynamical system as close as possible to the previous linear one is the
following model-reaction with one autocatalytic step (R2.1) [3-10]:

A+2X —*‘ 3X (R2.1)
-1

X =2 kk2 B. (R2.2)
-2
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Here, as in the previous case (R1), reactant A transform to product B via
intermediate X. The reaction rates are now little different: v, = klax2 , V. =k71x3,
v,=k,x and v_, =k_,b. Once more, since both reactions are reversible, the overall

process can be described by the summarized stoichiometric relation A — B or B — A.

3.1. Equilibrium stationary state

In the considered case, as well as in the previous one, the equilibrium stationary state is
reached when both relationships between reaction rates v, =v_; and v,=v_, are

simultaneously satisfied. However, the reaction rates are different such that:

K)o Xog =K_1X5, (7.1)

kyXeq =kyb,

- (7.2)

The above relations, although different of equations (1) gives us the same
relations for intermediate concentration of species X ( x,)

k k_
.Xeq :k—jlaeq :k—;beq (8)

as well as the ratio between the equilibrium concentrations of reactants a., and p,g

= 9
k71k72 aeq ( )

Obviously in the equilibrium stationary state there is no difference between
these two considered systems. Nevertheless, the nonequilibrium stationary states are very
different.

3.2. Nonequilibrium stationary state

The nonequilibrium stationary states in which system can be during the course of
reaction, that is, between =0 and r — oo can be obtained by analysis of the stationary
state of the differential equation for the concentration evolution of the intermediate X:

d
d—xzklaxz—k71x3—k2x+k72p (10
t
In the stationary state we obtain the following cubic equation

k_jx, —kyaxg +koxg —k ,p =0 (1D

which has three stationary solutions. One is always real whereas other two can be either
real or conjugate complex. Generally, cubic equation:
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X +ax® +a,x+a; =0 12)
may always be transformed to the form without quadratic term by the substitution

y=x+a,;/3, which gives

3 1, 2 5 1
+(ay——aj)y+—aj——a;a,+a; =0 13
¥ +(a, 31)y Sy T3l T (13)

In the considered case by the following substitution

k,a
Yo =X ——31(171 (14)
we obtain
sk, 1kid? 2 kKja® 1kk,a k.,b
+(—2—= -4 - =0 15
Vs (k,l e ) Vs 7, 38,k 15)

Because of this, the possible stationary states that appear in such nonlinear
systems are often discussed in the literature by means of the abstract mathematical
model which is also the basis of the considered case (R2):

dx

—=—x3+ux+7u (16)
dr

where both W and A are the control parameters of the system. The cubic equation for
evaluation of the stationary concentrations of intermediate X, x,, written in the form:

X3 —fxg —A=0 a7

has either one real and two conjugate complex solutions or three real ones. The mutual

relation between x, W and A is presented in Fig. 2.(a).

Obviously, if we analyze the relation between x,, as a function that

SS 2
characterize steady state of the system in a function of W and A as a parameters
representing the distance of particular steady state from equilibrium, the region with

multistability can be found. It appears in the region of x, {L and A phase space where

all three solutions of the cubic equation (17) are real. Two of them are stable, whereas
the one in the middle is unstable. Therefore, we are dealing with bistability. However, is
it possible that a real system is in two stable steady states simultaneously? What will be
if we push the system from thermodynamic equilibrium by variation of one parameter,
for example A (Fig. 2.(b), which formally corresponds to Fig. 1. (c))? In that case, with
increasing the parameter A, x, take first the values characteristic for thermodynamic
branch until A=2A,, where it suddenly shift to the other (kinetic) branch. With
decreasing A, system follows kinetic branch until A=A;, where it shift to
thermodynamic branch. Thus, in the system with bistability, hysteresis is present and
system will be in one of two stable steady states depending on its history.
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()
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Figure 2. (a) The influence of the values of parameters |1 and A on the steady states of the
intermediate X , eq. (17); (b) Section in x-A plane when W = const. > 0. (c) Section in xe-L
plane when A = const. < 0. (d) Section in x -|L plane when A = 0. (The figure is taken from
ref. [9])

The existence of region of multistability depends also on the parameter Q. If
only one solution of equation (17) is real, x, is monotonous function of A (Fig. 1 (b)

and Figs. 2 (a), (c) and (d)) and system is always monostable. Thus, by the mathematical
analysis of the considered mathematical model, as well as the corresponding model of
nonlinear reaction, we can easily see that multistability is the phenomenon characteristic
for some nonlinear dynamic systems in the states far from thermodynamic equilibrium.

Two examined dynamical systems selected to be as close as possible to one another
but enough different to be either linear or nonlinear are compared in Table 1.
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Table 1.
Linear and nonlinear reaction system
Linear Nonlinear
k
A—l oy A+2X <—k_1—> 3X
k| -1
k
Xe==8 X f;—“ B
-2 -2
Equilibrium stationary state:
kiky b kky _ e
kk, ay kk, ay
Nonequilibrium stationary state:
dr/dt=kja+k b—(k_;+ky)x dx/dt =kyax® =k _,x° —k,x+k b
=A-kx =X +ux+A
A
xSSZE XSS_“‘XSS_A’:O

Mathematically speaking, the linear reaction systems are those in which the
sum of the exponents on the concentrations of each addend in expressions for the
reaction rate is equal to one. All others are nonlinear.

4. Nonlinear systems with feedback

In the reaction systems the feedback is the phenomenon in which the product of a
reaction affects the rate of its own formation in a positive or negative sense, the
autocatalysis and autoinhibition, respectively. As such, it is a crucial part of complex
selforganization phenomena that occurs in nonlinear systems when they are in a state far
from equilibrium. [3-10]

The feedback in the reaction system can be of chemical and thermal origin. In
the first case, during the isothermal reaction, appears the chemical species, crucial for
the further developing of the overall process that controls the rate of its own formation
or disappearance. In the second case, the formation of the considered chemical species
significantly changes the temperature of the reaction system, which influence on the rate
constant of the reaction and consequently the rate of formation of this species. In
addition, the change in temperature of the reaction system usually has different effects
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on the rate constants of the individual elementary reactions of the mechanism, as well as
their relations, which further affects the selforganization phenomena. Only nonlinear
reaction systems with feedback can have instability regions. Thus, only such kind of
reaction systems can be in bistable or any oscillatory state including mixed-modes and
chaos. [3-13]

From the beginning, we discuss here isothermal reaction systems, only. In the
already considered cases (R1) and (R2), the bistability is found only in the model with
autocatalytic step, that is, in the model with one form of a feedback. The corresponding
model without autocatalytic step, was linear and did not exhibit bistability.

From mathematical point of view all is clear: differential equations (4) and (10)
correspond to linear and nonlinear system, respectively. From chemical point of view
there are problems. First we added 2X on both sides of the same equation and obtained
nonlinear system with bistability! However, addition of the same substance to both sides
of the chemical reaction should not change composition of the system. Nevertheless,
without these terms, the system is linear. Second, without any amount of intermediate X
at the beginning of reaction, this reaction cannot begin. These two problems will be
discussed in the following sections.

5. Model of minimal nonlinear reaction system with feedback: Autocatalator

Thus, we need to have autocatalytic step or any other form of feedback if we want that
our model can simulate oscillatory evolution of intermediate species. However, the
reaction will not start without any initial amount of this intermediate. The problem can
be solved in two manners. First, we can analyze the process described by the model of
the form (R2) which performs in open reactor where there is a permanent flow of the
considered species through it. The other possibility, more interesting for us, is to
examine the process in the closed reactor where additional reactions control the
evolution of intermediate from the beginning. One such model close to (R2) but more
realistic, is the autocatalator. [3,11,14] It is well-known minimal model of the chemical
reaction that takes place in a closed reactor at isothermal conditions, which exhibits all
the characteristics of nonlinear nonequilibrium systems. It was created by combination
of cubic autocatalytic reaction (R.2.1) and a series of successive reactions:

R—>A—-B—>P (R3)

In this case reactant R transform to a product P by both autocatalytic and noncatalytic
pathways parallelly. It is described by the following model

R—%0 A, (vo =kor) (R4.0)
A—N B, (v, =k,a) (R4.1)
A+2B—X2 3B, (vy =k,ab?) (R4.2)
B—X 5P, (vs =k3b) (R4.3)
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Here vy, v, v, and v; denotes the reaction rates of the corresponding reaction steps,
whereas ko, ki, k, and kj; are their rate constants. The time dependent concentrations of
the species R, A, B and P are denoted by r, a, b and p.

The kinetic equations for the time evolution of the concentration of r, a and b
are given by the following system of differential equations of the first order:

dr

—=—k,r 18

P 0 (138)

da ok a—kyab’ (19)

dt

%=k1a+k2ab2—k3b (20)
t

The concentration of the product P is defined by the law of conservation:
p=(y+ay+by+py)—(r+a+b) (21)

Where the index “0” denotes the initial concentrations of relevant species.

Since all reactions in the model are irreversible, the equilibrium stationary state
denoted by ,,eq", will be achieved when the concentrations of species R, A and B will be
equal to zero. Then:

Toq =0eq =be =0,  pog=ry+ag+by+p,. (22)

It means that the equilibrim can be realized here only when all species are
transformed to the product P.

Examination of the equilibrium stationary state is important to test the
consistency of the model, only. However, we are focused on the nonequilibrium
stationary states that can be realized in considered reaction system between t = 0 and the
end of reaction when t — .

In nonequilibrium stationary state (steady state) the rate of time evolution of
intermediary concentrations is equal to zero, that is,
b.2=0 (23)

kO r_klass - k2ass ss

b> —kyb, =0 24)

k1 s + k2 A O

The steady state concentrations of intermediates A and B have the following

values
ko7
by = k—°3 (25)
Kk k27
a,=——%— (26)
kokzr +k1k3
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As the concentration of intermediates in nonequilibrium stationary state are
clearly the functions of concentration of the reactant R, they are not constant. There are
a number of non-equilibrium stationary states in which the system can be during the
reaction. The dependence of a and b on the concentration of reactant R is presented in
Fig. 3.

0.0001 K
a b SS
mol dm]
a

SS

0.0000 : : : !
0.00 0.05 0.10
r/ mol dm-3

Slika 3. Steady-state concentrations of intermediates A and B, ag and by, as a function
of the concentration of reactant r. Here: ro = 0.1 molxdm’3, ko = 1x1073 s'l, k; = 1x102
s ko =2.5%10° dm®xmol 2 s, ks =1 s (The figure is taken from ref. [9])

At high values of the reactant concentration, the stationary concentration of
intermediate by is higher than the stationary concentration of intermediate ay, and vice
versa (Fig. 3). The cross section is in the point:

ks—k
G =by = [ 27)
2

k {k -k
r(a55=b55)=k_z % (28)

The maximal value of steady-state concentration of a

a - K

ss,max W

29
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[k
Fhax = @ . (30)

Reactant concentration at time t can be easily calculated by integration of
equation (18) and is given by the expression

is achieved when

r=npe . 31

Substituting the value of r into the eqs (25) and (26), the steady state
concentrations of the intermediates are obtained as a function of time:

by = 0 ot 32)
k3

2 kot
_ kokire
Kok rte 2K 4k k3

(33)

aSS

0.0000
0

SS

Hagmby) 1 ) 6000

Figure 4. Steady-state concentrations of intermediates A and B, ass and by, as a function
of time. The initial conditions are equal to the ones given in Fig. 3. (The figure is taken
from ref. [9])

The dependence of ai and by on the concentration of reactant R is presented in
Fig. 4. Obviously, the concentration of bs decreases exponentially during the reaction,
whereas the concentration of ag changes along the curve with maximum. The moment
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of intersection of the curves t(a, =b,) corresponds to the point where r is given by

(28). In this point the following equality is satisfied

Ko ko _ |Ks—Ky

20,6 b s B (34)

ks k,

Consequently

t(asszbss)zkiln(% /kk—zkj (35)
0 3 378

The maximum of the curve ag = f(¢) is at the time:

™k ks ki ) 2kg kK

However, if the full integration of equations (18) - (20) is performed, we see that the
evolution of the concentration may significantly deviate from the curves representing the
evolution of the nonequilibrium stationary state, as illustrated in Figure 5. If the initial
concentrations of intermediates A and B are zero, they first increase rapidly until reaching
certain concentration values characteristic for nonequilibrium stationary states. Then they
follow the course of the steady state concentration curves (Fig. 4, egs. (32) and (33)). After
some time, the concentration of intermediates begins to oscillate around the steady state. At
the same point (the bifurcation point) the non-equilibrium steady state of the reaction system,
which had previously been stable and attractive, becomes unstable and repulsive. Oscillations
are strictly defined and have different forms depending on the given parameters. Sudden
cessation of oscillations means that system crosses through the second bifurcation point, when
nonequilibrium stationary state becomes stable again. Then the concentration of intermediates
A and B again obey the laws (32) and (33), and continue to follow the monotonic changes as
shown in Figures 4 and 5.

6. Model with feedback loop instead feedback step

The second important problem underlined at the end of Section 3 is the fact that we
construct the nonlinear model by addition of 2X on both sides of equation (R2.1).
Actually, this artificial chemical reaction is the summarized stoichiometric network of a
small submodel where one or more additional intermediate species are present and
interact one with the other. Hence the feedback loop that exists in this submodel is
presented by feedback reaction (or step) where other intermediate species are invisible.
To make a model more real we need to return the “invisible” intermediates what is often
very complex procedure. The scientists needed about fifty years to transform the model
with artificial step proposed by Lotka having idea to explain oscillatory evolution in
population (15), to the model without this step but with feedback loop to explain an
oscillatory reaction (16). Mentioned problem will be discussed on one such model
proposed to explain dynamic states of the hydrogen peroxide decomposition in the

2 2
;h{m &}Llnkok_ﬂm G6)
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presence of iodate and hydrogen ions (the Bray-Liebhafskly (BL) oscillatory reaction)
[17, 18]

-3

moldm
010} (a)
0.05 |
0.00 L L
2000 4000 6000
t/s
(b)
a
moldm’®
0.0001 |
0.0000 -
0 6000
(c)
b
moldm®
0.0001
0.0000 L A
0 2000 4000 6000

t/s

Figure 5. Time evolution of the reactant R (a), intermediate A (b) and intermediate B (c)
in the case of autocatalator (R4). The initial conditions are equal to the ones given in Fig.
3. (The figure is taken from ref. [9])

2H,0, %" oH,0+0,. (D)

The first attempt to elucidate the mechanism of this very complex process was
unsuccessful, although the experimental investigations together with their explanations
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were excellent. Namely, already in the first report about the BL reaction, [17] Bray
noticed that mentioned reaction is the result of the reduction (R) of iodate to iodine and
the oxidation (O) of iodine to iodate by the following complex reaction scheme satisfied

2105 +2H" +5H,0, — I, +50, + 6H,0. R)
I, +5H,0, — 2105 + 2H* +4H,0. (0)

Their rates tend to become equal and we usually observe only a smooth decomposition
described by reaction (D) where iodine, as intermediate species, does not appear in this
stoichiometric relation. (Summing reactions (R) and (O) we obtain 5(D).) However, in a
narrow range of concentrations, the alternating domination of processes (R) and (O) is
also possible resulting in periodic increase and decrease of the iodine concentration
during stepwise decrease of the hydrogen peroxide and increase of the oxygen
concentrations (Fig.6). This apparently simple oscillatory reaction, consists of a complex
homogeneous catalytic oscillatory process involving numerous iodine intermediates such
as I, HIO, HIO, and L,O beside already mentioned iodine (I,) that all oscillates. [9, 19]

o) T T T
=" o (c)
: Ty
-
‘:m +
:_-'. - bowv . A A
E Iy A
1] n A vreme | min (X} L
£ 3 T AL T LT id)
=& W AT by 0.2 .
- . : 0 : : il S
0 10 20 vreme [/ dan 0 a0 1M 150 vreme [ min

Figure 6. Time evolution of the BL oscillatory reaction in the closed reactor. In particular, time
evolution of (a) the evaporated oxygen from the reaction solution, (b) iodine concentration, (c)
logarithm of the iodide concentration presented by the potential of iodide-ion sensitive
electrode and (d) the hydrogen peroxide concentration presented by means of absorbance of
the complex between the hydrogen peroxide and titanil oxalate. Initial conditions in molxdm™
in Fig. (a): [H202]0 = 1.90x10™", [KIO3]o = 9.40x1072, [H2S04]o = 3.65x1072, (T = 60.0 °C);
in Fig. (b): [H202]o = 3.27x107, [HIOs]o = 9.00x10~ (T = 25.0 °C) in Figs. (c) and (d):
[H,0,]0 = 1.98x107%, [KIOs]o = 6.62x1072, [H2SO4]o = 2.45x1072 (T = 60.0 °C). (Figures (a)
and (b) are taken from ref. 17, and Figures (c) and (d) from ref. 20).

Consequently, the above reaction scheme had to be extended with new
intermediate species and reactions between them. Among proposed models, one of the
most successful in attempts to simulate numerous obtained experimental phenomena is
the following one [21]:
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10; +1I" +2H* U HIO + HIO, (R5.1),(R5.-1)
HIO, +I_ +H" — L,O+H,0 (R5.2)
LO+H,0 [ 2HIO (R5.3),(R5.-3)
HIO+I +H* U I, +H,0 (R5.4),(R5.-4)
HIO+H,0, — I +H" +0, +H,0 (R5.5)
LO+H,0, — HIO + HIO, (R5.6)
HIO, +H,0, — 105 +H" +H,0 (R5.7)
10; +H" +H,0, HIO, +0, +H,0 (R5.8)

The oscillatory evolution of intermediates can be obtained by the whole model
as well as by the first six reactions [16] or some other combinations of them [21-23].
However, if we want to simulate all experimentally found dynamic states, at least the
model having seven reactions (first six and eight one) is necessary. [24, 25]

The above model consisting of reactions (R5.1) to (R5.8), denoted as (RS), have
all the necessary features to describe the BL reaction as a complex nonlinear process
with the region of multistability where different oscillatory evolutions including mixed-
mode oscillations, deterministic chaos and other phenomena [9, 26-29] may be found. In
fact, this model has 10 species and 11 reactions since three of them are reversible ones.
Five of these ten species are independent intermediate ones such that we are dealing
with the five dimensional system and need to solve simultaneously five differential
equations of the first order.

With aim to present results in more mathematical language, we shall rewrite
above presented model in function of independent variables only, taking into account
following substitutions: I = X, HIO = Y, HIO, = Z, ,O = W and I, = Q). Denoting the
concentrations of the mentioned species by x, y, z, w and ¢, the time evolution of the
system can be described by the following set of differential equations based on the
proposed mechanism between the species included in the model and mass-action
kinetics [1, 2]:

dg

—=kyxy—-k
dar 4 XY —K4q

;E =-kx—kyxz—kyxy+ksy+k_ yz+k q
t

% =k x+2ksw—-kyxy—ksy+kew—k_ yz— 2k_3y2 +k.,q (37
dz

i kix—k,xz+kew—k;z+kg—k ¥z

dw 2

m =koxz—ksw—kew+ksy
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where concentrations of external species, taken as constant, are included in the rate
constants. By solving these differential equations we can simulate different dynamic
states of the considered system (Fig. 7 and Fig. 8) similar to the ones found
experimentally.
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Figure 7. Time evolution of the BL oscillatory reaction in the closed reactor presented by
evolution of concentrations of particular species obtained by the numerical simulations based
on the model for the BL reaction (RS). (The figure is taken from ref. [9])
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Figure 8. Numerical simulations of the oscillatory dynamics of the BL reaction realized in
open reactor (segment from 1200 to 1500 min) presented by means of the iodide
concentration (in molxdm™). (a) Regular oscillations, ki = 47010 min’’; (b) and (d)
mixed-mode oscillations, ki = 4.90x10 min"' and k; = 5.10x107° min'l, respectively; (c)
deterministic chaos with chaotically distributed number of the small-amplitude oscillations
between the large-amplitude ones, k = 5.00x10 min™. (The figure is taken from ref. [9])
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On the other side, the phase space portrait similar to the one obtained by
mathematical model (R2) is generated by analyzing relations between hydrogen
peroxide, iodine and iodide concentrations in the selected steady states (Fig.9). A more
detailed analysis of this model and its sub-variants can be found in the references [16,
21-25, 30-33].

[lt]-' ['jz].‘- (L] [H:0) [H:0]

Figure 9. The effect of the concentrations of hydrogen peroxide and iodine on the steady
state concentration of iodide in the vicinity of bifurcation point F. The rate constants
necessary for numerical calculations are taken from ref. [21]. (a) Folded surface F([I ],
[I2], [H202]) = 0; (b) section in the plane [H202] = const; (c) section in the plane [I2] =
const = value of [I] in bifurcation point F; (d) projection of the instability region on the
[H20] - [I2] plane.[8] (The figure is taken from ref. [9])

Thus, all main nonlinear phenomena found experimentally are simulated by the
proposed model without any direct feedback step. However, in this model there are
feedback loops. They can be obtained by different combinations of the reactions that
exist in the model (RS). In particular, the autocatalysis is the overall stoichiometric
relation obtained from the following subsystems
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(R5.1) + (R5.2) + (R5.3) + 2(R5.5) =
HIO, +2H,0, + 2HIO — 3HIO + 20, + 2H,0

(R5.-1) + (R5.2) + (R5.3) + 2(R5.8) =
HIO; +2H,0, + HIO — 2HIO + 20, +2H,0

(R5.2) + (R5.3) + (R5.4) + (R5.5) =
HIO; +2H,0, + HIO — 2HIO +20, +2H,0,

whereas the autoinhibition is the stoichiometric result of other subsystems

(R5.-3) + (R5.6) + (R5.7) =
2H,0, + 2HIO — HIO + HIO, +2H,0

(R5.-1) + (R5.2) + (R5.-3) + 2(R5.6) =
2H,0, +3HIO — 2HIO+ HIO; + 2H,0 .

Finally, we can conclude that in the model (RS) there are both the cubic and the
quadratic autocatalysis and autoinhibition in a form of feedback loop.

7. Conclusion

The difference between linear and nonlinear reaction systems was underlined and
discussed on several examples. The main notions together with corresponding
definitions are given on two very simple models and later elaborated on autocatalator as
known minimal model of the oscillatory reaction systems as well as on the model of the
real complex process: the Bray-Liebhafsky oscillatory reaction. In this way, the possible
solutions of the problems that arise in mathematical models are offered and applied on a
real reaction system: the Bray-Liebhafsky oscillatory one. It was shown that only
nonlinear processes with feedback can be in different oscillatory self organized states.
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Abstract. The detailed mechanism of the Bray-Liebhafsky oscillatory reaction
is not known until now, although modelling of this complex process has been
one of important subjects of investigations in Nonlinear dynamics. Short
overview of the main proposed models is presented here with aim to introduce
readers with this subject and help in intention to find some improvements.

1. Introduction

A reaction is said to be oscillating if the concentration of one or more their intermediates
does not vary monotonically, but periodically pass through maximum and minimum
values [1].

The Bray-Liebhafsky reaction [2, 4], the hydrogen peroxide decomposition into
the water and oxygen in the presence of hydrogen and iodate ions,

2H,0,—%" 550 0+0,. (BL)
is the first discovered and one of the most interesting complex nonlinear (oscillatory)
chemical reaction [3, 5-82].

In 1921 Bray [2] noticed that (BL) reaction can be realized by two different
manners that play a role of complex reaction routes. Thus, the global reaction, BL, is the
result of the reduction, R, of iodate to iodine and the oxidation, O, of iodine to iodate by
the following reaction scheme:

210; +2H" +5H,0, — I, +50, + 6H,0 (R)

I, +5H,0, — 2I0; +2H" +4H,0 (0)
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It is significant to note that this is the first, though global, model of BL reaction
without possibility to generate oscillatory evolution of the concentration of species.

When the rates of processes (R) and (O) tend to become equal (or when the
reaction (R) continuously dominate over reaction (O), and vice versa) we observe only a
smooth decomposition described by reaction (BL). Then, iodine as intermediate species
does not appear in this stoichiometric relation. However, in a narrow range of
concentrations the alternating domination of processes (R) and (O) is also possible. The
main reason for oscillating phenomena is the dual effects of hydrogen peroxide in the
whole process. In the other words, hydrogen peroxide acts as the oxidant but also as the
reductant in the reaction system. This can result in periodic increase and decrease of the
iodine concentration as well as in periodic cascade decrease and increase of the
hydrogen peroxide and oxygen concentrations, respectively, which is the typical
behaviour of external species in homogeneous oscillatory reactions [27, 78].

Ten years after Bray wrote mentioned paper, Liebhafsky started to work with
him [4] and because of their significant and extensive research the reaction of hydrogen
peroxide decomposition was named the Bray-Liebhafsky reaction.

Numerous dynamic states, such as periodic and aperiodic (chaotic) oscillatory
evolution (including mixed-mode oscillations and other unusual kinetic phenomena) are
experimentally obtained [54, 62, 69]. This apparently simple oscillatory reaction
comprises a complex homogeneous catalytic oscillatory process involving numerous
iodine intermediates such as I, I, HIO and HIO,. Hence, the more detailed model
involving numerous iodine intermediates necessary for explanation of the mechanism, had
to be proposed. However, detailed mechanism which would simulate all found
experimental phenomena have not been presented yet, due to existence of numerous
intermediaries and difficulties in theirs monitoring.

Investigation of the Bray-Liebhafsky reaction is important since it can be
considered as prototype of numerous biochemical processes and oscillatory catalytic
reactions. Moreover, it can be used as a matrix for catalyst characterization [34, 35, 57,
63] and quantitative analysis of numerous compounds [49, 59, 67, 73].

Short review on the models of Bray-Liebhafsky oscillatory reaction is given in
Section 2. The construction of the corresponding differential equations for time evolution
of the overall process through the time evolution of concentrations of each species taking
part in the model is presented in Section 3.

2. The significant models of BL reaction

The model of the mechanism of one chemical reaction is a set of stoichiometric reactions
that are kinetically important for the considered process. Based on such proposed model,
we create a system of differential equations that describe the time evolution of the
concentrations of the species involved in it, which then can be solved using numerical
methods (since it is impossible to do this by analytical ones).

For an oscillatory reaction as typical nonlinear system, feedback is necessary.
Feedback in reaction systems can be thermic and chemical, which is of interest in the
case of Bray-Liebhafsky reaction. If the product of reaction increases its own production,
we are dealing with autocatalysis and if it decreases its own production, we are dealing
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with autoinhibition. Model of an oscillatory reaction may contain either direct
autocatalytic step (such asA+nB — (n+1)B) or autoinhibition step (such as
(n+1)B — A+nB), but these two steps can be also obtained by combination of several
reactions, like it is in all models presented here.
Model of the Bray- Liebhafsky reaction should have to contain following
reaction groups.
1) The reactions of iodine and constituents of Dushman reaction [84]

10, +51 +6H" — 31,+3H,0 D)

2) The reactions between hydrogen peroxide and iodine species such as I,
I, HIO, HIO,, 1,0, 1,0, and 105 [14, 15, 28, 29]. Some of these are
extremely important for global reaction process and therefore, can be found
in all mechanism.

Iodine and oxygen transition from solution to gas phase have been investigated
for years as a significant process in the Bray-Liebhafsky reaction. Peard and Cullis [9]
connected appearance of oscillations with iodine removing from the reaction system by
gaseous oxygen produced in reaction. Shaw and Pritchard [13] concluded that two
phases are necessary for existence of oscillations in such kind of reactions. Hence, the
reaction must be treated as heterogeneous. However, even the Bray [2] showed that
reaction can be carried out sufficiently slow such that gaseous oxygen can exit the
system by diffusion. Laurenczy and Beck [33] investigated the effect of high pressure on
the Bray-Liebhafsky reaction. They indicated that the escape of oxygen from liquid phase
is not indispensable for the oscillations. Therefore, although oxygen removal may have
an impact on whole reaction system, the reaction can be treated as homogeneous.
Buchholtz and Broecker [44] concluded that oxygen transition to gas phase results only
in changes in the location of bifurcation points and that the oscillations originate from
chemical reactions. Also, by NMR spectra analysis chemical shifts were observed in the
Bray-Liebhafsky reaction. Stanisavljev et al showed [45] that they depend on the
complex combination of the effect on bubbles formation and increase in concentration of
dissolved oxygen.

The difficulties in describing the reaction mechanism lie on the facts that there
are only a few variables which can be varied independently in order to observe the
effects and the kinetics of the overall process. Also, system is sensitive to light [19, 61],
pressure [42, 46], stirring [42, 46], and microwaves [64, 65], ...

2.1. Model proposed by Liebhafsky and Wu

The first (nonradical) model is proposed by Liebhafsky and Wu [19] in 1974
(Table 1).

As it can be seen, this model of mechanism is consisting of: three reversible
reactions, (LW 1)-(LW 3), reaction of I' oxidation, (LW 4), HIO reduction, (LW 5), and
reactions in which HIO, is produced, (LW 6)-(LW 10). Ninth reaction is usually
negligible [23].
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Although Clarke claimed that the model proposed by Liebhafsky and Wu is of a
form that can generate an unstable steady state, to the best of our knowledge no one
conformed his assertion. Nevertheless, this model of the Bray-Liebhafsky reaction is
important as it was a basis for developing of other ones.

Table 1. Liebhafsky and Wu model [18].

L+H, 02 HIO+H " +T (LW1)
21+ (LW2)
2H"+I0, +I =2 HIO+HIO, (LW3)
I'+H,0, — H"+HIO, (LW4)
HIO+H,0, — H'"+I +H,0+0, (LW5)
2H"+10, +2I — 2HIO+IO (LW6)
HIO,+H"+I — 2HIO (LW7)
H,0,+HIO, — HIO+H 0+0, (LW8)
HIO,+H"+I" — 2HIO (LW9)
H,0,+10, +H" — HIO, +H,0+0, (LW10)

2.2. Models proposed by Sharma and Noyes and Edelson and Noyes

In 1976 Sharma and Noyes were proposed model [20] based on Deng’s observation [11]
that radicals participate in processes (O) (which is said to be a branched chain reaction)
and own research regarding on the influence of light upon BL reaction [19]. From
systematic data set of possible processes they select fourteen important for the Bray-
Liebhafsky reaction (Table 2).

In 1979 Edelson and Noyes [22] (Table 3) added four reactions, (EN 15)-(EN
18), to the Sharma and Noyes model (Table 2). As can be seen by comparing these two
models, in the Sharma and Noyes one, only first, seventh and last, fourteenth, processes
are reversible, whereas Edelson and Noyes placed all of them to be reversible.

First four reactions, (EN 1)-(EN 4), (as well as (SN 1)-(SN 4)) represent I
oxidation. Nonradical hydrogen peroxide oxidation to oxygen is given by: (EN 5) (i.e.
(SN 5)), (EN 15) and (EN 16), whereas step (EN 15) does not contribute significantly
during the most time of interest. Hydrogen peroxide reduction by the radicals containing
iodine takes place by sixth and seventh reaction in both models. Although, HOO" and HO'
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radicals can react in many ways, reactions (EN 8) (i.e. (SN 8)) and (EN 9) (i.e. (SN 9))
are the most probable (the fastest), and the only involved in model. Two following process
that include fast reactions and sequence of following five reactions (EN 6)-(EN 11) (i.e.
(SN 6)-(EN 11)) without EN 7 (i.e. SN 7), represents a chain of propagation reactions in
which the final step regenerates radical necessary for the first step. In twelfth reaction, the
radical species form the nonradical ones, with seventh and ninth, this reaction is there to
initiate the chain sequence mentioned above. The only included chain-terminated steps are
(EN 13) (i.e. (SN 13)), (EN 17), and (EN 18), whereas the last one is the most important.
In fourteenth reaction, oxygen is removed from solution to gas phase (in all other reactions
in this and models that follow, O, represents dissolved oxygen although it is not written
as OZ(aq)-

Table 2. Sharma and Noyes model [20].

HIO+I +H" Z21,+H 0O, (SN1)
HIO,+H"+I — 2HIO (SN2)
2H"+10, +I Z=2 HIO+HIO, (SN3)
2HIO, — 10, +HIO+H" (SN4)
HIO+H,0, — H"+I +H,0+0, (SN5)

10'+H,0, — HIO, +HO' (SN6)
10 +H,0, T2 H' +10, +HO' (SN7)

HOO +I, = I'+0,+H" +I (SN8)

HO +H,0, — H,0+HOO' (SN9)
I'+0, — ooI' (SN10)
OOI'+I +H" —> HIO+IO’ (SN11)
H'+I0, +HIO, — 210’ +H,0 (SN12)

2HOO" — H,0,+0, (SN13)
0,,&20,, (SN14)
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Edelson and Noyes [22] claimed that rate constants of reactions (EN 2), (EN 4),
(EN 11), (EN 12), and (SN 14) are the only disposable parameters to be assigned to
generate behaviour observed in the experiments, since rate constants of reactions (EN 1),
(EN 3),
(SN 5), (SN 9), (SN 13), and (SN 16) are known with the moderate confidence from the
experiment in [20] and the other reaction rate constants ((EN 6), (EN 7), (SN 8), (SN
10),
(SN 15), (SN 17), and (SN 18)) have no influence on the overall process. That is, only
by changing them, one cannot obtain nonlinear phenomena. Further, they said that for
oscillations existence the most important step is (EN 18).

Table 3. Edelson and Noyes model [23].

HIO+I +H" Z21,+H 0, (EN1)
HIO,+H"+I — 2HIO (EN2)
2H"+10, +I' Z=2 HIO+HIO, (EN3)

2HIO, — 10, +HIO+H" (EN4)
HIO+H,0, — H"+I +H 040, (EN5)

10'+H,0, — HIO, +HO' (EN6)

10 +H,0, T2 H" +10,+HO' (ENT7)
HOO +I, = I'+0,+H" +I' (ENS)
HO' +H,0, — H,0+HOO' (EN9)
I'+0, — ooI' (EN10)
OOI' +I +H" —> HIO+IO’ (EN11)
H'+I0,+HIO, — 210" +H,0 EN12)
2HOO" — H,0,+0, (EN13)
0,, 20, (EN14)
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HIO, +H,0, Z2 HIO+O, +H,0 (EN15)
10,+H,0,+H" Z2HIO, +0,+H O (EN16)
I'+HOO' 221 +0,+H,0 (EN17)
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Figure 1. Experimental results (on the left side, reprinted with permission from [20]. Copyright (1976)
American Chemical Society.) and numerical simulation obtained by the model proposed by Edelson and
Noyes (on the right side, reprinted with permission from [22]. Copyright (1979) American Chemical
Society.).

In the Bray-Liebhafsky reaction a continuous production of oxygen occurs.
Hence, its concentration in solution can be much higher (than under the normal
conditions) because of supersaturation [18, 19, 29, 36, 40]. Therefore, it can be written
[Oxaglss = M[Orag)lsay Where [Oaq)lss is the oxygen steady state concentration and m>1.
Edelson and Noyes tried to explain this process by linear supersaturation kinetics:
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A0y
_Tq):kENM([OZ(aq)]_[OZ(aq)]aal) (eq 1)
where [0, ]represents total concentration of dissolved oxygen and k . is the rate

2(aq)
constant of reaction (EN 14). However, this required m to be order of 100, which is not
realistic.

Consequently, they tried with fourth root supersaturation kinetics:

d[o.
_% =K ([02(aq)]_[02(aq)]aal)]/4 (eq2)

Oscillations were obtained for m=2, but their lasting were not satisfactory (Fig. 1), since
hydrogen peroxide consumption was too rapid, due to the radical processes. If we take
[H,0,] = const (CSTR conditions), still remains the problem that concentration of
dissolved oxygen would be unrealistic. Edelson and Noyes believed problem was in
release of supersaturation oxygen rather than in the model of chemical mechanism, so
the kinetics of process (EN 14) cannot be described by (eq 1) neither (eq 2) because of
the process complexity.

2.3. Model proposed by Treindl and Noyes

In 1993 Treindl and Noyes [32] composed the skeleton mechanism (Table 4), (TN 1)-
(TM 10), by analysis of the known experimental results.

They claimed that only negative ions and radicals in small but non-negligible
concentrations: OH, OOH, H, HO" and HOO" are included in the model. Moreover,
they said that I;” and 10," might be included and I' must be invoked to explain the
photochemical sensitivity of the reaction [19, 20]. Also, Treindl and Noyes have chosen
hydrogen peroxide to react only with HIO, due to the fact that there was no evidence
about reaction between hydrogen peroxide and HIO,.

Table 4. Treindl and Noyes model [32].

10, +I +2H" — HIO, +HOI (TN1)
HIO, +I +H" — 2HIO (TN2)
HOI+I +H' Z21,+H,0 (TN3)
HOI+H,0, — I +H" +0,+H,0 (TN4)
I +H +H 0, — HOI+H O (TNS)
L =2r (TN6)
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I'+0, Z=2100° (TN7)
100" > 10, (TN8)
210, +H,0 — 10, +H' +HIO, (TN9)
0, —O0 (TN10)

2(aq) 2(g)

Although, Treindl and Noyes could not simulate reaction by proposed model,
they had believed it can “explain at least a very large portion of the observations which
have been made” in the Bray-Liebhafsky reaction system. Theirs faith in the ability of
the model to provide oscillations had been based on the fact that production of iodine is
autocatalytic. Noyes et al [37] as well as Ren et al [70] showed that iodine and oxygen
oscillate and that oscillations do not involve a true limit cycle.

2.3. Model proposed by Schmitz and its variants

In 1987 Schmitz [29] proposed the simplest model for the Bray-Liebhafsky
reaction mechanism. It is a nonradical model without any direct autocatalytic or
autoinhibition step and it is the first of this kind in which oscillations were obtained. Here
crucial reactions in the process of HIO oxidation into compounds with higher oxidation
number occur by LO participation. This model downside is fact that LO is not found
experimentally in the Bray-Liebhafsky reaction. Schmitz’s model consists of reaction (M
1)-(M 6) presented in Table 5 and describes well only the reaction process in medium area
of acidity [30], but no in high and low acidity solution. This lacks are solved by adding
reactions (M 7) [31] and (M 8) [38] respectively. Model with mentioned improvements
are also known as model 1-8 or M (1-8) and it is given in Table 5.

Except the reactions with L,O, all of them can be found in the Liebhafsky and
Wu model and earlier papers. Thus, reaction (M 1) is analysed in [3, 5, 18], (M 4) in
[10, 17, 18], (M 5) in [7,16, 18], M 7) in [4], and (M 8) in [5, 18].

Table 5. M (1-8) model [38].

I'+10,+2H" Z=2 HIO+HIO, M1)
HIO, +H +I' — 1 0+H,0 (M2)
1,O+H,0 Z=22HIO (M3)
HIO+H +I Z21,+H,0 (M4)
HIO+H,0, — H'+I' +H,0,+0, (M5)
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1,0+H,0, — HIO+HIO, (M6)
HIO,+H,0, — 10,+H" +H,0 (M7)
10,+H,0,+H" — HIO,+ 0,+H,0 (M8)

The added reactions control the appearance and duration of the induction
period preceded to the oscillations occurrence. Using this model, beside the impact of
acidity, successfully are simulated the impact of temperature [43], the perturbations by
polymers, the occurrence of inflection in a model parameter space. In addition, the M (1-
8) model provides relatively good agreement with the experimental results (Figs. 2 and
3) on the oscillations number, the shape and lasting for all reaction species that can be
monitored experimentally. Agreement between the experimental findings and the model
prediction proved to be quite good also in [59], where the pulsed perturbations with
iodide were applied. For the M (1-8) model, the stability criteria were established [39]
and it’s also qualitatively consistent with the experimental data.

e e o e e e e e —— —

T Vv

L e ) =N Q
T
v =3
= .
24 =t r
i i 4

— m a0 ' 10 ¢ min

Figure 2. Iodide oscillograms of the BL reaction at the different temperatures: (a) 56.0 °C, (b) 62.0°C,
and (c) 67.0° C (Reprinted with Editors permission from [41]).

The M (1-8) model is able to describe almost all features of the Bray-Liebhafsky
reaction, including simple oscillatory evolution, mixed-modes and chaos [66, 69, 74, 79,
82].

Experimental inability to prove existence of LO as reaction species was
theoretically overcome by the elimination of [,O from the system chemical equations [47,
50, 52]. One of the models from [47] created by the contraction of M (1-8) is presented in
Table 6.
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Figure 3. Simulated iodide evolution of the BL reaction based on the reaction M(1)-M-(6) at the
different temperatures: (a) 54,8 °C, (b) 59.8 °C, (c) 65.8 °C, and (d) 68,8 °C (Reprinted with Edirors
permission from [68]).
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Table 6. Reduced M (1-8) model [47].

I'+I0,+2H" Z= HIO+HIO, (RM1)
HIO+H +I Z21,+H,0 (RM2)
HIO+H,0, — I +0,+H" +H,0 (RM3)
HIO,+H,0, — I0,+H +H,0 (RM4)
I0,+H,0,+H" — HIO,+0,+H,0 (RM5)
2HIO Z22HIO, +I +H' (RM6)
HIO, +I' +H"+H 0, — HIO+HIO +H O (RM7)

This model, like the previous one, can simulate oscillatory evolution (of every
containing intermediate), but in a slightly worse agreement with experimental results.
This is understandable considering the applied simplification.

Also, there are the researches treating M (1-8) model without reaction (M 7),
but with changed reaction (M 8) rate constant [71, 75]. Obtained results are nearly the
same.

Significant research is also the one performed by Adaméikova and Sevéik on
the effects of pressure decrease, gases bubbling and stirring on the oscillating Bray-
Liebhafsky reaction [42, 46]. They showed the rate of iodine interphase transport can be
greatly influenced by physical processes and that they can cause the oscillatory state to
be inhibited. By adding this process into the reaction mechanism, iodide is not pure
catalyst anymore, because iodine is consumed in the reaction and therefore, total
concentration of iodine containing species cannot be treated as a constant.

With co-workers they complemented the M (1-8) model with the reaction of
iodine (AS 1) [48] and the oxygen escape (AS 2) [58] from the reaction system:

L. —I (ASD)

2(aq)

0, —0 (AS2)

2(aq) 2g)

22)

As they shown, the reaction of iodine (AS1) removal follows the pseudo-first-
order kinetics:
_ d[IZlaq)] — k

dr AS][IZlaq)] (eq3)
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where [, ]is the iodine concentration in the solution and k ,  is a constant depending

2(aq) 1
on the stirring rate, while the other parameters are fixed.

The simulated the period and number of oscillations showed very good
agreement when they took only a minor modification of several M (1-8) model rate
constants. In [48] they also found a critical value above which oscillation cannot be
observed by numerical simulation. Agreement with experiments was satisfactory.

After Schmitz conformed [52] that the escape of oxygen causes the loss of
iodine into gas phase, Sevéik et al examined oxygen production in the Bray-Liebhafsky
reaction [55]. Experimental data from this paper were used for comparison with the
numerical results in [58] where they tried to answer on the question if the model M (1-8)
with the two reactions of iodine and oxygen removal is able to correctly simulate the
pulsing oxygen gas evolution. At the first approach, they assumed the first-order rate
law, similarly to iodine kinetics (see eq3):

d[o,

0]
d; 9=k AS2 ([Oz(aq)]_[oz(aq.sal) D (eq4)

where k, is a constant depending on experimental conditions.

The results were in satisfactory good agreement with the experiments (Fig. 4),
which may indicate that the kinetics of oxygen removal cannot be described by a first-
order rate law and seems to be a more complicated.

_.E- a
E oaf
=, i |
3 ef i A ‘
v ‘|||
1 1 1 i - | |I
0 0 40 &0 L

TIME , min " e :

Figure 4. Experimental results (on the left side, reprinted with permission from [55]. Copyright (2000)
American Chemical Society) and numerical simulation obtain by the M (1-8) model with the two
reactions of iodine and oxygen removal (on the right side, Reprinted from [58] with permission from
Elsevier.).

R .,

lomin

Timmee wmini
Figure 5. (a)Experimental results (originally from [20]) and (b) numerical simulation [81] obtain by the
Ren et al model. (Reprinted with Editors permission from [81]).
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In 2008 Ren et al [72] analysed model similar to the one Seveik er al did,
except they set all steps to be irreversible and changed a rate constants (Table 7).

They compared simulated results [81] with the experimental results presented
in [20] (Fig. 5). Agreement between these two is qualitatively good; there is only a small
difference in the oscillations shape. This model does not involve a true limit cycle.

Table 7. Model used by Ren et al [72].

I'+10;+2H" — HIO+HIO, (R1)
HIO,+H"+I' - 1,0+H,0 (R2)
1,0+H,0 — 2HIO (R3)
HIO+H +I > 1 +H,0 (R4)
HIO+H,0, —» H"+1'+H,0,+0, (R5)
1,0+H,0, — HIO+HIO, (R6)
HIO,+H,0, — 10,+H +H,0 (R7)
10,+H,0,+H" — HIO,+0,+H O (R8)
L., =1, (R9)

o, —0 (R10)

2(aq) 2(g)

In 2010 Schmitz proposed the new model (Table 8) [76], with a set of rate
constants at 25°C. He analysed [76, 80] iodine concentration impact on the rate constant
of iodine interphase transport and asserted this reaction can be treated as first-order one
only when iodine concentration is much larger than a steady state concentration (the one
in which rates of reaction (O) and (R) are equal). Also, he discussed applicability
conditions of reaction constants and adequacy of each reaction step from Table 6, i.e.
under which circumstances steps can be considered as simple and under which it must
be seen as the complex process consists of the simple steps. In addition, these papers
show that Arrhenius law can be used if one wants to calculate a reaction constant for
some other temperature. In favour goes agreement with measurements by Liebhafsky at
50°C [6] and by Schmitz at 60°C (Fig. 6) [52].

In the model presented in Table 8, reaction (M 7) is replaced by three reactions
(S 7a), (S 7b), and (S 7c). Schmitz highlights that steps (S 7c) and (S 9)-(S 13) are the
minor reactions, but they allow good simulation of the oxygen effect on the oscillations.
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Reactions (S 11) and (S 13) can be found in [29], but since the oscillations can be
obtained without them, they were neglected in the development of the model M (1-8),
while the rates and kinetics law of (S 12) were obtained even by Liebhafsky and
Mohammed [8].

Although, the kinetics of oxygen transport to gas phase is not simple and
involves a nucleation and growth of bubbles, Schmitz used the first-order rate law as it
other authors previously did.

As Bray noticed [2] oxygen production is higher during the step (O), in which
it is not a product, then during (R). This statement was confirmed also in [18].
Simulation of it is thorn in the side. Schmitz claimed reaction BL always takes place
during the reaction (O) and since IOH concentration is higher in the course of (O) then
(R), fifth reaction may be the main source of “characteristic’ oxygen production.
Moreover, the simulations obtained by Schmitz last model are in appreciably agreement
with measurements [18].

Table 8. Model proposed by Schmitz [76].

I'+10,+2H" Z=2 HIO+HIO, (SD)
HIO,+H +I' — [,O+H,0 (S2)
1,0+H,0 22 2HIO (S3)
HIO+H +I 221, +H O (S4)
HIO+H,0, — H'+I'+H,0,+0, (S5)
1.O+H, 0, — HIO+HIO, (S6)
2HIO, &= 1,0,+H,0 (S7a)
1,0,+H,0, — IO, +H +HIO, (S7b)
1,0,+H,0 — 10,+H" +HIO (S7c)
10,+H,0,+H" — HIO,+0,+H,0 (S8)
L, —L, (S9)
0,, —0,, (S10)
HIO,+H,0, — IOH+0,+H,0 (S11)
I'+H'+H,0, — IOH+H 0 (S12)
1'+H*+§02 — IOH (S13)
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Figure 6. Experimental results [52] (on left side) and numerical simulation [80] obtain by the Schmitz’s
model (on the right side). Reproduced by permission of The Royal Society of Chemistry.

3. Differential equations for describing a time evolution of reaction

Generally, the above models can be associated with a set of differential equations
describing the time evolution of the Bray-Liebhafsky reaction. These differential
equations, which describe the rates of individual reactions, are performed directly on the
basis of the
mass-action law. The procedure of differential equations forming will be given for the
M (1-8) model of the Bray-Liebhafsky reaction.

In the case which is of interest, the Bray-Liebhafsky reaction is considered to be
homogeneous. That is, there are no chemical reactions that can be found in several
phases (aggregate states). Also, the Bray-Liebhafsky reaction is deemed to be strictly
determined by its chemism (only by chemical transformations) and that kinetic is not
influenced by physical processes (diffusion, thermal effects, etc.).

3.1. M (1-8) model-Reaction rate equations

In the M (1-8) model, there are eight chemical reactions, three of them are reversible
and five are irreversible. Irreversible reaction is one in which all reactants (starting
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substances) are fully transformed into reaction products. Reversible reaction consists of
two irreversible, one in which reactants are converted into products and another in
which products (of the first reaction) react to become starting substances. Therefore, M
(1-8) model has eleven irreversible chemical reactions. For each of them, reaction rate is
determined and used to calculate overall rate of some chemical species (see below).

As an example, here is derived rate of one irreversible chemical reaction which is
involved in reaction (M 1). Reaction in which reactants of (M 1) are converted into
products is:

I'+10;+2H" — HIO+HIO, (R1)

As one can notice, it is also a first reaction in model proposed by Ren ef al and its rate
(vy) is:

v, = kIO, 1[H* P 1=k, [ ] (eq5)

where k,’ is rate constant. It is rate of reaction when concentrations of all reaction
species, 105, H" and I, are unity ones. In chemistry, it is commonly to denote the
concentration of a species, by putting its chemical formula in square brackets. Exponents
in the relations that describe the reaction rate corresponding stoichiometric coefficients
(numbers which standing in front of a chemical species). If stoichiometric coefficient is
1, it is not displayed. Concentrations of 105 and H' are considered to be negligible
changed in the
Bray-Liebhafsky reaction (i.e. they are constants) and hence, k; is pseudo-constant, since
it contains I0;~ and H' concentrations.

The same procedure was performed for each other chemical species from the
M (1-8) model and the rate of each chemical process are presented in Table 9.

Table 9. Reaction rates and rate constants of M(1-8) model which are commonly used in
numerical simulation of the Bray-Liebhafsky reaction. Concentration of water,
[H,0] = 55 M, is involved in the corresponding rate constants. Also, [/O5 ] = 0.0474 and
[H'] = 0.0958 M are considered as constants and involved in pseudo-constants. [77]

Reaction rate Reaction rate constant Reaction
vi=k [I] ki = 1,375 x 10* min™ [R1)
v_1 = k. [HIO] [HIO,] k. =7,91%10"M "' min™ [R-1
v, = ko [HIOS] [T'] k=4,79 x 10" M™" min™ (R2)
vs = k3 [LO] ks = 5,00 x 10" min™ (R3)
v.s =k 5 [HIO] k3=3,15x10°M " min”' R-3)
va =ky [HIO] [I'] ks = 3,00 x 10" M~ min™ (R4)
voa =k [b] k4= 46,97 min™' (R -4)
vs = ks [HIO] [H,0,] ks= 1,487 x 10* M~ min™ (R3)
Ve = ko [1L,O] [H>0,] k¢ = 5,00 X 10° M~ min™' (R 6)
v; = ky [HIO,] [H205] k7 =2,00 X 10° M~ min™ R7)
vs = kg [H>0] kg = 2,2303 x 10~ min™' (R 8)
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3.2. M (1-8) model- Overall rate equations of chemical species

Let us take as an example H,0,, it is participate in reactions (M 5), (M 6), (M 7) and (M

o .. dlHO,] . .
8). Hydrogen peroxide time derivation, ———=—, i.e. overall rate of hydrogen peroxide
dt
change, is given by the sum of all mentioned reactions, that is,
d[H. O
AHO)_ L, v -y, (OR1)
dt

Here, minus (in the front of reaction rates) indicates that in these reactions hydrogen
peroxide is consumed. But for example, overall rate of I is:

dll']
dt

=V +Vv tve—v =V, =, (OR2)

where + indicates formation of iodide by the first three reactions.
In the same way, overall rate equations for other species are defined:

d[HIO]

0 =V 20, vtV v =2V =V, — Vg (OR3)
d[HIO
M=VI+V6+v8—v_l—vz—v7 (OR4)
dt
d[1,0
L, ]=v2+v_3—v3—v6 (OR5)
dt
dlI
L] =v,-v, (OR6)
dt

In the mathematical sense, concentrations of chemical species can be observed
as independent variables. For an example, [H,0,] = x, [[ '] = xp, [HIO] = x3, [HIO,] = x4,
[1,0] = x5 and [I,] = xs. Presented set of differential equations is to be solved using a
numerical method, that is, with appropriate program package. In Fig. 7, evolution of
chemical species simulated on the basis of the model M (1-8) is given.
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Figure 7. Numerical simulation of evolution of the chemical species concentration on the basis of
M (1-8) models.

4. Conclusions

To summarize, in Liebhafsky papers one may found plenty of reactions that can take a
place in reaction mechanism, but to the best of our knowledge by the model proposed by
Liebhafsky and Wu the oscillations could not be obtained. In papers presenting the models
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by Noyes et al, possible and important reactions are highlighted, but there is no good
agreement with experiments. Maybe extensions of the Treindl and Noyes can give a
better accordance. The
M (1-8) model and its variants represent one realistic model of the Bray-Liebhafsky
oscillatory reaction mechanism that well describes its phenomena and does not contain
any direct autocatalytic or autoinhibition step. Moreover, it is nonradical model, so
radical reactions, which rates are notably large in relation to reaction oscillatory
frequency, are not responsible for oscillations.

Sevéik et al have made major efforts to further upgrade the M (1-8) model by
the involvement of iodine and oxygen interphase transport processes, while Ren et al
analysed the model with a different set of rate constants (with regard to experimentally
obtained ones).

After almost a century of the Bray-Liebhafsky reaction investigation, we still
don’t know answers on many questions. One of the essential questions is how it is that
during the step (O) many times more oxygen is produces than during the step (R) and
still oxygen is not product of the reaction (O). To resolve this question (and many other
disagreements between experiment and theory), maybe we need to add a few parallel
processes.
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Education, Science and Technological Development of the Republic of Serbia, under
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1. Introduction

A commonly adopted principle underlying the studies of self-sustained localized

modes (bright solitons) in various physical settings is that they are supported either by

the focusing nonlinearity [1], or, in the form of gap solitons, by the defocusing

nonlinearity combined with periodic linear potentials [2]. The formation of bright

solitons was reported also in more sophisticated systems, where the nonlinearity

periodically changes its magnitude, and even the sign, along the evolution variable or in
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the transverse direction(s). One thus deals with the nonlinearity management if it
oscillates between focusing and defocusing in the course of the evolution [3], while
transversely modulated nonlinearity landscapes are known as nonlinear lattices [4]. The
latter setting readily supports stable solitons in 1D [5], while it is much harder to employ
it for the stabilization of 2D and 3D solitons [6]. Note also that a hole in a uniform
defocusing background was used as a support for 1D and 2D solitons in Ref. [8], but in a
combination with a linear trapping potential.

Guiding bright solitons by pure defocusing nonlinearities, without the help of a
linear potential, is commonly considered impossible. The primary objective of this Rapid
Communication is to demonstrate that this is nevertheless possible, if the strength of the
defocusing term is modulated in space, growing fast enough towards the periphery. The
existence of bright solitons in this setting is a consequence of the fact that, in contrast to
media with homogeneous nonlinearities, when the presence of decaying tails of the
soliton places it into the semi-infinite spectral gap of the linearized system, where
defocusing nonlinearities cannot support any self-localization, in our case the growth of
the nonlinearity coefficient makes the underlying equations non-linearizable for the
decaying tails. A similar argument explains the existence of embedded solitons inside

the continuous spectrum in self-focusing media [7].

2. Bright solitons from defocusing nonlinearities

We demonstrate that the spatially modulated defocusing nonlinearity supports
stable bright solitons, both quiescent and coherently moving ones, in all three
dimensions. Not only fundamental solitons, but also stable 1D multipoles and 2D vortex
rings are obtained. The model is based on the nonlinear-Schrodinger/Gross-Pitaevskii
equation for rescaled field amplitude ¢ in optical media of dimension D = 1,2, or the
wave function in a Bose-Einstein condensate (BEC) of any dimension:

ifq/ Ix=- (1/ 2)N%q+ s(r)|q[* q. (1)
Here x is the propagation distance or time, = (/,z,7) is the set of transverse
coordinates, N2= 7qh%+ 722+ ]2, and s(r)> 0 is the defocusing
nonlinearity strength that varies in the radial direction. In optics, spatially
inhomogeneous nonlinearities can be realized in various ways [4]. In particular, in
photorefractive materials, such as LiNbQOj5, nonuniform doping with Cu or Fe may

considerably enhance the local nonlinearity [9]. In BEC spatially modulated nonlinearity
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landscapes can be created, via the Feshbach resonance (FR), by nonuniform external
fields [10,11]. We here assume that the strength of nonlinearity grows with radius as
s(r)=(so+ s,r72)explar?) (2)

with §¢,8,> 0, and a > 0 that may be fixed by scaling (we set @ = 1/ 2 below). If
the nonlinearity is controlled by the FR, the divergence of the nonlinearity strength at
infinity implies that the background value of the control field at ¥ = ¥  corresponds to
the exact resonance. In the optical realization with dopants that give rise to the two-
photon resonance, the effective modulation of the nonlinearity may be achieved via the
inhomogeneity of the resonance detuning, controlled by an external field, with the exact
resonance occurring at ¥ = ¥ .

For any D , Eq. (1) with s(r) taken as per Eq. (2) admits particular analytical

solutions for fundamental solitons:

q(r,x)=(a¥s,)"%exp(ibx- ar¥2), (3)
with b= - (Dal 2+ sya%s,), where b is the propagation constant. For §,= 0,
exact solutions for a vortex with topological charge m = 1 in 2D, and a dipole soliton
in 1D are available too:

q(r,x)= 2s o) V2ar exp (ibx+if - ar?/2), (4)
with b= - a(1+ D/2), where azimuthal coordinate f is a part of the solution for
D=2.

The analytical solutions correspond to the particular values of propagation
constant b [multiplying Eq. (1) by q* and integrating, one can prove that the solitons
may exist only for b< 0]. For families of fundamental solitons, a variational
approximation (VA) can be developed in any DD by adopting the ansatz suggested by
the exact solutions, g= A exp(ibx- ar¥?2) (amplitude A is a variational
parameter). Using the Lagrangian of Eq. (1), the VA yields the norm of the fundamental
solitons as a function of b , written here for at s, = 0 and sy= 1:

U° lgr)fdr=- (p/a)’’>(b+ aDi2). (5)
The comparison with numerical results presented in Figs. 1(c) and 3(c) demonstrates
that the variational dependences U (b) are virtually indistinguishable, on the scale of
the figures, from their numerical counterparts for all dimensions. For the soliton's width,
defined as W = 2U " 16 r |q(r)|2dr, the VA gives Wip=W;p/ 2= 2/ (pa)"?,
Wop=(p/ a)l/ 2. Numerically found widths approach these values with the increase
of U , see, e.g., Fig. 5(b).

The steep anti-Gaussian profile of the modulation of the defocusing nonlinearity

postulated in Eq. (2) is not a necessary condition for the existence of solitons. In fact
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s(r)~rD *¢ with arbitrary e> 0, where D is the spatial dimension, is sufficient
[14]. Furthermore, for the exponential profile s (h)= a+ sinh?(h), with any a< 1,
it is easy to find an exact 1D soliton solution w = (1- a) Y?sech(h) with
b=- (1+a)/ [2(1- a)], and for s(h)= cosh?(h) one can find the exact dipole
solution w = 3"2sinh(h)sech?(h) with b=- 5/ 2. The system can be also made
finite, thus presenting a nonlinear counterpart of quantum-dot potentials. An example is
the 1D variant of Eq. (1) with s(h)= (1/ 4)(1+ 3h?)*(1- h?) 3, defined at
hi<1 N which gives rise to an exact ground-state mode,
g(h,x)= (1- h*)? exp(- 9ix/ 4).

Here we report numerical results for the basic version of model (2) with s, = 0
and §° 1. Fundamental solitons are sought for as g(r,x)= w(r)exp(ibx). The
solutions were found using the standard relaxation method that quickly converges to
exact solitons for a properly selected initial guess. The stability of thus found solutions
was investigated by numerical computation of eigenvalues for small perturbations (with
the help of an ordinary eigenvalue solver), using the linearization of Eq. (1), and then

verified through direct simulations of the perturbed evolution.

Figure 1. (Color online) Profiles of 1D solitons: (a) with b= - 10 and different numbers
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of nodes; (b) dipole solitons with different values of b . This and other figures are
displayed for @ = 0.5 in Eq. (2), with red horseshoe-shaped curves showing the
nonlinearity modulation profile. (c) U vs. b for 1D solitons with different
numbers of nodes, kK . For k= 0, this dependence is indistinguishable from its
variational counterpart (5) with D = 1. Here and in Fig. 3(c), stable and unstable
portions of the soliton families are shown by black and green curves, respectively.
(d) Stability (white) and instability (shaded) domains in the (a,b) plane for 1D
solitons with kK = 5. The fan-shaped structure here and in Fig. 3(d) below is a
manifestation of the scaling invariance of Eq. (1).
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As said above, our main result is that, in contrast to the belief that the defocusing
nonlinearity cannot give rise to bright solitons, the inhomogeneous defocusing medium
does support families of stable localized modes. The tails of the solitons of all types
decay at r® ¥ super-exponentially,  irrespective of the dimension:
Wleey » (ar/ 2V2yexp(- ar*/?2), which complies with exact solutions (4).
Note that this asymptotic form does not contain the propagation constant b .

Examples of 1D solitons, with different numbers k of zeros (nodes) in thew(/)
shape, are displayed in Figs. 1(a) and 1(b). The solitons' amplitude increases with |b| s
and the numerical results show that their width, at first, rapidly decreases and then
saturates at |b| ; 20 (as predicted by the VA). For all types of the solitons, their energy
flow (norm) increases with |b| [Fig. 1(c)]. The solitons of higher orders have smaller
norms, which is natural, taking into account the fact that, in terms of the mean-field
description, the fundamental solitons, representing the ground state of the system, must

minimize the chemical potential, - b, for a given norm.

[

1 A
X i

I

hl

¢ i)
A %

Figure 2. (Color online) Top row: Contour plots of |q(h, x)| demonstrating the stable

e |

propagation of the perturbed 1D soliton with k=1, b= - 10 (left), instability of
the one with k= 3, b= - 10 (center), and stability of the complex mode with
k=5, b=- 13 (right). Bottom row: Oscillations of 1D solitons with
k=0,1,2, b= - 20, after the application of phase tilt g= 1.5.

The 1D solitons are remarkably robust. The computation of the stability
eigenvalues demonstrates that the modes with k= 0,1,2 are stable at least up to
b= - 40 [in particular, this fact implies the stability of exact solution (4); it was
checked that exact solution (3) is stable as well]. Only the families with k3 3 feature
instability domains alternating with stability areas. The structure of the instability and

stability domains becomes more complex with the increase of k , see Fig. 1(d) for
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k= 5. We did not find any limit on the number of nodes possible in stable 1D solitons,
hence even very complex structures (with k3 10 ) may be stable. Direct simulations of
the evolution of perturbed solitons verify the predictions of the stability analysis: while
stable solitons keep their shape over distances far exceeding x = 103, their unstable
counterparts transform into irregularly breathing modes that remain tightly confined, see
the top row in Fig. 2.

The physically relevant definition of solitons includes their ability to maintain the
intrinsic coherence in the state of motion, and quasi-elastic collisions. Solitons may be
set in motion multiplying them by exp (igh ), with phase tilt g . As a result, both 1D
and 2D solitons start regular oscillations (see examples for 1D solitons with k= 0,1,2
in the bottom row of Fig. 2) — somewhat similar to matter-wave solitons in the cigar-
shaped traps [12], with the difference that the nonlinearity is repulsive in the present
setting, and the solitons oscillate in the effective nonlinear potential. An equation of
motion for vectorial coordinate R(x) of the soliton can be readily derived in the quasi-
particle approximation:

d’R/ dx*=- 2a(al p)?’?Up exp(2aR*)R, (6)
D=1,2 (here Up is the soliton's norm). As follows from Eq. (6), the squared
frequency of small-amplitude  oscillations of the kicked soliton is
wh =2a(a/ p)P’?Up+ (3a/ 2)q*, which was found to be in a virtually exact
agreement with results of numerical simulations. Further, we applied opposite kicks to
two lobes of a 1D dipole, thus initiating oscillations and recurrent collisions of two
solitons with opposite signs. It was found that the solitons keep bouncing from each
other elastically. Assuming the instantaneous rebound, Eq. (6) predicts the frequency of
the periodic collisions very accurately too. Thus, both 1D and 2D solitons are robust
quasi-particle objects, that maintain their intrinsic coherence in the course of the motion
and interact elastically.

The 2D version of the model gives rise to vortex solitons,
q(r,x)=w(r)exp(imf + ibx) , for all integer values of topological charge m , see
Figs. 3(a) and 3(b). For the same reason as in 1D, the vortices with different m , while
having completely different asymptotic forms at ¥ ® 0, become identical at ¥ ® ¥
(in contrast to vortex solitons in focusing media, that considerably broaden with the
increase of the topological charge [13]). The increase of |b| results in a gradual
contraction of the vortex rings toward r= 0 [Fig. 3(b)]. The energy flow (norm)
carried by the 2D solitons at fixed b decreases with the increase of m [Fig. 3(c)],
similar to the 1D case, cf. Fig. 1(c).
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Figure 3. (Color online) Profiles of 2D solitons: (a) for b= - 10 and different vorticities
m ; (b) for m = 2 and different values of b. (c) U vs. b for different m
[the curve for m = O is indistinguishable from the variational result (5) with
D = 2. (d) The lowest stability (white) and instability (shaded) domains in the
(a,b) plane for vortex solitons with m = 2.

Another essential result is that, due to the defocusing character of the
nonlinearity, azimuthal instabilities, that are fatal for vortex solitons in focusing media
[13], are suppressed in our system. We have found that the solitons with 7 = 0 and
m =1 [including the 2D exact solution (4)] are completely stable, while the vortices
with m > 1 give rise to a complex structure of stability and instability domains. This
structure can be produced upon substituting a  perturbed solution,
g=[wr)+ u(ryexp(inf + dx)+ v (r)exp(- inf + d x)lexp(imf + ibx),
with azimuthal perturbation index 7 , into Eq. (1), and solving the corresponding linear
eigenvalue problem. The structure of the stability domains is displayed in Fig. 3(d) for
vortices with m = 2, that can be destroyed by perturbations with n = 2 at certain
values of b (similarly, at m > 2 the most destructive perturbations pertain to
n=m,m % 1). Note that the stability and instability domains are equidistantly spaced
in b . We stress that conspicuous stability regions have been found for all the considered
values of m . An example of the stable evolution of a perturbed vortex ring, which
keeps its structure over indefinitely long distances, is shown in Fig. 4(a). Unstable
vortex solitons (with 723 2) tend to split into 71 separate unitary vortices, that stay in

a vicinity of the pivotal point, performing persistent rotation around it, which is a
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consequence of the conservation of the angular momentum. Examples for m = 2 and
3 are displayed in Figs. 4(b) and 4(c).

Figure 4. (Color online) (a) Stable propagation of the perturbed vortex soliton with # = 2,
b= - 17. (b) Splitting of the unstable double vortex (m = 2) with b= - 11

into a steadily rotating pair of unitary vortices. (c) Splitting of the unstable vortex

with m = 3, b= - 9 into a rotating set of three vortices.
a (k)
) y | alp) A
= 'l =
= % B==3 -
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K ;
10 ™
[ 1] § [ SO . 2 T o
o ) i a W
P [

Figure 5. (Color online) (a) Profiles of fundamental 3D solitons at @ = 0.5 . (b) The width
of these solitons vs. the norm.

The 3D model also supports bright solitons with rapidly vanishing tails (recall
the 3D model makes sense for BEC, but not in optics, unlike its 1D and 2D

counterparts). Examples of such spherically symmetric fundamental solitons are shown
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in Fig. 5(a). The norm of the 3D solitons increases almost linearly with |b|, in
accordance with Eq. (5), while their width rapidly saturates to the aforementioned VA-
predicted value, Wsp = 4/ (pa )1/ 2 [Fig. 5(b)]. The 3D fundamental solitons are

completely stable in their entire existence domain, as illustrated by Fig. 6.

Figure 6. Isosurface plots drawn at the level of 0.1 max |q| at x= 0 (left), x= 300
(center), and x= 600 (right), showing stable propagation of the perturbed 3D
soliton with b= - 10.

3. Conclusions

Summarizing, it is found that, in contrast to the usual expectations, the
defocusing nonlinearity, without any linear potential, may support families of stable
bright solitons in all dimensions, provided that the nonlinearity strength increases
rapidly enough from the center to the periphery. In addition to the fundamental solitons,
we show that such media support a variety of stable higher-order modes, including 1D
multipoles and 2D vortex rings with all values of the topological charge. If set in
motion, the solitons move and interact as particles. The settings considered here may be

implemented for matter waves in BEC and for light waves in optical materials.
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Abstract. Mechanical lightweight structures often tend to unwanted vibrations due to
disturbances. Passive methods for increasing the structural damping are often
inadequate for the vibration suppression, since they include additional mass in the
form of damping materials, additional stiffening elements or mass damper. This paper
presents a modern concept for active control of smart structures using piezoelectric
materials. The approach is especially well suited for light weight structures and it is
presented through several subsequent steps: modeling (model identification and
numerical modeling), optimization, controller design, simulation and experimental
verification/testing.

1. Introduction

High efficiency, functionality, quality and assuring a high profitability are the main
requirements for products in today's world. In the field of engineering, these properties
are manifested in application of thin and lightweight structures. Mechanical lightweight
structures often tend to unwanted vibration, which may result in disturbing sound
radiation or even in damage of components [1]. Passive methods for increasing the
structural damping are often inadequate, because they always include the use of
additional mass in the form of damping materials, additional stiffening designs or mass
damper.

The concept of active vibration control has become a useful approach in the
recent years, due to improvement of the vibration susceptibility of lightweight structures
with the least possible increase in mass. For the active vibration control, supporting
mechanical structure is supplied with sensors and actuators operated by a controller.
High integration of the structural system with active materials (actuators/sensors) and
control is regarded as a smart structure due to its ability to adapt to environmental
changes. The technology of smart materials and structures, especially piezoelectric smart
structures, has become mature over the last decade. One promising application of
piezoelectric smart structures is the control and suppression of unwanted structural
vibrations [2].
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2. State of the art

Smart structures have been intensively investigated in the past years. In numerous
studies the smart structure community has developed a large variety of sophisticated
analysis approaches, control methods and optimization procedures. A review of the state
of the art of smart structures is given by Chopra [3] and some other examples of
analytical and experimental studies concerning the actuation and vibration control of
smart piezoelectric structures can be found in [4]-[10]. Different approaches to
modeling and vibration suppression of a piezoelectric cantilever beam have been
investigated and reported in the literature. In [11] for example, the effect of different
types of controllers to vibration reduction of the beam have been studied. In [12] the
feedback control with a time delay was used in the investigation of vibration control for
the primary resonance of a cantilever beam. The analytical results are compared with
numerical simulations.

Modeling and controller design techniques presented in this paper are
successfully applied for the vibration suppression of higher bending modes then
investigated in [12], [13]. Proposed controller in combination with augmented plant
dynamics [6]-[8] can be successfully used in the presence of combined disturbances and
for the vibration suppression of even higher modes.

In [13] active vibration control of a flexible cantilever beam was studied using the
Filtered-X LMS algorithm, applied to design a control law for a piezoelectric actuator.
In comparison with this algorithm, we propose in this paper the technique with the
optimal LQ controller and Kalman estimator which results in considerably faster
controlled response in the time domain, and in higher vibration magnitude suppression
in the frequency domain.

Paper by Tjahyady et al. [15] also deals with the vibration control of a flexible
cantilever beam. The control technique applied here is adaptive resonant control. For the
controller design purposes, the model of the beam, i.e. its first three natural frequencies
were estimated using the RLS algorithm. In the present paper the model development
procedure is based on the subspace based identification algorithm (n4sid). The proposed
identification procedure is of special interest if a state space model of the structure is
required for the subsequent design and analysis phases. State space models are especially
convenient for the multiple-input multiple-output (MIMO) control design problems.
Unlike in [15], where only the single-input single-output system was considered, we
propose efficient methodology for MIMO systems. In one of our papers [16] we have
also presented implementation of a user-defined piezoelectric finite shell element in
order to model piezoelectric properties of smart structures. The element efficiency was
tested through several examples of a bimorph piezoelectric beam.

3. Modeling of smart structures
In the overall design procedure of actively controlled smart structures in this paper two

modeling approaches are proposed: experimental model identification, which requires a
real or a prototype structure, and finite element (FE) based numeric approach.
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3.1. Experimental model identification — subspace based approach

The models identified by a subspace based identification procedure are obtained in a
general discrete-time state space form. This form is convenient for the controller design
as well as for the comparison with the models obtained through FE procedure.

The state space representation of an n"™-order system with m inputs and [ outputs
which should be identified from the input-output measurement data can be expressed in
its general deterministic-stochastic form [17]:

X[k +1] = ®x[k]+Tulk]+w[k]
ylk]=Cx[k]+Du[k]+v[k]

ey

Since the subspace identification is based on sampled input/output measurement
sequences u[k] and y[k], the method applies to a discrete-time form of the resulting
state-space model, with discrete-time state and control matrices @ and I', respectively.
The process noise and the measurement noise vector sequences w[k] and v[k] are white
noise with zero mean and with covariance matrix:

wli] T AT _ Q S
£ LUJ[wm 1] —{ST R}. @

The task of the subspace identification is to express the input-state-output relationships
in the state space form (1) and to determine the order n of the unknown system and the

system matrices @€ R™ TreR™, CeR™, De R as well as the

covariance matrices Qe R™", Se R Re R of the noise sequences w(k] and
v[k]. In the subsequent derivations, only the pure deterministic case will be considered
as described in [18]. Measured input and output data are arranged into block Hankel
matrices [19] defined in the following way:

U, uw uy - Uy
u, u, u, u;
W w4 Wy o Wy
U= Uo\zH = ! A3)
Wy Wiy o Wy
Wiy Wip Wiz oor Uy
| W2i1 Wz Upig 00 Upjyjp |

The output block Hankel matrix Y is defined in a similar way. The purpose of writing
the matrix in this manner is to build the relations between the input, output and state
sequences in a matrix form. Using the matrix notation, the system equation can be
written as:
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Y[k]=Gx[k]+ HU[K]. 4
The matrix G is the extended observability matrix built as
C e
Co
G — C(I)z = Rlan (5)
Co

and H is the lower block triangular Toeplitz matrix of impulse responses from u to y:

D 0 0 e 0
Ccr D 0 e 0

H=| C®r Ccr D e 0 |eR, (6)
Co'r CO°’r Co™“r --- D

For a deterministic case the problem is simplified to determining G and H by computing
the singular value decomposition (SVD) of U in the first step

v-rse e, el ol [ o

If matrix U has dimension mXn and rank r, then the partition in (7) is performed as
follows:

P=|:p1 A ‘ P pm:|=[I)ul P,] ®)

Q = |: ql qr ‘ qr+l qm :| = [ Qul QuZ] (9)

where p; are the left singular vectors of U. It can be shown that they are eigenvectors of
UU". Vectors q; are the right singular vectors of U. It can be shown that they are
eigenvectors of u'u. Multiplying (4) by Quz, matrix G can be determined from a

SVD of YQuz. Then matrix C is obtained as the first row of the observability matrix

G, and matrix @ is calculated from: G = 6 ® applying pseudo inverse, where 6 is

obtained by dropping the last row of G. Matrix G represents the matrix obtained by
dropping the first row of G. For the calculation of I and D matrices, (4) is multiplied by
the pseudo inverse of U on the right and by PMT2 from (7) on the left. Thus the equation

is reduced to
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P'YU' =P H (10)

u2 u2 .

After rearranging, (10) can be solved for I" and D using the least squares, see (6). In this
way the system parameters in the form of state-space matrices of the model (1) are
identified using the subspace-based identification method.

3.2. Finite element approach for model development of piezoelectric smart structures

If a real structure or a prototype are not available, which is especially the case in the
early development phases, as well as in design review or optimization phases, another
efficient modeling methodology is proposed, based on the FE approach. The FE based
modeling of piezoelectric adaptive smart systems and structures represents a good basis
for the overall simulation and design. This approach enables both a suitable controller
design [6], [8] and the appropriate actuator/sensor placement [20].

FE based modeling of piezoelectric smart structures and systems relies on a
standard modeling procedure for coupled electro-mechanical behavior. The FE analysis
is based on the finite element semi-discrete form of the equations of motion of a
piezoelectric smart system describing its electro-mechanical behavior. These equations
can be derived using the established approximation method of displacements and
electric potential and the standard finite element procedure. Here the coupled electro-
mechanical behavior of smart structures will be considered. In the formulation used in
this paper the temperature is assumed to be constant and electro-mechanical coupling in
the domain of linear piezoelectricity is considered.

Constitutive equations in the stress-charge form (11) are used for the
development of the equations of motion for a smart structure:

6=Cc—eE, D=e's+kE 11)

with following notations: ¢' =[o,, ©,, ©,, ©,, 0, ©;] mechanical stress

vector, Cexs) symmetric elasticity matrix, &' =[g, €, €, 2¢, 2, 2¢,] strain

22 33 12

vector, E'=[E, E, E,| electric field vector, eexs piezoelectric matrix,
D" =[D, D, D,] vector of electrical displacement and K;xs, symmetric dielectric

matrix. The system of equations which describe electromechanical behavior consists of
the constitutive equations (11) together with the mechanical equilibrium and electric
equilibrium (charge equation of electrostatics resulting from the 4™ Maxwell equation):

D,6+P-pv=0, D,D=0 (12)

where P" =[R B, B] represents the body force vector, v' =[v, v, v,] is the vector

2

of mechanical displacements, p is the mass density and D, and D, are differentiation
matrices:
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9 0 o0 X o 2
ox, ox, ox,
o 9 0
D= 0 i 0 i i 0 ,Diz— — — . (13)
ox, dx, ox, ox, 0dx, o,
o o 2 o 2 2
I ox, ox, o |

Variational statement of the governing equations for the coupled electro-mechanical
problem derived from the Hamilton’s principle represents the basis for development of
the finite element model [21]—[23]. It is obtained in the form:

~[(p8v'v-8"Ce+3¢"¢'E) dV + [ (SE"es+ SE'KE + 5V'F, ) dV
Vv Vv (14)
+ [ 8V'F, d2+8V'F, -

2

[39qd2-8p0=0
2,

where Fq represents the surface applied forces (defined on surface €2;), Fp the point
loads, ¢ the electric potential, g the surface charge brought on surface Q, and Q the
applied concentrated electric charges. Applying the approximation of displacements and
electric potential with the shape functions over an element, representing the structure by
a finite number of elements and adding up all elements contributions, the finite element
semi-discrete form of the equations of motion is obtained:

Mg +D,q+Kq=F =Ef(r)+Bu() (15)

where vector q represents the vector of generalized displacements including mechanical
displacements and electric potential and contains all degrees of freedom:

q' =[] ¢ iu ¢ | ju g1

Matrices M, D, and K are the mass matrix, the damping matrix and the stiffness matrix,
respectively.

The total load vector F in (15) is split for the purpose of the control design into the
vector of external forces Fr and the vector of control forces Fc:

(16)

F=F,+F.=Ef(/)+Bu(r)=B,u. (17)

The forces are here generalized quantities, which include also electric charges or electric
potentials. Matrices E and B describe the positions of generalized external forces f
and the control parameters u in the finite element structure, respectively. Matrix B,
represents the input matrix, and vector u includes all model inputs.

For the controller design purposes equation (15) is accompanied by the output equation
in the form:

y=C,,q+C,q (18)
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where in a general case Coy, represents the output displacement matrix, and C,, the
output velocity matrix. Matrices Cy, and C,, are obtained through an FE procedure by
defining appropriate sensor locations.

Solution of the equation (15) is determined in the form q=@e’” by solving the

eigenvalue problem for a homogeneous case:
det(K—aw'M)=0 (19)

which is satisfied for n different pars @, ¢;, with n=n, being the total number of

degrees of freedom, @ the i™ natural frequency and ¢; the i mode shape vector. The
solution can be represented in the matrix form by the matrix of natural eigenfrequencies
Q (spectral matrix) and the modal matrix ®,,:

o 0 - 0 P [ TR
0 w, - 0 [ 0, 0,

Q= 2 le= T e e 9]0
0 0 - a By Py 7 P,

The tools for modal reduction are also included, which enable development of
appropriate models with reduced orders for the controller design. Based on the modal
truncation, which was adopted as a suitable technique for the reduction of the number of
equations in the FE models, a state space model of an actively controlled structure can
be obtained in the form convenient for the controller design. A limited number of
eigenmodes of interest is taken into account, while the remaining modes are truncated.
Introducing the modal coordinates z

q(0) =®,z(1) €3y
into equation (15), and applying the ortho-normalization with ® M®_ =1,

O KO =Q, A=®'D,®
the damping matrix with Rayleigh damping D, =M+ K , the state space model of

where A represents the modal damping matrix and Dy is

m >

the modally reduced system can be obtained in the form:

L 0 I 0 0 ¢ ”
X = _a A X+ o' u(?)+ O'E ®) (22)

where x(1) =[z i]T represents a state-space vector. With the state and the output

equations, the state space model is represented in the form:
x(t) = Ax(t)+Bu(@) +Ef(r), y=Cx(¢)+Du(t)+Ff(r) (23)

which is convenient for the controller design.
Models of the form (23) obtained through modal reduction should fulfill the
controllability/observability criteria. Through a balanced modal reduction such models
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can be obtained. The task of the balanced reduction is actually to find such state
transformation, which provides equal controllability and observability of retained modes.
In other words, the controllability and observability grammians of the retained modes
are diagonal and equal, and based on this criteria balanced model reduction can be
performed. Ranks of the controllability and observability matrices, although relatively
simple criteria, provide only an answer to the controllability/observability question in
terms “yes” or “no”. As very well known, if the rank of the controllability/observability
matrices is equal to the number of states, the model i.e. the realization is
controllable/observable. This approach gives good results only for lower system orders,
otherwise numerical difficulties may be encountered.

Controllability and observability properties of the state space systems can be
qualitatively expressed in terms of controllability (P) and observability (Q) grammians,
defined in the following way:

* T = T
P=[ABBTeA far, Q=[AMCTCA ar (24)
0 0

P and Q satisfy algebraic Lyapunov linear matrix equations:
AP+PAT =-BBT, ATQ+QA=-C"cC. (25)

For an arbitrary transformation of the states by some transformation matrix, appropriate
grammians are obtained, with the property that the eigenvalues of the controllability and
observability grammians products remain invariant. These invariants are the Hankel
singular values of the system, and they represent the basis of the balanced model
reduction. In balanced realization each state (mode) is equally controllable and
observable and the reduced order model is obtained by truncating the least controllable
and observable modes. For more details the readers are referred to [20].

4. Controller design for smart structures

Here we propose two control techniques for smart structures, with primary aim of
vibration suppression: optimal LQ controller with additional dynamics and model
reference adaptive control.

4.1. Optimal LQ control with additional dynamics and Kalman filter

Optimal controller with additional dynamics includes available a priori knowledge about
occurring disturbance type contained in the additional dynamics [4]. Such an a priori
knowledge is available in terms of type of the disturbance function which has to be
rejected or whose influence should be suppressed by the controller. Periodic disturbances
with frequencies corresponding to the eigenfrequencies of a smart structure can cause
resonance states and their suppression is therefore important.
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As a starting point for the controller design a discrete-time state space equivalent
(26) of the state space model (23) developed through the FEM procedure and modal
reduction is used:

x[k+1]=®x[k]+Tulk]+ew[k], ylk]=Cx[k]+Dulk]+Fwl[k] (26)

with:
T

T
®=c"; r:k”mn;azk“mn 27)
0

0

where T represents the sampling interval for a discrete-time system.

Using the a priori knowledge about the disturbance type, which has to be
suppressed, the model of the disturbance is represented in an appropriate state-space
form, where the disturbance is assumed to be the output of the state-space
representation. The poles A; of the disturbance transfer function are used to define the
additional dynamics using the coefficients of the polynomial:

5(Z)ZH(Z_&T)”% =7 +877 +..+0, (28)

where m; represents the multiplicity of the pole A;. Additional dynamics is expressed in a
state-space form:

X, [k+1]=® x [k]+T e[k]; (29)

where X, is the vector of the state variables for the additional dynamics, e is the error
signal and the state-space matrices of the additional dynamics are:

-6 1.0 - 0 )
-5 0 1 - 0 -5,

o= : o= (30)
—5.,,,1 —5.,,,1
-5 00 0 -5

For multiple-input multiple-output (MIMO) systems additional dynamics is replicated ¢
times (once per each output). In this case the replicated additional dynamics is defined
as:

_ def

_def
® = diag(®,,....®,), T =diag(,....T",) (3D
—_— —_—

gtimes gtimes

The discrete-time design model (®,, I'y) is formed as a cascade combination of the
additional dynamics (®,, I',) or (&), 1:) and the discrete-time plant model (®, I'):

x,[k+1]1=® x, [k]+T ulk]; (32)
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o SR S o L N 33
d_r*c ¢*’ d_o’ d_Xu[k] ()

where @ and T denote respectively ®_ and I', in the case of single-input single-

output systems or @® and I' for MIMO systems. For the design model (32) the
feedback gain matrix L of the optimal LQ controller is calculated in such a way that the
feedback law u[k]= —Lx,[k] minimizes the performance index (34) subject to the
constraint (32), where Q and R are symmetric, positive-definite matrices:

J :%i(xd[k]TQxd[k]+u[k]T Ru[k]) . (34)

k=0

The matrices Q and R in (34) are the designer specified symmetric positive definite
weighting matrices. The feedback gain matrix L of the optimal LQ control law for a
discrete-time state space system is determined through the algorithm for the synthesis of a
linear quadratic (LQ) state-feedback regulator by determining:

L=(R+T'PT) T'PO, (35)
where P is obtained as a solution of the discrete-time Riccati equation [24] in the form:
®'PO-P-@'PT(R+T'PI) I'PO+Q=0 (36)

which, after rearrangement, can be written in the form [4]:

P=Q+®'PO-O'PI(R+I"PI) T'PD. 37)
Additional dynamics lf [%]
L[k ' oalk Tk
Dol@. 1, L) e xlic+ = Ox [kl Tulkefi] |
viig 1 y[k]=Cx[k]

> X[kI=x[kL,(y[kI-Cx[A]) | XIK]
X[+ 1]=OX[k]+Tulk]

Observer

_LI

f 3

Figure 1: Optimal LQ control system with additional dynamics and observer.
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The choice of the weighting matrices Q and R in the performance index is designer
dependant and it is based on the relative importance of the various states and controls.
The trade-off between the control effort and the system response determines the choice of
the weighting matrices. In general, the weighting matrices are chosen in such a way that
large input signals are penalized by increasing the value of the matrix R and faster
response of appropriate state variables is achieved by increasing the values of appropriate
elements in the weighting matrix Q.

In the end the feedback gain matrix L is partitioned into:

L=[L, L,] (38)

so that L; corresponds to the state-space model of the controlled structure, and L, to the
modeled additional dynamics. Block diagram of the optimal LQ control system with
additional dynamics is represented in Fig. 1.

The role of the observer is to estimate the model state variables, which cannot be
directly measured. For the state estimation the Kalman filter can be used. Equations for
the Kalman filter design based on the current estimator assume the state-space equation
of the plant in the form (26) and the measurements depending on the state variables and
influenced by the measurement noise y[k]=Cx[k]+v[k]. The covariances of the

process and measurement noise are denoted as E(wa)ZQw and E(va)zRv,

respectively. Then the Kalman estimator is defined by the following equations:

K[k]1=X[k]1+L_ [k](y[k]-CX[k]), X[k +1] = ®K[k]+Tu[k] 39)

with the Kalman gain matrix:

L, [k]=Pk]C'R}' (40)
and:

Plk1=M,[k]-M, [k]1C" (CM, [k1CT + Rv)’1 CM, [k] 41)

M, [k +1] = ®P[k]®" +£Q & (42)

Matrices P and M are determined by solving equations (41)—(42).
4.2. Model reference adaptive control (MRAC)

Another approach to the controller design suggested in this paper is model reference
adaptive control. Controller design is based on the prescribed reference model, which
defines the desired behavior of the controlled structure. In this case the available
structural model is used for the investigation on the reference model prescription.
Applied control technique is a direct model reference adaptive controller [6], [25],
which includes the innovative integral term in the adaptation law of the adaptive gains
[26], [27] to achieve robustness with respect to the boundness of the system states and
adaptive gains, with small tracking errors. The model reference adaptive controller is
designed as a discrete-time controller.
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With general bounded, unknown and unmeasurable plant and output disturbances
f.[k]and fy [k] respectively, discrete-time model (26) can be represented in the

following form:

x[k +1]=®x[k]+Tulk]+£, [k], ylk]=Cxlk]+Dulk]+f, [k] (43)

For a general discrete-time state space plant model (43) the control objective of the
MRAC system is to find without an explicit knowledge of the state matrices ® and T,
which contain the system parameters, such control law u[k] that the plant output y[k]
follows the output y,[k] of a specified reference model with the least possible error.
Direct robust MRAC algorithm is derived from the general model reference adaptive
tracking problem [25]. MRAC system is based on the reference model, specified by the
designer, which reflects the desired behavior of the controlled structure (Fig. 2). The
reference model is prescribed in a discrete-time state space form:

x, [k+1]=® x, [k]+T,u,[k]., y,.lk1=C,x,I[k] 44

m<m mom m<m

where ®,, and T, represent the discrete-time state and control matrices, respectively, C,,

ny, X1 my, X1

is the output matrix, x,€ R™” is the state vector, u, € R™* the command vector and

y, € R" the output of the reference model.

Reference model

Uy | x,[k+H1]=D,x, [K]+T,u,[K] In
! Yulk1= €y, 141
K., K |« xm
il Plant
S | X[kt 1=Ox AT Tulk AT

ylk]=Cx[k]+ Dulk]+1, [£]

A

K,

Figure 2: General form of a discrete-time MRAC system.
The output tracking error is defined as:
e [k]=y,[k]-ylk]. 45)

The reference model is designed to meet some desired performance properties.
Since its output prescribes the behavior of the plant output, the number of reference
model outputs has to be equal to the number of the plant outputs (p,=p). Otherwise it is
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independent of the controlled plant. Further it is required that the reference model is
asymptotically stable. The model is assumed to be bounded-input/bounded-state stable.
Since the reference model only represents desired behavior of the controlled structure,
the dimension n,, of the reference model state vector may be much less than the
dimension n of the plant state, which is practically the case with large flexible smart
structures. Regarding the stated requirements, the reference model can be designed by
selecting the parameters which provide asymptotic stability. Desired responses of the
reference model can be obtained by an appropriate parameter selection and confirmed
through an iterative simulation and through tuning procedures. Generally it is required
to achieve the desired properties of the reference model and therefore of the controlled
system output, maintaining at the same time the simplicity of the control system. The
lower reference model orders are preferred on one hand due to reduced computational
effort. On the other hand, the simulated prescribed behavior of the reference model must
comply with the real behavior of the controlled plant, i.e. of its model in the simulation.
Too low orders of the reference model sometimes do not fulfill this requirement and
therefore cannot be used to prescribe the controlled behavior which complies with the
realistic behavior of the controlled plant. The task of the reference model selection
becomes therefore a trade-off between the requirement for the lower reference model
order and control algorithm simplicity on one hand, and the requirement that the
reference model represents the realistic possible behavior of the controlled plant.

l f4]

k
llm[k]= X, [k+1]=®x, [k]+T u, [k]+ef[k] ym_[]>

Ymlk]=Cx, []

x,,[k]

-L |e—

0

fIK] | x [k+1]=(@-TL)x [K]+effk] | Ynlk]
¥ulk1= Cx,, 4]

Figure 3: Equivalent representations of the reference model.

With this regard in this paper the selection of the reference model is proposed,
based on the equivalent representation of the closed-loop feedback control system (Fig.
3) with an optimal LQ controller, designed using the procedure explained in section 4.1,
which provides the desired behavior in the sense of the suppressed output magnitudes
subjected to control in the presence of periodic excitations. Realistic prescription of the
desired behavior is possible if the influence of the excitations is taken into account in the
design of the reference model. In such a case the excitations represent the input of the
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reference model and the reference model in turn outputs the optimally controlled
behavior. In Fig. 3 the first block diagram represents the feedback system with the plant
model used for the reference model design. Discrete-time plant model is defined based
on the equations (26) and has the form given in the upper block of the first block-
diagram in Fig. 3. Here f represents periodic excitations with the frequencies
corresponding to selected eigenfrequencies of the plate or acoustic fluid. The feedback
loop is closed by:

u [k]=-Lx [k]. (46)

m m

where L represents the feedback gain matrix of the optimal LQ controller, designed
using the procedure explained in section 2 in such a way that the controller minimizes
the performance index:

1 S T T
J:EZ(X"'[k] Q,x, [kl+u, [k] R u [k]) 47

with symmetric, positive-definite weighting matrices Q,, and R,. An equivalent
representation of the closed-loop reference system in the upper block-diagram is
represented in the lower block-diagram, which corresponds to the reference model
designed to meet the requirements of the desired plant behavior with the reduced output.

With regard to the control objective the realization (P, I') is supposed to be
controllable and output stabilizable, the realization (P, C) is supposed to be observable
and the matrix I" is assumed to have a maximum rank. Then, a discrete-time direct
model reference adaptive law is expressed in the following form:

ulk]=K [k]r[k]

r

=K [k]e [k]+ K [k]x,[k]+ K [k]u,[k] (“48)

where the adaptive gains as well as the vectors ey, X,, and u,, are concatenated within
appropriate matrices of dimensions mxn, and n,X1, respectively:

e [k]
K, [k]1=[K.[k] K [k] K,[k]], rlkl=|x,[k]|. (49)
u,[k]

The control task involves several objectives. The output tracking error e, (45) should
be minimized by the adaptive system. In a general case the output can be affected by an
external disturbance or a measurement disturbance, which are represented by the term
fy[k] in the general plant output equation (43). Disturbance or excitation affecting the
states of the plant f,[k] is included in the state equation (43). The robust stability and
performance of the controlled system in the presence of a wide class of input signals and
input or output disturbances/excitations is the aim of the control. In [6] it was shown
that the adaptive controller is able to maintain small tracking errors in non-ideal
environment. This property reflects the robustness of the adaptive controller with respect
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to boundness of the states, errors and adaptive gains. The adaptive gain K [k] in (26) is

determined as a sum of proportional and integral parts KP and K, respectively:

K, [k]=K [k]+K,[k] (50)

P

According to the basic model reference adaptive algorithm the proportional and integral
gains are adapted in the following way:

K, [k]1=er (0T,

(D

K, [k+1]=er'[k]IT, K,(0)=K,

where T and Tare n,xn, time-invariant weighting matrices and K, is the initial
integral gain.

Another aspect of the control requirements regards the convergence of the
adaptive gains. In the robust model reference adaptive control approach the integral gain
differs from the basic adaptive algorithm in (51). The robust model reference control
system should successfully face disturbances (or the parameter variation viewed in terms
of unmodeled or unknown dynamics). In ideal conditions without disturbances the
integral gain increases as long as the error exists. When the integral gain reaches a
certain stabilizing value the error begins to decrease and it decreases further till it
reaches the zero value. Than the integral gain stops increasing and maintains some
stabilizing constant value. In realistic environment due to disturbances the error does not
reach the zero value and thus the integral gain never stops increasing. Although almost
strictly positive real structures are theoretically proven to be stable in the presence of
high gains, the infinite increase of the integral gains can lead to divergence of the
adaptive control system or to numeric instability in the presence of disturbances. A
modification of the integral gain in (50) by adding a o-term is therefore introduced [6],
[26], in order to guarantee the convergence. Discrete-time form of the robust adaptation
with respect to the integral gain convergence is:

K,[k+1] =ey[k]rT[k]T—cK,[k] . (52)

A condition, which the plant (43) including disturbances or excitations should fulfill
in order to be globally stable with respect to boundness, is that it is almost strictly
positive real [6], [27] and that the disturbances are bounded. In that case the states,
gains and errors involved in the adaptive control are bounded. In order to guarantee
robust stability, perfect tracking is not obtained in general, but the adaptive controller
maintains a small tracking error over large ranges of non-ideal conditions and
uncertainties.

5. Application examples
Implementation of the overall design procedure for vibration control of smart structures is

demonstrated through several examples. Through the experimental application of control
and simulation results, the possibilities of the successful vibration control are shown.
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Examples include vibration control of a clamped cantilever beam, the funnel shaped inlet
of the magnetic resonance tomography, and the car roof.
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Figure 4: Simulated sensor signal (velocity) and control voltage signals of uncontrolled
and controlled (after 4s) system, due to a harmonic excitation force:
F(t)= Asin(2w- fit);
(a) fi=13.4 Hz, (b) ,=72.5 Hz, (c) 3=198 Hz, (d) f4=392 Hz
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5.1. Vibration suppression of a cantilever beam

For the solution of the control task an optimal LQ controller in combination with a
Kalman filter is designed (based on the procedure in Section 4.1.) in such a way that the
vibration amplitudes due to periodic excitation forces with frequencies corresponding to
the eigenfrequencies of the clamped beam, are significantly suppressed in comparison
with the uncontrolled case. Simulation results of the controller design, with periodical
and random excitation forces are represented in Figures 4 and 5.

Simulated exciting forces F(¢) = Asin(2n- fit) exerted to the free end of the

beam were chosen with regard to the resonant bending eigenfrequencies f; of the beam.
The optimal LQ control system was designed with the weighting matrices Q = c'c
and R=0.1x1,,,. For the Kalman filter design, it is assumed in the state estimation

procedure that only the sensor voltage (vibration velocity) is measured. Furthermore, a
plant noise vector (force disturbance) with R =100XI,, and a sensor noise

disturbance with Rv =10 are considered for the definition of the noise correlation
matrices and Kalman feedback gain design.

Diagrams 4(a) — 4(d) represent the uncontrolled and controlled (after 4s)
vibration velocity of the beam, due to harmonic excitation forces with frequencies
corresponding to the 1%, 2™, 3" and 4™ bending eigenfrequency of the clamped beam
respectively, as well as the corresponding control signals (actuating voltages on piezo
patches). The uncontrolled and controlled (after 4s) vibration velocity of the beam due to
a white noise force disturbance and the corresponding actuating voltages on piezo
actuator patches are represented in Figure 5. In both cases, periodical and random
excitation, a significant reduction of the vibration magnitudes can be observed in the
presence of the controller.

50 30

4 actuators |

‘Velocity (mmisac)
Control voltage (V)
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Figure 5: Simulated sensor signal (velocity) and control voltage signals of uncontrolled
and controlled (after 4s) system, due to a white noise force disturbance
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For the purpose of experimental validation, the identified model coupled with the
Kalman state estimator and optimal LQ controller designed based on the identified
model are implemented within a real time configuration. The closed loop system for the
active vibration control of the beam is implemented on the real time data acquisition
platform of the dSPACE system with sampling frequency of 1 kHz. The task of the
control is to suppress the vibration magnitudes of the sensor signal in time domain an
accordingly to reduce the resonance peaks in the frequency domain. Therefore,
investigations are carried out both in the time domain and in the frequency domain by
means of the experimental rig represented in Figure 6.

For the analysis in
the time domain
the shaker,
represented in
Figure 6, is used.
The shaker is
connected to the
tip of beam with a
rubber band, in
order to excite the

beam with
periodic  forces.
The sinusoidal

excitation  signal
for the shaker is
generated in
. Je= Simulink and lead
out through the
dSPACE DAC
board. The
frequency of the
sine signal corresponds to the eigenfrequen-cies to be controlled. The excitation
frequencies for the experimental investigation were fine adjusted experimentally to the
values which cause greatest vibration magnitudes, so that disturbances correspond to the
system’s actual resonant states. The response of the sensor for the uncontrolled and
controlled system (after 4s) and the corresponding control signals in the time domain are
represented in Figure 7. Diagrams shown on the left hand side represent the velocity
magnitudes of the beam measured by dSPACE ADC board and diagrams shown on the
right hand side represent the voltages at the piezo actuator patches generated by
dSPACE DAC board. These results were obtained using the hardware-in-the-loop
system with the dSPACE Real-Time Interface platform. The experimental results show,
that the application of the control results in an obvious reduction of the vibration
amplitudes.

Figure 6: Experimental rig for validation of the control system
based on the identified model
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Figure 7: Sensor signal (velocity) and control voltage signals of uncontrolled
and controlled (after 4s) system, due to a harmonic excitation force:
F(t)= Asin(2w- fit); (a) fi=14.5 Hz, (b) £,=72.6 Hz, (c) f3=202 Hz

Successful performance of the controlled system is demonstrated for the case of the
initial displacement disturbance type as well. Free vibrations of the beam caused by an
initial displacement applied to the tip of the beam are comparable with impulse
disturbance vibrations. The free vibration response (velocity) of the open-loop and
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closed-loop system subjected to an initial displacement of 8mm is measured using the
laser vibrometer at the point, which is located 22 mm away from the free end, and it is
represented in Figure 8. Designed controller attenuates significantly the magnitudes of
the free end displacement. The closed-loop 5% settling time is equal to 0.3 s, which
reveals a great improvement of the response attenuation when compared with the open-
loop one (7.9 s).
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Figure 8: Free vibration response (velocity) of the controlled and uncontrolled system

The effect of the control is also documented in the frequency domain by obtaining
frequency response functions from measured input and output signals. The frequency
response functions between the sensor signal (laser vibrometer) as the output and the
impulse excitation by an impact hammer as an input were determined using the
experimental rig represented in Figure 6, in this case with the hammer instead of shaker.
The free end of the beam was excited using the impact hammer and the response from the
sensor was measured, for both controlled and uncontrolled case. Controlled and
uncontrolled frequency response functions are represented in Figure 9 for the frequency
range of up to 500 Hz. The figure shows significant vibration suppression in terms of the
peak amplitudes reduction for the controlled eigenfrequencies. Especially in the lower
frequency range, the designed controller significantly reduces the peak magnitude at the
first resonant frequency for approximately 32dB.
B

Conbroled
warilec
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Figure 9: Frequency response of the controlled and uncontrolled system
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5.2. Vibration suppression of an MRI tomograph funnel shaped inlet
Control structure in this application example is a funnel shaped piezoelectric shell

structure, which represents the inlet part of the magnetic resonance tomograph (Figure
10) used in medical diagnostics.

Actuator 1L E 1 Sensor 1R

Sensor 1L§\@ ) _- %Actuator 1R
Sensor2L & Sensor 2R
i Actuator 2R
Actuator 2L ]
% Sensor 3R
Actuator 3L Actuator 3R
Sensor 3L

Figure 10: Magnetic resonance tomograph Figure 11: The finite element mesh of the
funnel with actuator/sensor placement

One major problem in MRI equipment is the high-level noise that a patient must
undergo during the medical treatment. The aim of the control is an attempt to reduce the
noise by suppressing vibration of the magnetic resonance tomograph. The Lorenz force
acting on the copper coils surrounding the cylindrical body of the tomograph excites the
vibrations of the cylindrical housing. These vibrations are also transmitted to the funnel-
shaped inlet of the tomograph. The need for the noise reduction through the vibration
suppression imposes the idea that the vibration control of the complex funnel-shaped
shell inlet of the tomograph can contribute to the overall vibration suppression of the
device and therefore to the noise reduction. Since the vibrations transmitted from the
copper coil around the cylindrical body of the tomograph to the funnel are viewed as a
secondary source of the noise, their suppression plays an important role in the noise
reduction. The present research and experimental results regard the field of the vibration
suppression. Control is achieved using piezoelectric actuators and sensors glued to the
surface of the funnel. The finite element mesh of the funnel with locations of the
actuators and sensors is shown in Figure 11.

Vibration modes in the frequency range of interest corresponding to the modally
reduced numeric model are controlled in the presence of excitations with frequencies
corresponding to the eigenfrequencies of the funnel. Due to possible resonance
occurrence this represents the worst case. Numeric model of the funnel is obtained using
the finite element approach and modal reduction (as explained in the Section 3.2) in
order to obtain a state space model convenient for the controller design. Vibration
control of the selected modes in the sense of the vibration amplitudes suppression is
performed applying two proposed control techniques: optimal LQ tracking system with
additional dynamics (Section 4.1) and a direct robust model reference adaptive control
(Section 4.2).
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Active vibration suppression of the funnel is achieved by piezoelectric patches
used as actuators and sensors. Each of the six actuators represents a group consisting of
four piezoelectric patches (function modules), whereas each of the six sensors is a single
piezoelectric patch. Function modules are made of piezoceramic films (PZT film Sonox
P53), with standard dimensions 50x25x0.2 [mm].

Controller verification and testing was performed for several different cases. Here
some representative results of the control implementation are presented.

For a single input single output case, selected actuator/sensor pair A2R—-S1R (see
Figure 11) is considered. In order to achieve vibration suppression of the sensor response
magnitudes, in the presence of the sine excitation with the frequency equal to the first
eigenfrequency (fi=9.573 Hz), an optimal LQ controller with additional dynamics is
designed, where the design model has order 13, and the weighting matrices are selected
as: Q=0.001 I,3x3 and R=100. Experimental results of the vibration suppression are
shown in Figure 12, which represents the sensor response and the control signal.
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A more general control case regards the simultaneous control of the first three
eigenfrequencies. The task of the control system is to suppress vibration magnitudes
measured by sensors in the presence of sinusoidal excitation, the frequency of which can
be equal to any of the first three funnel eigenfrequencies, or to the combination of these
sinusoidal signals.

Additional dynamics takes into account all three funnel eigenfrequencies of interest
included in the reduced order state space model (fi=9.573 Hz, f,=23.333 Hz, fi=
31.439Hz). Design model developed based on this additional dynamics was used to
design a controller for a multiple input multiple output case. The sensors SIR, S2L and
the actuator A2R were considered. The controller was tested under different excitation
conditions and selected results, time responses of the sensors and the controller signal,
are represented in Figures 13 and 14.

Based on the procedure for adaptive controller design described in Section 4.2, a
direct robust model reference adaptive control was applied to the funnel-shaped structure
in order to suppress the vibrations caused by excitations which are assumed to be
sinusoidal with frequencies corresponding to selected eigenfrequencies of the funnel.
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Coefficient ¢ in the modified robust algorithm (52) enables a stable control
algorithm in the sense of convergence of the outputs, states and adaptive gains (see
Figure 18). It is chosen to be 6=0.1. For a SISO case the coefficients of the reference
model are chosen in the following way: A,= -3, B,=1, C,=3. Actuator/sensor pair
A2R-S1R is considered. For the presented simulation results obtained with the FE based

state space model of the funnel appropriate elements of the matrices T and T are
selected to be 1000. Excitation sin(2wf))r is considered. Uncontrolled and controlled
output is represented in Figure 15. Zoomed portion of the controlled response is
represented in Figure 16. Actuator signal and adaptive gain K. are represented in
Figures 17 and 18, respectively.

5.3. Vibration suppression of a car roof

Vibration suppression of a car roof with attached piezoelectric patches using the optimal
LQ controller with additional dynamics is demonstrated through a numerical simulation
for a test structure. Piezoelectric patches attached to the surface of the car roof are used
as actuators and sensors. Excitation by shakers at prescribed points is intended for the
experimental investigations (Fig. 8).

Figure 19: Passenger compartment and inner surface of the car roof with attached
piezoelectric patches and exciting shakers

FEM model including the piezo-electric effects of the actuator/sensor groups was
obtained using the FEM software COSAR [28]. Based on the generated FEM mesh, an
optimization of the actuator/sensor placement was performed under consideration of the
eigenmodes of interest and the controllability index. For the controller design a modally
reduced state space model was used, which takes into account five selected
eigenfrequencies: fi=48.45Hz, f,=51.12Hz, f3=63.23Hz, f4=64.67Hz and fs=68.00Hz.
Using the control concept with optimal LQ controller, additional dynamics and Kalman
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potentials of the control strategy. The results are represented in Figure 20.

The comparison of the uncontrolled and controlled cases shows significant
reduction of the vibration magnitudes in the presence of the controller. The controller
was also compared with the standard optimal LQ controller without additional dynamics
which compensates for the presence of the periodic sinusoidal excitations with critical
frequencies. The comparison shows much better vibration suppression in the presence of

the controller with additional dynamics.
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Figure 20: a) Controlled and uncontrolled responses of the sensor patches.
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6. Conclusion

An overall concept for active control of smart structures using piezoelectric materials is
presented in this paper. The approach is especially well suited for light weight structures
and it is presented through several subsequent steps: modeling (model identification and
numerical modeling), optimization, controller design, simulation and experimental
verification/testing. The effectiveness of the concept is demonstrated trough application

examples.
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Abstract. In this paper, they are presented recently obtained results which
are related to applications of fractional calculus in dynamics- specially
stability and control issues.In recent years, there have been extensive research
activities related to applications of fractional calculus (FC), in nonlinear
dynamics, mechatronics as well as control theory. First, they are presented the
new algorithms of PID control based on fractional calculus (FC) and optimal
procedure in the position control of robotic system with 3 DOFs driven by DC
motors. The objective of this work is to find out optimal settings for a
fractional pr*p” controller in order to fulfill proposed design specifications
for the closed-loop system, taking advantage of the fractional orders, « and
S . The effectiveness of suggested optimal fractional PID control is

demonstrated with a suitable robot with three degrees of freedom as the
illustrative example. Also, this paper proposes a robust fractional-order
sliding mode control of a 3-DOF robot system driven by DC motors.
Primarily, a conventional sliding mode controller based on PD? sliding
surface is designed. Numerical simulations have been carried out to show the
proposed control system's robustness properties as well as compare the
significance of the proposed control which resulted in reducing output
oscillations (chattering-free) of the given robot. Simulations also include
comparison fractional-order PD sliding mode controller with standard PD
sliding-mode controller. Also, it is proposed sufficient conditions for finite
time stability for the (non)homogeneous fractional order systems with time
delay. New stability criteria for this class of fractional order systems will be
derived using a recently obtained generalized Gronwall inequality as well as
“classical” Bellman-Gronwall inequality. Last,a numerical example is
provided to illustrate the application of the proposed stability procedure.

1. Introduction

Fractional calculus (FC) is a mathematical topic with more than 300 years old history,
but its application to physics and engineering has been reported only in the recent years.
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The fractional integro-differential operators are a generalization of integration and
derivation to non-integer order (fractional) operators. It is remarkable the increasing
number of studies related with the application of fractional controllers in many areas of
science and engineering, where specially fractional-order systems are of interest for
both modeling and controller design purposes. It has been found that in interdisciplinary
fields, many systems can be described by the fractional differential equations i.e. in the
fields of continuous-time modeling, fractional derivatives have proved useful in linear
viscoelasticity, acoustics, rheology, polymeric chemistry, biophysics robotics, control
theory of dynamical systems, electrical engineering, bioengineering and so on, [1-3].
Also, robots today are making a considerable impact on many aspects of modern life,
from manufacturing to healthcare. Mobile robots, underwater and flying robots, robot
networks, surgical robots, and others are playing increasing roles in society, [4].
Moreover, robots are important components in automation systems and new solutions on
the system level often result in new requirements on the robot control. Sometimes new
automation concepts ask for big changes in the design of the robot control, as for
example in the case of automation concepts based on collaborating robots [5]. Thus,
robot control development has made it possible to improve the quality of robot-based
manufacturing and increase the productivity of robot automation. At the same time the
robot control development has made it possible for the robot manufacturers to reduce the
cost of the robots and introduce robots in applications with high requirements on motion
performance. Without the efforts made to refine the robot control, there would not be
one million robots working in industries world-wide today. Unlike the industrial robotics
domain where the workspace of machines and humans can be segmented, applications
of intelligent machines that work in contact with humans are increasing, which involve
e.g. haptic interfaces and teleoperators, cooperative material-handling, power extenders
and such high-volume markets as rehabilitation, physical training, entertainment. In
that way, robotic systems are more and more ubiquitous in the field of direct interaction
with humans, in a so called friendly home environment. For example, providing contact
sensing on the whole body of a robot is a key feature to increase the safety level of
physical human-robot interaction. One of these robotic systems capable of operating in
human friendly environments is NeuroArm robot, Fig.1.
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Figure 1. NeuroArm robot system,Laboratory of Mechanics Figure 2. Model of NeuroArm with 7 DOFs
at Faculty of Mechanical Engineering in Belgrade

150



Further results on applications of fractional calculus in nonlinear dynamics — Stability and control issues

This robotic arm possesses seven degrees of freedom, which described with six
parameters for rotating and one parameter for translating, Fig.2. Within NeuroArm
Manipulator System there are a rich set of options that enable scientists and engineers to
configure your robot that will meet the needs [6,7].

Besides, in classical control theory, state feedback and output feedback are two
important techniques in system(robotic), control. Specially, due to its functional
simplicity and performance robustness, the PID controller has been widely used in the
process industries. Design and tuning of PID controllers have been a large research area
ever since Ziegler and Nichols presented their methods in 1942, [8]. Specifications,
stability, design, applications and performance of the PID controller have been widely
treated since then [9,10].

However, in the recent years, emergence of effective methods to solve differentiation and
integration of noninteger order equations makes fractional-order systems more and more

attractive for the systems control community. The fractional controller P/ £p* 3], the

fractional PD%controller [11], the fractional PI%controller [12], the CRONE
controllers [13,14], and the fractional lead-lag compensator [15] are some of the well-
known fractional order controllers. In this paper, we suggest and obtain new algorithms
of PID control based on fractional calculus (FC) in the control of robotic system driven
by DC motors. The objective of this work is to find out suitable settings for a fractional

PI?DP controller in order to achieve better transient response as well as fulfill
proposed design specifications for the closed-loop system, taking advantage of the
fractional orders, @ and .

Also, sliding-mode controller (SMC) is a powerful tool to robustly control
incompletely modeled or uncertain systems [16] which has many attractive features such
as fast response, good transient response and asymptotic stability. The conventional SMC
law guarantees robustness of the sliding manifold if the model uncertainties are bounded
with known bounds and comply with the matching condition. Once the system states hit
the sliding surface, they stay there, and the equivalent system dynamics are predefined
with a reduced order. However, SMC has some disadvantages related to well known
chattering in the system. Chattering is undesirable in the control of mechanical systems,
since it causes excessive control action leading to increased wear on the actuators and to
excitation of the high order nonmodeled dynamics. Therefore, chattering must be
eliminated from the SMC system. Since chattering is caused by the discontinuous
control, there exist several techniques to reduce high switching amplitude, [17].
Recently, fractional-order sliding mode control technique, authors, Monje et al. [18] has
been successfully applied for robot manipulator , as well as in [19], or in [20] results of
combining sliding mode control and fractional order derivative is considered in two
different approaches. In this paper, we suggest and obtain chattering-free fractional
PD“ sliding-mode controller in the control of robotic system driven by DC motors. In
that way, one has used a fractional-order sliding surface to design a fractional-order
sliding mode controller for chattering-free tracking the given robot system.
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Finally, some results of the stability criteria of fractional order systems with time-
delay as well as free-delay are presented. Particularly, they are obtained and
presented  sufficient conditions for finite-time stability for (non)linear
(non)homogeneous as well as perturbed fractional order time-delay systems.
Several stability criteria for this class of fractional order systems are proposed
using a recently suggested generalized Gronwall inequality as well as “classical”
Bellman-Gronwall inequality. Some conclusions for stability are similar to those of
classical integer-order differential equations. Lastly, numerical examples are given
to illustrate the validity of the proposed procedure.

2. Preliminaries on the fractional calculus

The fractional integro-differential operators-(fractional calculus—(FC)) are a
generalization of integration and derivation to non-integer order (fractional) operators.
The idea of FC has been known since the development of the regular calculus, with the
first reference probably being associated with Leibniz and Marquis de I’Hopital in 1695.
Both Leibniz and L"Hospital, aware of ordinary calculus, raised the question of a
noninteger differentiation (order n=1/2) for simple functions. It had always attracted
the interest of many famous ancient mathematicians, including L'Hospital, Leibniz,
Liouville, Riemann, Griinward, and Letnikov [1-3]. In that way, the theory of fractional-
order derivative was developed mainly in the 19" century. Since from 19" century as a
foundation of fractional geometry and fractional dynamics, the theory of FO, in
particular, the theory of FC and FDEs and researches of application have been
developed rapidly in the world. The modern epoch started in 1974 when a consistent
formalism of the fractional calculus has been developed by Oldham and Spanier,[1], and
later Podlubny,[3]. Applications of FC are very wide nowadays, in rheology,
viscoelasticity, acoustics, optics, chemical physics, robotics, control theory of dynamical
systems, electrical engineering, bioengineering and so on, [11-20].

The modern epoch started in 1974 when a consistent formalism of the fractional
calculus has been developed by Oldham and Spanier [1]. The theory of FC is a well-
adapted tool to the modeling of many physical phenomena, allowing the description to
take into account same peculiarities that classical integer-order models simply neglect.
The main reason for the success of applications FC is that these new fractional-order
models are more accurate than integer-order models and fractional derivatives provide
an excellent instrument for the description of memory and hereditary properties of
various materials and processes due to the existence of a “memory” term in a model.
There exist today many different forms of fractional integral operators, ranging from
divided-difference types to infinite-sum types, Riemann-Liouville fractional
derivative,Grunwald—Letnikov fractional derivative, Caputo’s, Weyl’s and Erdely-Kober
left and right fractional derivatives and so on, Kilbas et al.[21]. The three most
frequently used definitions for the general fractional differintegral are: the Grunwald-
Letnikov (GL) definition, the Riemann-Liouville (RL) and the Caputo definitions, [1-3].
First is the GL definition i.e Grunwald-[22], Letnikov [23] developed an approach to
fractional differentiation based on the definition
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A )
GLfo<x>=1g3%, AF(x)= Y (—U"@f(x—jh), h>0, (1)
0<] jl<eo

which is the left Grunwald-Letnilov (GL) derivative as a limit of a fractional order
backward difference. Similarly, we have the right one as

(th(x))

GL Dx f)= %115} he

AL f(x)= D (=) (i}f()ﬁjh), h<0, (2)
0<] jl<eo

As indicated above, the previous definition of GL is valid for a > 0 (fractional
derivative) and for a < O (fractional integral) and, commonly, these two notions are
grouped into one single operator called differintegral. The GL derivative and RL
derivative are equivalent if the functions they act on are sufficiently smooth. For
generalized binomial coefficients calculation for € Rand kell ywe can use the

relation between Euler’s Gamma function and factorial, defined as
(aj_ a ala-1).(a-j+1) I(a+1)

j) jfa-j) j! T r(j+)T(a—j+1)’ (0)=1 ¥

If we consider n=t—a/h,where a is a real constant, which expresses a limit value,

1 L i o
D ()= lim — -1)’ t—jh), 4
6104 f (@)= lim - ,Z(:) (-1) (}.]f( jh) O
where [x] means the integer part of x, a and ¢ are the bounds of operation for

one may write

GLDaof ,f(t). For numerical calculation of fractional-order derivatives we can use the
following relation (5) derived from the GL definition (4). This approach is based on the
fact that for a wide class of functions, three definitions—GL, RL, and Caputo’s — are
equivalent. The relation to the explicit numerical approximation of ¢ -th derivative at
the points kh, (k= 1,2, . . .) has the following form, [3]

N(x)

(DI f(x)= H Z b f(x= jh) 5)

where L is the "memory length", h is the step size of the calculation,

o3[

[x] is the integer part of x and bﬁia) is the binomial coefficient given by
ta +a 1t ) (1o
it =1, b = (1—7};;1 ) 7
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For expression of the Riemann-Liouville definition, we will consider the Riemann-
Liouville n-fold integral for ne N,n >0 defined as
t ., i

n “n=1

J.J. J. ” f(#n)dndt,..dt,_ydr, =

aa a aa
n—fold

1
F(n)

[e=2y"r(2)az.

Fractional Riemann-Liouville integral of order ¢ for the function f(¢) for r,ae R

can be expressed as follows

-1

t

_ 1 a

rela (1) RLDaaf([)z—J.([_T) f(z)dr, C))
I(a)?

Here, I'(.) is the well known Euler's gamma function which is defined by the so-called

Euler integral of the second kind:

[(z)= J.e”zzfldz, zel (10
0
For this function the reduction formula holds, for z e [J \{0,—1, —2,—3,...} :
I'(z+1)=zI(z), =>T'(n+D)=nmn-D!=n! nell, (11)

The second important property of the gamma function is that has simple poles at the
points z=-n, (n=0,1,2,...). Another important relationship for the gamma function is

the Legendre formula:
T(2)T(z+1/2)=72*'T(22), 22#0,-1,-2,..., (12)

Taking z=n+1/2 in previous relation one can obtain a set of particular values of the
gamma function:

\/;F(Zn+1) B 7 (2n)!
22" T(n+1)  2%'nt
For the case of 0<a <1,¢>0, and f(f)being a a causal function of 7, the fractional

integral is presented as

[(n+1/2)= (13)

t
SN | f(7)
r. Do f(t)__l“(a)-'.—(t_r)ladr’ O<a<l, t>0 (14)

Moreover, the left Riemann-Liouville fractional integral and the right Riemann-Liouville
fractional integral are defined respectively as
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Wl (0= D () =g [0 @ a9
1 b 1
I8 f ()= oDy f(t)zm j (r=1)"" f(7)dr, (16)

where @ >0,n—1<a<n. Furthermore, the left Riemann-Liouville fractional
derivative is defined as

1 d" | n-a-1
T [=2)"" 1 (2)az, (17

a

RLDer (t) =

and the right Riemann-Liouville fractional derivative is defined as

a _ (_1)" d" _ n—a-1
RLD,,bf(t)——F(n_a)dt,,j(f 1) f(z)dr. (18)

where n—1<a <n, a, b are the terminal points of the interval [a,b] , which can also be

—o0,00 . Also, for the RL derivative, we have

. d" @ ) d"f(t

lim RLDf(r) 4 TO hd tim RLp@ £ (1) _dT0 (19)
a—(n-1)* n-1 a—n" dr"

The RL fractional derivative of a constant C takes the form

(1-a)

D¢ C=C—F"—
RL"a,t F(l—a)

%0 (20)

But,the definitions of the fractional differentiation of Riemann-Liouville type leads a
conflict between the well-established and polished mathematical theory and proper
needs, such as the initial problem of the fractional differential equation, and the nonzero
problem related to the Riemann-Liouville derivative of a constant. A certain solution to
this conflict was proposed by Caputo first in his paper [24].The Caputo fractional

derivatives are defined as follows. The left Caputo fractional derivative is
t

a 1 n-a— n
cDa,,f(f)=mI(f—T) Y (2)dz, @D
and the right Caputo fractional derivative is
a (_1)" b n—a-l .(y)
cDr,bf(f)=m.[(f—f) [ (z)dr, 22)
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where f(") (r)=d"f(r)/dt" and n—1<a<nel™. By definition the Caputo
fractional derivative of a constant is zero. Previous expressions show that the fractional-
order operators are global operators having a memory of all past events, making them
adequate for modeling hereditary and memory effects in most materials and systems.
Moreover, for the Caputo derivative, we have

n—1
lim ¢D%x()= axm D" Vx(a) (23)
asmn-n* ! dr"!
n
and lim CD%x(r) =X 24)
aon ! dar"

where obviously, ., DY, ne (—oo,+o<>) varies continuously with n, but the Caputo

derivative cannot do this. Obviously, the Caputo derivative is more strict than Riemann-
Liouville derivative, one reason is that the n-th order derivative is required to exist. On
the other side, initial conditions of fractional differential equations with Caputo
derivative have a clear physical meaning and Caputo derivative is extensively used in
real applications. The Riemann-Liouville fractional derivatives and Caputo fractional
derivatives are connected with each other by the following relations:

SIGIPAN®)

k-a
T(k-a+l) (1-a) 29

rRLDf (t)= D2y f (1) +
k=0

n—1 k (k)
@i (=1)" £ b)
RO S ()= c Dy f (t)+kzz(:) [(k-a+1)

(b—1)" (26)

The Caputo and Riemann-Liouville formulation coincide when the initial conditions are
zero,[1-3]. Besides, the RL derivative is meaningful under weaker smoothness
requirements. Also, the RL derivative can be presented as:

rDIf(6)=D"DET" f(1), ae[n-1n), (27)

and the Caputo derivative
D& f=DI"D" f(t), aen(n-1,n), (28)

where ne Z +,Dn is the classical n -order derivative. For convenience, Laplace domain

is usually used to describe the fractional integro-differential operation for solving
engineering problems. The formula for the Laplace transform of the RL fractional
derivative has the form:

o n—1
[e reDE f () =5F(s)= s p DET F(1),y 29)
0 k=0

156



Further results on applications of fractional calculus in nonlinear dynamics — Stability and control issues

where for @ <0 (i.e., for the case of a fractional integral) the sum in the right-hand side
must be omitted). Also, Laplace transform of the Caputo fractional derivative is:

ot n—1

[e" D f@dr=s"F(s)= Y s* ' fB©0), n-1<a<n (30
0 k=0

which implies that all the initial values of the considered equation are presented by a set

of only classical integer-order derivatives. Besides that, a geometric and physical

interpretation of fractional integration and fractional differentiation can be found in
Podlubny’s work [25].

3. Mathematical model of a robotic system with DC motors

Robotic system is considered as an open linkage consisting of n+1 rigid bodies [Vl]

interconnected by n one-degree-of—freedom joints formed kinematical pairs of the fifth
class, Fig.3, where the robotic system possesses n degrees of freedom. Here, the
Rodriguez” method [26], is proposed for modeling kinematics and dynamics of the
robotic system. The configuration of the mechanical model of robot can be defined by

the vector of joint (internal) generalized coordinates g of dimension n, (q) =

(q".q%....¢g"" , where relative angles of rotation (in case of revolute joints) and relative
displacements (in case of prismatic joints). The geometry of the system has been defined

by unit vectors ¢;, i=1,2,...,j,.,n where unit vectors Ei are describing the axis of

rotation (translation) of the i-th segment with respect to the previous segment and as
well as vectors p; and p;;, where are usually expressed in local coordinate systems

connected with bodies, ( [)l.(“),( [)l(l.i)). The parameters & ¢ =1-¢ denote parameters

for recognizing joints é—’i,g’i =1-¢,, & =1-prisnatic, O—revolute. For the entire
determination of this mechanical system, it is necessary to specify masses m; and
tensors of inertia J; expressed in local coordinate systems. In order that the kinematics
of the robotic system may be described, points 0;,0; are noticed somewhere at the axis

of the corresponding joint (i) such that they coincide in the reference configuration. The
point (O, is immobile with respect to the (i—1)-th segment and O] does so with

respect to the i —th one; obviously, for a revolute joint (i), the points O, and 01.’ will
coincide all the time during robotic motion. For an example, the position vector of a
point of interest FH can be written as a multiplication of matrices of transformation

[A i, j} , position vectors p;; and é:iqi(?i is expressed by
n( i

@) =37+ &d) =3 [T A (A7) +4 (°)) Gb

i=1 =1\ j=1
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where appropriate Rodriguez’ matrices of transformation are

[400,]= [I]n{t«zj.’”)}2 (1-cosq?)+[ 4 ]sin(q”) (32)
and
0 —egj e
(e(jj))z(‘féj’enj’e{j)T’[‘37”)} ej 0 e (33)

~ej e 0
Also, it is shown,[27], regardless of the chosen theoretical approach, that we could start
from different theoretical aspects (e.g. general theorems of dynamic, d Alembert's
principle, Langrange’s equation of second kind, Appell's equations etc.) and get
equations of motion of the robotic system, which can be expressed in the identical
covariant form as follows

n

> ag @i+ Y Tapi@d®e =0 i=12...n.000 (34)

a=1 a=1p=1
where coefficients Qgp  are covariant coordinates of basic metric tensor
Xi . .
[aaﬁJe R and Faﬂ’}, a,B,y=12,..,n presents Christoffel symbols of first kind.
Generalized forces (; can be presented in the following expression (35) where
c ng Nb AW Ha . . o .
0,07 ,07,0;",0; denote the generalized spring forces, gravitational forces, viscous

forces, semi-dry friction and generalized control forces respectively

0, :QI.C +Ql.g +QP+QI.W+QI"’, i=12,..,n (35)

Figure 3.0pen-chain structure of the robotic multi-body system

Further, on Fig 4. is the equivalent circuit of a DC motor represented.
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Figure 4. The equivalent circuit of a DC motor

The next equation describes the given circuit

Ri(t)+L 40 +ems;(t)=u,(t), i=1,2,3

dt (36)

where R;,L;,i; and u, are respectively resistance, inductivity, electrical current and

voltage. Electromotive force is ems;(¢) = k,dq,, / dt where k, =const and g,,(¢) is

generalized coordinate of a DC motor. If there is a reductor with a degree of reduction
N; thanis g (r)=N,q,(t), i=1,2,3 . It can be assumed that

Q! ()= Nk, i (1) (37

where k,, = const is the torque constant. If the equation of robotic system is combined
with (37) next equation can be written

A(@)§+C(q,q)=NK,i =i=[NK,]" A(q)i+[NK,]" Clg,q) (38)
this in combination with (10) becomes
(39)

L[NK, ] (Ag)j+ Alq)7)+ L[NK,]" Cq.q)+ +R[NK, ] (A(@)G+Clg,¢)+ K, Ng=u,(t)

In state space equation (39) is given with

Y OREXC 0
(1) |=| x,1) +0 u (1) (40)
(0] | A (x()n(x() | [ ~AT(x(1)
where
A'(9)=L[NK,]" Alg) @1
n(q.¢.4)=L[NK, | A@i+L[NK, ] C(q.9)+R[NK, " (A(q)j+C(q.q)+K.Ng
and
x(t) =[x,(1), x, (1), x,(D] = [q(1), 4(2), ()] € R (42)
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4. Non-integer order control of robotic system
4.1 Optimal conventional and non-integer order PID control algorithm

Here, it is used robotic system with 3 DOF’s ,Fig. 5, driven by 3 DC motors.

(i eTz
— o - L
F e i
- s Oy =
3 & .
(N '
s { WmNa N
" | i,
| i LYy ?ua_'
ui ¢ fe
| -
1 L) “
X ok

Figure 5. Robot with 3 DOF’s

It is proposed the new algorithms of PID control based on fractional calculus (FC) in
the control of robotic system driven by DC motors. Here, we introduce the next

optimality criterion
J= .“e(t)|dt (43)
where is e(r) =g, (1)—¢(r) . Conventional PID control algorithm is

u(t) =k e(t)+k, 4 iy +k [eyar (44)
dt

while the fractional PID control algorithm is given by

u(t) =k, e(t)+k,D[e()]+ kD " [e()]; ., € [0,1] (45)

PD _PID [P} _PID
- L]

O o] A o] Aa=1 A

i) = Rgeit] 4+ T Selr) & TelXeir), ¢ oy DY)

Figure 6. Classical types of PID and fractional PID controller

The integrator term is s%, that is to say, on a semi-logarithmic plane, there is a line
having slope —200dB. /dec. Clearly, selecting & = =1, a classical PID controller can
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be recovered. The selections of ¢ =1,=0, a=0,=1, respectively corresponds

conventional PI & PD controllers. All these classical types of PID controllers are the
special cases of the fractional PI aDﬁ controller,Fig.6. It can be expected that the

controller PI aDﬁ may enhance the systems control performance.

In order to determine the optimal parameters, a simulation of a given robotic system
with three degrees of freedom driven by DC motors was made in Simulink-Matlab
environment. For control of the system, voltage is used where parameters are set for
each DC motor. The idea was to first determine the optimal parameters for the
conventional PID control algorithm (its gains) and then to use these optimal parameters
(gains) as known parameters for fractional PID control algorithm in order to determine
optimal exponents of differentiation and integration. For calculation of fractional
derivatives and integrals the Crone approximation of second order was used

03 3.981s% +20.155 +1 06 15.85s% +40.21s +1
s> +20.155+3.981 s* +40.21s+15.85

09 63.1s* +80.23s +1 01 25.125% +50.62s +1

5> +80.235+63.1 s* +50.62s> +25.125

(46)

Figure7. Optimal trajectory g, Figure 8. Optimal trajectory ¢,

4.1.1 Simulation results for position control

Desired value of vector of generalized coordinate was ¢, = (r11)- Optimal parameters

for conventional PID and optimality criterion in this case had the following values
(results are given for each DC motor):
k, =50k, =8,k, =4,J, =04672, k,, =50,k,, =12.k, =4.J, =0.8591  (47)

kpB :So’kd3 :4’ki3 :8,-]3 =0.3602

Optimal parameters for fractional PID and optimality criterion had the following values:
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k, =50,k, =8,k, =4,a, =1, =0.2,J, =0.3836
k,,=50.k,, =12.k,=4,a,, =1.a,=02,J,=0.7401 (48)
k, =50k, =4k, =8a,=1a,=08J,=03555

On Figs. 7,8 and 9 are given coordinate-time diagrams for previous optimal parameters
—position control.

Figure 9. Optimal trajectory ¢,

4.1.2 Results for tracking control

Also, we are interested in tracking control, so, we introduced vector of generalized
coordinates
0.5sin(t — pi/2)+0.5
g, =| 0.5sin(t— pi/2)+0.5 |
0.5sin(t — pi/2)+0.5

(49)

Optimal parameters for conventional PID and optimality criterion had the following
values:
k,, =50,k, =8,k, =22,J, =0.1067 (50)
k,,=50,k,, =12,k =18,J, =0.2115
k,, =50k, =18,k =22,J, =0.1856
Optimal parameters for fractional PID and optimality criterion had the following
values:
Dk, =50k, =8k, =220, =0.6,0;,=0.2,J, = 0.0788
2)  k,, =50k, =12k, =18,,, =0.6,@, =0.2,J, = 0.1386
(SD
3k, =50,k =18k;=22,0,; =1, 0, =1,J,=0.1856
On Figs.10,11 and 12 are given coordinate-time diagrams for optimal parameters-
tracking control.
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e i T i

Figure 10. Optimal trajectory ¢, Figure 11. Optimal trajectory ¢,
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Figure 12. Optimal trajectory ¢

As, it is expected that the controller PI aph may enhance the systems control
performance. It has been shown, that using fractional PID gives better transient response
as well as steady state error, and better tracking performances in position and tracking
control of robotic system with 3 DOFs driven by DC motors.

4.2 A chattering-free sliding mode controller design based on fractional order
PD “ sliding surface

Moreover, it is suggested here and obtain chattering-free fractional PD % sliding-mode
controller in the control of robotic system driven by DC motors. It is well-known that
sliding-mode control is used to obtain high-performance robust control nonsensitive to

disturbances and parameter variations. For a nonlinear MIMO system represented in so-
called normal form

i=f(x)+G(x)u (52)

one general sliding mode control law is, [28]
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u=-[4G(x)]" 4] f (x)-%,]-[ 4G (x)] Osen(s) (53)

consisting of continuous and discontinuous control part where switching

T . .
surfaces s = [s, S5 ...s”] are defined as s = A(x—xd ) , X; being the vector of desired
states and Q positive definite diagonal matrix. Elements of the matrix A are chosen so
that i-th component of sliding hypersurface has the structure

d (r-1)
si=(3+/11) (x,—x;), i=1,2,..,n (54)
t

where 1; is the order of the i-th subsystem and 4; >0. More general, considering (14)

as a nominal (known) plant dynamics, we can write
= f(x)+ F(x)+][ G(x)+G(x) Ju (55)
where f(x) and G(x) represent uncertainties or unknown plant dynamics. Choosing

as it is common Lyapunov function candidate to be

1 T
V==s's 56
5 (56)

we have
§==PQsgn(s)+(P-I)A[ %, - £ (x) ]+ Af (x) (57
where P:=A(G+G~)(AG)7]. Regardless whether G =0 and/or ];7&0, with an

appropriate choice of ), we can obtain §' § <0 for || >0, and this result indicates
that the error vector defined by the difference x—x, is attracted by the subspace

characterized by s =0 and moves toward the origin according to what is prescribed by
s =0, [28]. In most cases this leads to good results but there are some disadvantages
like chattering phenomenon. This problem could be overcome by approximating sgn(.)
function in control law (53) with sat(.) or tanh(.) but here, we want to suggest one other
solution. Instead of replacing sgn(.) function, we suggested to apply fractional sliding
surface in order to decrease output signal oscillations. In this paper, it can be shown that
without special tuning of Q for perturbed plant case, using just fractional order sliding
surface and values of ( suitable for nominal plant, model uncertainties can be
successfully compensated. For 3-DOF robotic system a conventional sliding manifold is
of a first order PD structure s, =d5cl./dt+/1iii, i=1,2,3 where )~Cl. =X, —X,,. There
were some examples of using fractional P/ and PID structures, [29] and now we propose

. o
a fractional PD” gtructure as follows:

s, =d°%, [dt” + A%, i=1,2,3 (58)
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4.2.1 Simulation results for position control-based on fractional PD @ sliding-mode control

Simulation studies have been carried out to verify the effectiveness of the proposed

fractional PD“ sliding-mode control. Some experimental simulations were undertaken
for@=0.7,0.8,0.9,0.95,0.99, and we found that best results are obtained with

a=0.95, (Fig.13). Transfer function s” was realized by Crone’s approximation, [30]

=diag [5,5,5] as well as ﬂ=(5,2.5,2.5)T. The parameters of robot

system and DC motors are set as:

and matrix Q,,,

m =62712kg , m, =5.5575 kg, m, =1.8970 kg (59)
J,=05273, 7, =0.5273, ], =0.0164, J , =1.0441, J , =1.0441, J_, =0.0073,
J5=0.1016, 7, =0.1016, J_, =0.0016] kgm’ |
K,=2, K,.=1, N,=1,R =1
To verify the robustness of the proposed fractional sliding/mode control we have applied
corresponding parameter variation as follows:

A A Am
T 29.92%, ST2 =9.47%, =5 =9.75%
ml m2 I’l’% (60)
AK AK . AK, AK,
< =5%, 2 =10%, —*==10%, < =20%
Kei Kmi Kei ei
AJ AJ, AJ AJ AJ, AJ
©= 2 =14.39%, —L= 17.88%, —2=—22=939%, —Z=12.83%
‘,xl vl zl JXZ 2 J:Z
AJ AJ, AJ
2= 0 2 14.20%, —2=17.32%
‘,r3 v3 ‘,:3
Nominal case:
step responses with FrPD surfaces sliding surfaces- nominal plant
1 T T T T T T T T T 2 T T T T T T T
[ e | | | | | | | o
12— = == =l =~ = o — 4 =+ — + — L e e e Ml e el Tt [l S
\/\ | | | | | | | | | | | | | | | | |
1 | L L L L L L L
] | | | | | | | : :
. | | | | | | reference | [
| |
| | oY
| |
| |
|
|
|
|
!
t[s]
Figure 13. Sliding surface s2- nominal case Figure 14.  Step response g, (¢) with PD® gurface

Simulation results are depicted in Figs 13 to 17 , where black lines are desired
trajectories. Here, they are presented simulation data for case i=2, g¢5,s,,(Fig-s.13-

17). Particularly, we present comparing results for second coordinate g, responses with
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PD and fractional PD? cases and same all other conditions, for nominal object, Fig.13
and perturbed object, Fig.16.

nominal plant responses

f T

| | reference

T T

‘ ‘ ‘ PD sliding surface
12— -k - -4 —

| | |

|

|

‘ ‘ —— FrPD sliding suface

Figure 15. Stabilizing using sliding mode control PD and fractional PD% -nominal case

Perturbated case:

sliding surfaces

) b 1 f
| — osf- —
,! rr"n. T | | q
| MWNM 05— :**\ : I T
3 | S R I
Ll | | | | | | | | |
| O e R B R R B BRI
10 || : | | | | | | | | |
| | | | | | | | |
|[ 2 el i B Al il il el il el
gl | | [ T T e T I B
LI 2 L I I L L | L L L
@ ] 0 1 2 3 4 5 6 7 8 9 10
t[s]
Figure 16 Stabilizing using sliding mode Figure 17 Sliding surface s2- perturbed case

control PD and fractional PD% -perturbed case

As, it can be seen from previous figures a sliding mode control with fractional sliding
surface is more robust to parameter perturbations and what is most important to
emphasize output oscillations are almost completely attenuated and overall quality of
transient response is much better. In that way, we obtain chattering-free tracking of the
given robot system.

Also, the question of stability is of main interest in control theory. In the rest of this
paper, some recently obtained results of the stability criteria of fractional order system
with time delay as well as free delay are presented. They are employed the “classical” and
the generalization of Gronwall Belmann lemma to obtain finite time stability and
stabilization criteria for proposed class of time delay system. Also, they are presented
some results on the stability of fractional order time delay systems. Finally, a numerical
example is given to illustrate the validity of the proposed procedure.
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5. Stability of fractional order time-delay systems

Recently, there have been some advances in control theory of fractional (non-integer
order) dynamical systems for stability questions such as robust stability, bounded input—
bounded output stability, internal stability, finite-time stability, practical stability, etc.
Despite intensive researches, the stability of fractional order including time-delay
systems remains an open problem.As for linear time invariant integer order systems, it is
now well-known that stability of a linear fractional order system depends on the location
of the system poles in the complex plane. Applying Matignon's stability theorem [31]
one can check the system stability through the location in the complex plane of the
dynamic matrix eigenvalues of the state space like system representation. But, in the
case of fractional order time-delay system the characteristic function of a fractional-delay
system involves fractional-order powers and exponential elements. As we know, due to

the presence of the exponential function e **, this equation has an infinite number of

roots, which makes the analytical stability analysis of a time-delay system extremely
difficult. In the field of infinite-dimensional fractional-delay systems most studies are
concerned with the stability of a class of distributed systems, whose transfer functions
involve \/; and/or e_\/g,[32]. Many examples of fractional differential systems with
delay can be found in the literature. Simple examples such as
G(s)= exp(—a\/;) /s, a>0 arise in the theory of transmission lines [33], or one can

find in [34] fractional delay systems with transfer function linked to the heat equation,
which leads to transfer functions G(s) such as

co sh(x\/g )
s sinh(\/s)

In the literature few theorems are available for stability testing of fractional-delay
systems. Chen and Moore [35] analyzed the stability of a class of fractional-delay
systems, whose characteristic function can be represented as the product of factors of the

Ze_a\g

G(s) = e
b(1—e20Vs)

(0<x<1) or G(s)= 61)

form (as“ +b)e“ +d = 0where the parameters a,b,c,d , and r are all real numbers.

They considered the following delayed fractional equation

d¥y(r)
ar?
where ¢ and Kp are real numbers and 0 < g < 1, time-delay 7 is a positive constant and
all the initial values are zeros. The stability condition is that for all possible ¢, r and Kp

1/
%W(E(Kp) qjso (63)

r

K,y(t-1) (62)

where in the inequality, W(.) denotes the Lambert function such that W(x)ew(x) =Xx.

However, such a bound remains analytic and is difficult to use in practice. Further,
Matignon's theorem has been used in [36] to investigate fractional differential systems

167



168

MIHAILO LAZAREVIC

with multiple delays stability. For forced fractional-delay systems, it is usually required
that BIBO stability holds, or equivalently, the characteristic function has roots with
negative real parts only, while for unforced autonomous fractional delay systems, the
stability usually means asymptotical stability in the sense of Lyapunov, namely, the
characteristic function has roots with negative real parts only. Bonnet and Partington
[37,38] analyzed the BIBO stability of fractional exponential delay systems which are of
retarded or neutral type. Stability conditions can be expressed in terms of the location of
the poles of the system. Also, they have handled the robust stabilization of fractional
exponential delay systems of retarded type. However, all these contributions do not
provide universally acceptable practical effective algebraic criteria or algorithms for
testing the stability of a given general fractional delay system. Although the stability of
the given general characteristic equation can be checked with the Nyquist criterion or
the Mikhailov criterion, it becomes sufficiently difficult when a computer is used since
one should find an angle of turn of the frequency response plot for an infinite variation
of the frequency @. A visual conclusion on stability with respect to the constructed part
of the plot is not practically reliable, since, along with an infinite spiral, the delay
generates loops whose number is infinite. As evidenced from the literature, the lack of
universally acceptable algebraic algorithms for testing the stability of the characteristic
equation has hindered the advance of control system design for fractional delay systems.
This is particularly true in the case of designing fixed-structure fractional order

controller, e.g., PI ZpP . On the other side, Hwang and Cheng [39] proposed a
numerical algorithm that uses methods based on the Cauchy integral theorem and
suggested the modified complex integral, where the stability of a given fractional-delay
system can be achieved by evaluating the proposed integral and comparing its value with
zero. Recently, in paper [40] the authors have studied the stability of fractional order
nonlinear time-delay systems for Caputo’s derivative and they extended the Lyapunov-
Krasovskii theorem for the fractional nonlinear systems. Also, the Razumikhin theorem
for the fractional nonlinear time-delay systems for Riemann-Liouville and Caputo
derivatives was extended in [41] because the Razumikhin stability theory is more widely
used to prove the stability of time-delay systems, since the construction of Lyapunov-
Krasovskii functional is more difficult than that of the Lyapunov-Razumikhin function.
Further, in [42] the authors proposed and proved the Mittag-Leffler stability theorem in
the presence of both the Riemann-Liouville or the Caputo fractional derivatives and
delay. The obtained theorems contain particular cases of the fractional calculus versions
as well as the time-delay ones.

5.1 Finite-time stability of fractional order time-delay systems

All classical stability concepts, e.g., Lyapunov stability, asymptotic stability, bounded-
input-bounded-output (BIBO) stability, deal with systems operating over an infinite
interval of time. Finite-time stability is a concept that was first introduced in the 1950s
and it deals with systems whose operation is limited to a fixed finite interval of time and
requires prescribed bounds on system variables. Moreover, the boundedness properties of
the system responses are very important from the engineering point of view. That is to
say, enable system trajectories to stay within a priori given sets for the fractional order
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time-delay systems in state-space form, i.e. system stability from the non-Lyapunov
point of view is considered. From this fact and author best knowledge, he firstly
introduced and defined finite-time stability for fractional order time-delay systems, [43-
48]. Sufficient conditions of this kind of stability, for particular classes of fractional
time-delay systems are derived.We also need the following definitions to analyze the
case of fractional order systems with time-delay from non-Lyapunov point of view. First,
it is introduced [43] the fractional order homogenous system with time-delay in state-
space

d%x(t) _

«Djg (1) =———==Ax(+ Ax(t-7), 0<a<l, (64)

dt
with the associated function of initial state:

x) =y, (e C[-71,0], -7<1<0. (65)

Also, for the case of multiple time delays the state of fractional order systems can be
presented as:

n
wDpg X(1) = Ax()+ ) AX(-T), 0T <, <T3<.<T<..<T,=A,  (60)
i=1
and with the associated function of initial state:
x() =y, (1), —A<r<L0. (67)
Here, *Dg,z (.) denotes either the Caputo fractional derivative chff,; (.) or the Riemann-
Liouville fractional derivative RLDtZ,t(')- Also, Lorenzo and Hartley [49] considered

variable prehistories of x(t) in 1<0, and its effects were taken into account in the

fractional derivative in terms of the initialization function. Moreover, using the short
memory principle and taking into account the initial function (65) one can obtain correct
initial function, where it is assumed that there is no difficulty with questions of
continuity of solutions with respect to initial data (function).

Definition 1.[43] The system given by (64), satisfying the initial condition (65) is finite
stable w.r.t {to ,J,0, S,T}, d < € ifand only if:

il <o, )
implies: ||x(t)|| <g , Vtel, (69)

Definition 2.[43] The system given by (66),satisfying the initial condition (67) is finite
stable w.r.t {to,J,J,e,A}, o < & if and only if:

||\|lx||c<5, Vte Ju, JA=[—A,O]ER, (70)

implies: "X(t)" <€, Vte J, (71)
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Theorem 1.(A)[43] The autonomous system given by (64) satisfying the initial condition
(65) is finite-time stable w.r.t. {5, £,T,t, ,J,}, o <eg, if the following condition is
satisfied:
A a
A a O max (t_to)
O, t—1,
Fmax (1=10)" | “r(aen) £15, Yiel. (72)
I(a+1)

where G, (.) is the largest singular value of matrix (.), namely:

o-rﬁax = Omax (AO ) + Omax (Al ) ’ (73)
and F(. ) is the Euler's gamma function.

B) The autonomous system given by (66) satisfying the initial condition (67) is finite-
time stable w.r.t. {5, &AL, J,}, 0 < &, if the following condition is satisfied:

A (@] GEmlw)”
13 Fmax (1=10)" | “r(an) <els, Viel. 74)
C(a+1)

where O'ZAmax(»)=zo'i(Ai) of matrices A;, i=0,1,2,...,n where Oy.(.)is the largest
i

singular value of matrix A;,i=0,12,...,n.
The above stability results for linear time-delay fractional differential systems are
derived by applying Bellman - Gronwall’s inequality. In that way, one can check system
stability over finite-time interval.
Remark 1. If =1, one can obtain the same conditions related to integer order time-
delay systems

% =Ayx()+ Ax(t—71), (75)

t

as follows ([50]):

oA = )1 O (1)
1+%4e 1 <e/s, wviet. . I'(2)=1 (76

Further, it is shown in [44] that fractional order time-delay state-space model of PD%
control of Newecastle robot can be presented by (64) in a homogenous state-space form.
It is suggested using the Caputo version of the fractional derivative, where introducing

T .
x(t)=(x;,x,,x3,x,) one can obtain:

0 1 0 0|x0 0 0 0 0][x¢-1)
D x(t) = 0 1 0fxm| | 0 0 0 0| xe-1 a7
! 0 0 1| x0® 0 0 0 0f|x@-7)

-17.8 0 —12.8 0] xy(H)] |-0.04 004 0 0] x,(t-7)
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Also, one has to check the finite-time stability W.I.t
{t ,=0,7 ={0,1},6 =0.06,6 =100,7 = 0,1}, where v, (1)=(0.05,0,0, 0 . Vte[-0.1, 0].

From initial data and the Eq. (77) , one can easily obtain:

1) - < 0.06,
Orax (A9) =21.95, G (A) =0, Gy =21.95,
J—F(2+1) Nz _Jx
22r(1+1) 22 2
From the Theorem 8(A), it immediately follows
1 21.951,1/2

r(1+1/2)= =0.88,  (78)

21.951."2
21957, " | 0866 <100/0.06, = Te=0.05 s, (79)
0.866

T, being the “estimated time” of finite-time stability. Also, in paper [51], a stability test

procedure is proposed for nonhomogeneous fractional order systems with pure time-
delay

a
0 X(t) = ax® =Apx(t)+ Ax(t—7)+Byu(t), O<a<l, (80)
dr*
with the associated function of initial state, (65).
Definition 3. The system given by (80) satisfying the initial condition (65) is finite
stable w.r.t {8,¢€,8,a,,t,,J,}, d<e& ifand onlyif:

[Wsllc <o
(1)
[et)||<e, . Vvtes, a,>0 (82)
implying:
lx@)|<e,  vtelJ (83)

Theorem 2. The nonautonomous system given by (80) satisfying the initial condition
(65) is finite-time stable w.r.r. {J,€,,,,.t,,J.}, d<e,if the following condition is
satisfied:

mlx(l 1))

O'rﬁax(t_IO)a I'(a+1) U to)
+W e +7 (a+1)_£/5 Vie J. (84)

where 7)] =byey, /0, ||B0|| =by and I'(.) Euler's gamma function.

Recently, we have studied and reported in paper [45] a stability test procedure for linear
nonhomogeneous fractional order systems with pure time-delay. New stability criteria
for this class of fractional order systems were derived by applying Bellman-Gronwall's
approach using for the starting point a recently obtained generalized Gronwall
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inequality reported in [52].In that way, one can check system stability over finite-time,
which is illustrated using a suitable illustrative example.

Theorem 3. ([52] Generalized Gronwall inequality) . Suppose x(t),a(t) are
nonnegative and local integrable on O0<¢<T,someT <+oo,and g(t) is a

nonnegative, nondecreasing continuous function defined on
0<t<T, gt)<M =const, a>0 with
t
x() <a@®)+ g(t)j (t- s)oH x(s)ds (85)
0

on this interval. Then

t n
o (T () no1
x(z)Sa(z)+_([ ;W(t—s) a(s) |ds, 0<i<T  (86)

Corollary 2.1 of Theorem 9, [52]  Under the hypothesis of Theorem 11, let a(t) be a

nondecreasing function on [0, T) . Then it holds:
x(r) < a()Ey (g (0)1*) (87)

Theorem 4. The linear nonautonomous system given by (80) satisfying the initial
condition x(1) =W, (1), —7<t<0 is finite-time stable w.r.t. {d,£,e,,J,.}, d<e if
the following condition is satisfied:
a s
Cmax 01! ¥ .0t
14+ -mxXO0L_\p (6 ax 01 |+ 20— </ 6, Vie Jy={0,T 88
( F(a+1) a’( max 01 ) F(a+1) 0 { }’ (88)
where 7°,,=a,b,/5, and G, (.) being the largest singular value of the matrix (.),

where: 0,01 = Omax (A) + Fmax (41) and E, (.) denotes Mittag-Leffler function.

Theorem 5. The linear autonomous system given by (64) satisfying the initial condition
X(t) =y, (1), —7<t<0 is finite-time stable w.r.t. {5, £, JO,}, J < ¢ if the following

condition is satisfied:

o
[lﬂ'%]Ea(O’maxOlla)Sg/a, Vte Jo, (89)

Specially, the problem of finite time stability with respect to some of the variables

(partial stability) is considered. Particularly, we are interested in partial stability i.e of
the stability of motion with respect to some of the variables y(7) where are
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T T 1\
X = (xl,xz,...,xn) = (yl,yz,___,ym,zl,_“,zp) = (y ,Z ) (90)
m>0,p=20, n=m+p
This class includes problems of stability to the components of the vector y(¢) of the

equilibrium position x =0 of a nonlinear system of ordinary differential equation

y=Y(t.y.2), 1=Z(t.y.2), oD
Moreover, for the vector functions Y and Z, of given system is usually assumed to be
continuous in the domain

120, |y|<h |2 <L, <eo (92)

and its solutions are assumed to be unique and z-continuable,where are h,L.e R*

known real positive numbers,[53] .Also, one can introduce,

v, (0)=[v, (6).%.(9)]. 93)

where is usually assumed for Vie J

Definition 4: A solution x(#)=0 of the time delay system given by homogenous state

v.(0)|<L %94)

el o ol el

sup
-7, <0<0

equation (80) (u(r)=0, V) satisfying initial condition x(t)=w, (1), —7) <t<0

<o ,forall 21y, is

where HV’yHCSh’ Vel

a) y —stable if for any €>0 and f; =0, there exists 8(£,t0)>0 such that
¥ o - <& implies
|y(t:t0. 9, (@)]| < €, forall 121, (95)

b) uniformly y-stable if & does not depend on Iy .
Definition 5: The time delay system given by homogenous state equation (64) (when
u(t)=0, Vt) satisfying initial condition x(t)=y, (1), -1y <t<0 where

‘V’z <L Vte J is finite time partially stable w.r.t {5,€,IU,J,}, d<eé if and
only if

(ol +lv-olc ) <8 96)

imply: |y to.w ()| < €, VieJ. 97

Definition  6: System  given by  (80)  satisfying initial = condition
x()=y (1), -7y <t<0 where ‘V/z c<L- Vte J is finite time partially stable

w.rt {d,e,0,.t,,].}, d<e ifand only if
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(ol +lv ol ) < 8 ©98)
and [u@)|< e, . Vield (99)
imply |yt 0)| <€, Vield. (100)

So, it is proposed finite time partial stability test procedure of linear (non)autonomous
unknown time delay fractional order systems. Time-delay is assumed to be unknown but
its upper bound is assumed to be known. System is given as follows

d“[y(t)jz AOyyAOyz (Y(t)j_i_ AlyyAlyz [Y(t_r)j+|:30y:lu(t) (101)
dr”* Z(t) AOzyAOZZ, Z(t) AlzyAlzz Z(t—T) By,

Specially, we consider stability of the following subsystem

d% (y(t
;;()) = Ay YO+ Agy 2 (1) + Ay vt =)+ Ay 2(1=7) + By u(r)  (102)

Theorem 6: [54] The linear nonautonomous system given by (102) satisfying initial
condition x(t) =W, (t), =7y <t<0, where |y, <L Vte Jy, is finite time

partially stable w.r.t. {8,€,a,,J).}, J<e, if the following condition is satisfied

1+ lu):yta Ea(ﬂ): ta)+ ﬂ*uota + ”Zzta (1+10)S8/5 Vie JOZ[O’T] (103)
[(a+1) Y [(a+1) T(a+1)

where ts, is defined by Hsy =0 poyy ¥ O ALyys
Ao=a,byl 8, Ly=LI06,1y, =ap,y, +as;,, of)being the largest singular value
of matrix, and E,(z) the Mittag-Leffler function which is defined by:

s k

Z
E = ——— , Rea >0, 0. 104
(2 ,;ZOF(W“) e Z€ (104)

6 Discussion

New algorithms of PID control based on fractional calculus (FC) are studied and
presented. We introduced an optimal procedure in the position control of a 3 DOF
robotic system driven by DC motors as well as a robust fractional-order sliding mode

control. As expected, the controller P/ aph may enhance the systems control
performance. It has been shown that using fractional PID gives a better transient
response and a steady state error as well as better tracking performances in the position
control of a 3 DOF robotic system driven by DC motors. The optimal parameters for the
conventional PID control algorithm (its gains) are determined first and they are used as
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initial, known parameters for the fractional PID control algorithm in order to determine
the optimal fractional exponents of differentiation and integration. After that, the
effectiveness of the suggested optimal fractional PID control is demonstrated with a
suitable robot with three degrees of freedom as an illustrative example. In addition, we
proposed a robust fractional-order sliding mode control of a given robot system driven by
DC motors where a fractional order sliding surface PD? is introduced. [t is shown that a
sliding mode control with the fractional sliding surface is more robust to parameter
perturbations and, what is most important to emphasize, the output oscillations are
almost completely attenuated and the overall quality of the transient response is much
better. While Lyapunov methods have been developed for stability analysis and control
law synthesis of integer linear systems and have been extended to stability of fractional
systems, only few studies deal with non-Lyapunov stability of fractional systems.
Further, in this paper, we have studied and presented the finite time stability of
(non)perturbed (non)linear fractional order time-delay systems. Specially, the problem of
finite time stability with respect to some of the variables (partial stability) is considered.
New stability criteria for this class of fractional order systems were derived using a
recently obtained generalized Gronwall inequality as well as “classical” Bellman-
Gronwall inequality to obtain finite-time stability criteria for the proposed class of time-
delay systems. Finally, numerical examples are given to illustrate the validity of the
proposed procedure.Some of these results are presented at the fifth symposium of
fractional differentiation and its applications was held a t the Hohai University, Nanjing,
China in the period of May 14-May 17, 2012. Also, author received awards for the Best
poster for the paper Finite Time Partial Stability of Fractional Order Time Delay
Systems, as well as and the Best oral presentation for the paper Optimal Fractional
Order PID Control Of Expansion Turbine In The Air Production Cryogenic Liquid, [54-
56].
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DIFFERENTIAL EQUATIONS OF MOTION FOR MECHANICAL SYSTEMS
WITH NONLINEAR NONHOLONOMIC CONSTRAINTS - VARIOUS FORMS
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Abstract. The paper analyzes various forms of differential equations of motion for
nonlinear nonholonomic systems in terms of their equivalence. All well-known forms
of differential equations of motion (Maggi, Volterra, Appell, Voronec, Chaplygin,
Ferrers, Boltzmann-Hamel) are written for nonlinear nonholonomic systems and
translated into the same general form, or derived from it. This way, their mutual
equivalence is proved, i.e., the conclusions that hold for linear nonholonomic systems
are generalized. Theoretical considerations are illustrated by a detailed example of a
conservative mechanical system with a nonlinear nonholonomic constraint.

Key words: equation of motion, system, nonholonomic, constraint, nonlinear.

1. First Part

In the mechanics of nonholonomic systems there are several forms of differential
equations of motion [1-9] that can be translated into the same general form, i.e., it is
shown that they are mutually equivalent, [10]. It is demonstrated that various forms of
differential equations of motion are a consequence of the manner of incorporating
nonholonomic constraints in the Lagrange-D’ Alembert principle.

Let us generalize the conclusions presented in [10] to nonholonomic systems
with nonlinear constraints, using standard variables (independent generalized
coordinates and quasicoordinates) in contrast to the theory of Poincare’s equations,
where a set of operators figure, with a property of a group (conditionally speaking, those
equations are written with a group variable). In Poincare’s equations written in the
Poincare-Chetayev variables, dependent generalized coordinates are figuring in addition
to the operators mentioned.

Since considerations to follow employ the transformation of coordinates,
presented in [11], it is described in brief. Let the position of a system of particles M,
(a=1,...,N), in 3-dimensional Euclidean space E;, be determined by coordinates X, x2
X2 (a=1, ..., N). Let us incorporate new variables yb, as in [11], by the relations
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1 _ 1 2 _ 2 3_ 3
Y =Ampx, Yy o =mxs, Y =AM
3IN-2 _ 1 N1 _ 2 3N _ 3
vV =myxy, v =myxy, v =myxy,

where index b takes the following values: b=1, ..., 3N. After taking into account the
holonomic constraints, let the system have n degrees of freedom, i.e., the determination
of the position of the system requires ¢' (i=I,...,n) generalized coordinates. All
coordinates y” can be expressed via generalized coordinates ¢’ by the relations

Y =y (q"nq"), b=1,...3N

Let us observe a mechanical system subject to the action / of nonlinear
nonholonomic constraints of the form

¢ (¢.d)=0-q" =y (¢.4)

Let us express independent generalized velocities q”’, using particular independent

)]

kinematic parameters /7% by the relations
q-(nga(qi,ﬂ.ﬁ) )
Using the constraints (1), dependent generalized velocity q” can be also expressed by

means of independent kinematic parameters /7% applying the relations

i =y (d.q")=v"|q.6"(¢.7")]|= 6" )
Based on the (2) and (3), the expression for the transformation of all velocities qi reads
q'=6(q",7%) @

The derivation of differential equations of motion, starting from Lagrange-D’ Alembert’s
principle, requires certain expressions and relations, therefore they are mentioned first.
The expression for kinematic energy of the system reads

1 o
_ i
T=-g,99 (5)
2
or considering the (4)
T = E gljﬁ 0 (6)
Countervariant coordinates of the acceleration vector in holonomic coordinates read
S _ .S S .i -
f7=q¢+I'j4q )
1 Einstein summation convention is used in the paper. Indices take the following values: i, j, k, r, s=1,...,n;
a.fy=1L..m; v.p=m+l,..m+l=n"*
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In accordance with the Hertz-Holder principle

.06
oq' = ®)
T
and taking into account that (considering (4), (7))
' :ae. g’ + E)Q 7= 849' 0’ + E)Q 7 ©)
oq’ o aq’ o
the Lagrange-D’ Alembert principle reads
gz:f(f] _Q])&Il =0 — (giif] _Qi)5ql =0
J J i
[gl] gaa +8; 36 0" + gul—" 6'6° — 0, ] 8849 or? =0
(10)
Considering the independence of variations O A ,ie. O F 20 it follows
849’ 206’ 00 00 .
“+ 0" +g,I60° ——=0,
(gl] a 0! gl] a ]a ﬂ Qt a]z_ﬂ Q,B
(1
Introducing the designation
36 00’
@ =850 027
Egs (11) finally read
oy 200’ 06’ . i ASor 86”
thﬂﬂ. +gljyaﬂ'ﬂ0 F 06 _Qﬂ
q (17)
Starting from the Lagrange-D’ Alembert prin01ple in the form
d oT dT
a0
q q 13)
and taking into account Eq (8), Eq (13) is transformed into the equation
k
drdg”  oq d (14)

Considering the independence of variations on’ , le. on’ #0, Eq (14) is
decomposed into m equations (Maggi’s equations)

[d oT oT Q]ae

—_———— — —.az
aﬂ. (18)
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Let us transform Eq (15) using the following relations

96 d or _i[aek BT] T d 06"
dt

07% di 3g' i\ 97" 04" ) 9" dr 9" o

oTf" 9oT OT 96 oTf oT  OT 06

S E AR TN Ak T Ak Ak Ak

dg° dq° 94 dq dg° dq°  9¢ Iq a7

06 oT 096 ., 096° ; oT” 06"

o ag ane 5 a0 O Ga T8 )
Now, Eq (15) obtains the following form

d oT" 96" oT" oT (d 06° 96" 06°) _ 06° .

dr 97°  97* ag* _a_a(Eaﬂ_aqS azzﬂ]‘Qk o 1)

Egs (19) and (12) are equivalent, i.e., Eqs (12) represent, conditionally speaking, a
direct form of Eqgs (19), which is proved by the following transformations:

doT" d( 06 dg; .s( 06 0 .,
4ot _ o/ |= 28 6 |+g, o
dt 97 dt[ SPrZ ] 3 [87[ ]+g”[aqrafﬂq "

| e | @
0’0" 5 00' (00’ .. 98" 4 a
—— "0’ |+ g, — q +=—F7
07“07” Yor*\9q T oA’
k * ) o k '
00" AT _ 06" (198, gugy) 0" (36" (b)
Ry aq aﬂ' 2 aq or* 8i a

BT[d 06" 096" aeSj q,.[ 6 ., 96 ., 96" aeS]
ik

S, _+_ —
3¢\ dr 0™ og° 3 0roi? " Torag T T ag on”

@)-0)-(0)=G,,7" + g

i J a .. i : a ij ‘ inJ
g’ 06’ ,, +[ﬁ 90 HSHJ_lﬁaigtaf]

8195 oq’ dq° or“ 2 9q" o7”
a ) k o a . k o k
98, 00" pigi 198,00 pipi_ 1 99 goi_ o 159 gy
o 07° 29" 97" 3" 97
20 3¢’ 20 . .
..IB '] —
Gt 48,5050+ 5200/ =0, = (19)~(12)
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2. Second Part

(a) After we have arrived at Eqs (19) starting from Maggi’s equations [1], it is evident
that they are equivalent to those of Maggi’s.
(b) Volterra’s equations [2] are obtained when transferring from the velocity

components in Cartesian coordinates to the kinematic parameters Z“. Eqs (19) will
represent Volterra’s equations only if we write that

¥ =0 (x47), ¢ =x (i=l..n=3N) (20)

where %' are independent Cartesian coordinates in which the mass of the system has
been incorporated in a manner indicated in Introduction. Let us reduce Eqs (19) to
Volterra’s equations. For this case, kinetic energy has the form

| R
T=—06x'x (21)
2 g
or, using (20),
« 1 o
T =-0,00’ (22)
2 g
Calculating the values of the following expression from the (19), it is obtained

k * k S k i ) k a . o ) k S
00 AT 0T 0 00 08 90, 30 108, 0 0000
0% d¢* 9¢* dg® ox*  9x* "V 9q o7% 2 dq oq° o7

considering that
9g; _ 99, _
dg* g
Accordingly, Eq (19) is reduced to the form that represents Volterra’s equations for
nonlinear nonholonomic systems

j
4T _ o dde _,

i o (23)
dtox® 7 dtox® ¢
where
p =x,99 (24)
ox”

Eq (23) for linear nonholonomic constraints (q’ = ﬁ;ﬂ' 'l) is reduced to the well-

known form
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d oT" 5. 9p,
EW bﬂ%”’ﬂﬂﬂy:P’l [ﬁwlz ;kﬁﬂﬁa ] (25)

(c) Further analysis shows the equivalence of Appell’s equations [3] to Eqs
(19), i.e., (12). Appell’s acceleration function reads (in accordance with notes given
above for the mass):

1 2
S=—(a 26
5 (@) (26)
or
_ 1 irj
S_Egljf f (27

Taking into account that
fl=q+T,dq (§ =6

velocity dependencies and their derivatives can be eliminated by means of constraints
(4), wherefrom it follows

f*i:a—iﬁs+aaa “+I,6'6
dq o7 (28)
Appell’s equations have the form
A
(29)
on” =0,
Since
as’ LT 67 (060 s 60w
=g f" =g. e + 7°+1,.0°6 30
P Pl afﬂ[aqs ore T G0

Appell’s equations can be written in the form
20' 36" ., 00' 30 s 00’
8imra g T8ivianst T8ina
orx* o or* dg or

respectively

F

l—v err _Q

F

J i J
06" 96 s 00 166" =Q. (1)

. + g
7% 3" Y an

Gaﬂir'ﬂ +g

which coincides with the (12), i.e., with the (19)
(d) Voronec’s equations have been derived with reference to real generalized

velocities, i.e., q‘l,...,Q" and generalized coordinates q1,..., ¢" using both expressions

for kinetic energy, i.e., T and T, [4]. Voronec’s equations for nonlinear nonholonomic
constraints (1) read
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v

doT" oI Jy"dT oT , oy

- = —+ 32
4 3 aq" ag aq 0 e g & 42
where the coefficients }/; are determined by expressions
v v ¥ v
y_d oy’ dy" dy’ oy )

“dt 9¢%  9q® 9¢* 9q”

In the choice of kinematic parameters for real generalized velocities, i.e., £ = q“ Egs
(4) read

q-izgi N q-(xzerx:ﬂ.(x, q-v:l//vzgv
while Eqgs (19) then obtain the form

d oT" aak aT* oT [d 00" 06" aaS]
———— | (34)

0q"

dr 35" 3g° 34"

d T’ r" dy' or BT{d 96" aeﬂaesj aT{d 96" aevaesj_

respectively
doT" OT" Jy"dT oT (d oy’ Jy’ 06’ oy’ de” ) .
dr3¢° dq® 9G° 9¢° o4 [dt 3¢*  9q® 9¢° g’ aq“]_
Finally, Egs (19) are converted into the form

" oT" oy'oT IT 26 06’ 86’V 77
77__7_l7_7 =0, Q,aa_Qﬁaa Qv Q+

Qv

which coincides with Eq (32), whereby it is shown that Voronec’s equations are
equivalent to the initial system of equations (19), because they can be obtained from
them.

(e) Since Chaplygin’s equations [5] represent a special case of Voronec’s
equations, the conclusions on equivalence from the above analysis hold for them too.

(f) Ferrers’s equations [6] are very similar to those of Volterra’s and they are
written for the system subject to nonholonomic constraints, whose position is determined
by the n=3N Cartesian coordinates x'. Here, the mass of the system is also incorporated

via coordinates in the above described manner. Velocities X are expressed over m

independent kinematic parameters Z7% by the relations

i =6 (x', %) (35)
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Ferrers’s equations have the following form, [6]

4T ., d3g _, 00 _ )
dtox® 7 dtox” for® “
where
r=lsiv, =1, -lsge (37)
o > (5;'=.9') PR
From (37) there follow the relations
OT_ _OT 0 0T 06 T _s ;. a®
ox*  ox' ox® ox'ox®  oJx' 7
Now, Egs (36) can be written in the following manner
d oT" 96’ BT*+ 20 aT*_Mjia_a:P
dt oz® ox% ox' oA ox' V" dtox* “
doT 99 ar _al[ia_ﬂ_ﬁa_ﬂjzp 59
dt ox* 0x% ox'  ox'\dtox* oz ox’ “

If we incorporate x'=¢' in the (39), we obtain the expression for Ferrers’s equations,
which coincides with the (19), whereby their equivalence to other forms of equations of
motion is proved:

d oT" 96 T BT[d 26 096° ae"]_P

di 07° 97° ¢ 94 \ dr 97 97" 9g°
(g) Generalization of Volterra’s equations was performed by Voronec in his

paper [7]. A mechanical system, whose position is determined by generalized
coordinates x',....x" and which is subject to nonholonomic constraints is observed.

Velocities )'Cl ,...,X" are expressed via m independent quantities ¢'l by the relations
).Ci — ei (xj’¢tl) (40)
For nonlinear relations (40), generalized Volterra’s equations read
doT" 00’ (d 96" 90" 06" \oT  [d 06" 06" 06"
dr 9¢® 0x7 | drog® Ox' 09 )9 | drog® 9ox' 9¢”
14 V4 V4 i i
99 acf d 06" 96796 }19T 99 i(T*+U)=o
09" 0x” \ dt 9¢* ox' 99"

(41)

i’ 9¢~ ox’

In order to prove the equivalence of Eqs (41) to other equations of motion, let us reduce
them to the form of the (19). Let us regroup the terms from (41) in the following way
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d T 90’ (d 06" 967 96" |(dT" dT 96" )
dro¢” 0x" | dt ¢ ox' 09° )\ 9¢® 0x" 0¢”
NN AL A N

dt 0¢” ox' d9” Jox" d@“ ox'

Taking into account the relations
o' _ 9T 3¢’ _ 3T 96" T 3¢’ / de’
0¢” 0% 9¢” 9% 09’ 0x" 9¢” ox”

“=0%(¢" 1), ¢ =a’(x"%)
00° 0  , oT" 90’ T 06" 90’ OT
=5 > - ==
9¢f ox” 7 9¢” ox” i’ 9¢f ox” ok
the previous equations read

d oT" 8T[d 00" 06" aefj 8T[d 068" 06" aefj 060 oT" 06

ox”

dtdg*  ox 9g°

dt dg°  ox 9g°

At o9 ok 39° o' ¢

respectively
d OT" 96" oT" JT (d 96’ 06’ 96 _o°
dr 9%  ox g% ) ~°

dr 99°  9¢° X' ox

Now, if we introduce the designations ¢

i

ﬁ:]j'ﬁ, xi:q’

the above expression

obtains the form
d OT" 06" T dT (d 96’ 06’ 06" ) _ .
dr 97° 97" 3¢ 3¢’ \di oi® 9q ox” ) “°

(42)

which coincides with the (19).
(h) Lastly, let us show the equivalence of the Boltzmann-Hamel equations [8] to
Egs (19). In deriving the Boltzmann-Hamel equations for nonlinear nonholonomic

constraints, the relations that associate kinetic parameters 7' with generalized

velocities qi are written in the form

=0, =0

i =¢ (q-",q‘-"), de{%} #0 (43)
q-i -9 (qj,ﬂ-j), 5qi — s:] o’ (44)
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The expression for kinetic energy reads (as the function of all qi )

|
T=2849
while the expression for kinetic energy T (as the function of all 77 J )
I
T=-0006 (45)
2 )

Starting from Lagrange-D’ Alembert’s principle
d oT oT 90 . ;
L 0 % s =0
o’

after certain transformations of Boltzmann-Hamel equations, for nonlinear relations

between the velocities qi and the quasivelocities 7 h they read:
d 9T 3¢ o oF [a(pi 96° a(piiaﬁsj_Q 20 -

dioAl o7 od oA Tty - -=0Q, (46
dt 87[’ 87[’ aqt 87[’ aqS aﬂ.z aqS dt 87[’ 87[’ QJ ( )

If nonlinear nonholonomic constraints are chosen for one segment of the velocities, i.e.,
the condition holds for the variations

or" =0
then, from Lagrange-D’Alembert’s principle, we obtain (n-I) equations of motion for
nonlinear nonholonomic system (in accordance with the (46))

d o _96' of _of (3¢ 36° 3¢’ d 96°
og° 97° " 9§° di 07"

- =0 47
& 07" 97" dg oF Qe @7

where 77" = 0 is placed after the first differentiation.
The expression for kinetic energy, where dependent velocities are excluded (real
generalized velocities and quasivelocities), is written in the form

E

1 Lis
L=l =58 (4 q])(‘i“*"v)

1 (48)
T =T =58 (010])(”“0)

Based on the (48), the following relations can be written
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oT 06" oT”’ ~ .
— - o’ =, —
Y [gl] By ](,-,v=0) Y (Qa )(;’;eo) Qa

A dg. . P *
dq 2 dq ' dq (#~0) dq

The last term in the (47) is transformed in the following manner

oT ap* _ T o _ i, g of _ ;06" _dT 06" 96" dgp* _
" 945 9’ 94° Bisd = 87> Gk T8 G 94 o'’ ox* 945 C
d¢' 96’ _ 96’ 9’ _ 96’ +aa-f 09’ 0 d¢' 96’ _ 96’

o¢° o' 9’ 9¢° 9" o7’ 9g° dq’ ox' g’

Accordingly, after the above transformations, Eqs (47) obtain the form identical with the
(19), i.e.

d oT" 06" 9T dT(d 06 06 06° ) _ o
dt ox* 0x% dq 9g' “
Consequently, (as established in [10] for linear nonholonomic systems) for the

case of nonlinear nonholonomic systems too, various forms of differential equations of

motion result from the manner of incorporating nonholonomic constraints in Lagrange-

D’Alembert’s principle. However, as shown by above analysis, all mentioned forms of
differential equations of motion can be reduced to a common general form.

3. Third Part

Let us illustrate the considerations above using a mechanical system with a nonlinear
nonholonomic constraint. The mechanical system consists of two particles M; and M,
connected as shown in Fig. 1, [12].

’)

49)
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M, (x,,¥,)

- "
Fig. 1
Blades that are perpendicular to one another are positioned at particles M; and M,
which enables the realization of nonlinear nonholonomic constraint of the type

V-V, =0 %%, + 3,9,=0 (51)

Let the system move in a potential force field, whose potential energy depends only of
the distance between particles M; and M,, i.e., of & For simplicity, we take that
m;=my=m=1. Let us choose x;, y;, ¢, ¢ for generalized coordinates of the system (Fig.

1). The equations of nonholonomic constraints have the form
X, cos@+y sing=0,

$p—~x + 37 =£p— (%, sing— ¥ cos) =0

(52)

Kinetic and potential energy of the system read

1 1 1 . . 1 1 2
T:5m1V12+5m2V22ZEm(xf+y12)+§m§2, V=V(§)=§k(§—§0) (53)

If @ and f are chosen from the (52) for independent generalized velocities, there

follows

x, =&@sing, y, =—-EPcosy (54)

The expression for kinetic energy T*, which is the function of independent velocities,
reads

* 1 .\2 1 2
2(5@ 25 (55)

Considering that
q-v :l//v (qﬂt’q'ﬂt)’ T :T(qa’q-i)’ T* :T*(qa’q-tl)’ \% :V(qa)

Voronec’s equations (32)
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* v

oy

dorT dT" dy"dr dT v _g 1+ 9¥
0q”

dq° 9" 04" o aq *
. _doy’ dy" Jdy” oy’
““ 4t 9g°  9g° g g’

Q,

for our concrete example are transformed into Chaplygin’s equations as a special case,
ie.
*

,_day’ oy

d 4
“dr 9¢*  9q”’

0q”

Yo = Qs (56)

Q,=

After certain calculations from the (56), there follow differential equations of motion for
the described mechanical system

f¢+§¢20 — & = const., f:—g—‘; (57)

Let us write Appell’s equations of the same system, which, in a general case,
read (29)

oY o

For independent kinematic parameters, let us choose the velocities of the particles M,
and M,, i.e.

i =bp=s, r=E=3, (58)

F

where S;(t) and Sy(¢) are the laws for the path of particles M; and M,.
The acceleration function of the considered system reads

s=gai +3et =3 (83445
Using the equations of constraints (52) and relations
X, = fcosgo, Vv, = fsin(o
we obtain
X, =5 sin@+s,@pcos@, Yy, =—5 cos@+s,@sin@,
X, = fcos - f¢sin o, y,= fsin(0+ f{bcos 1)

respectively

.4 )
s’ =%('s'f +$12(02)+%('s'22 +32¢°) =l['s'f +s—1]+l[s§ 4 sz] (59)

2 )2 £
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From the (59) there follow

% g s5=0 Bogiy=-2 (60)
05, 05,
and taking into account that
5 =&prip 5=¢
from the (60) there follow the equations of motion that are identical with the equations
(57):
oV

g

Volterra’s equations are obtained by transferring from the velocities in the

f{b+§¢:0 — & = const., f:—

Cartesian coordinate system to kinematic parameters 7% . The choice for independent

kinematic parameters, as in the previous case, will be performed as follows
-1 . 2. 1 _pl I 2
T =8,k =85 — X =x=ssin@g=6, x =y =-S5 cosp=06",
. . . . . .. 61
P =x,=5,cos0=86, x*=y,=5,sinp=6"

The expressions for kinematic energy 7 and T read

Lo, . | s 1., 1.
T:E(x12+y12)+5(x§+y22), T :§s12+5s§

whereas potential energy V is the function of distance M M, , i.e.

V:lk[\/(xz—xl)2+(y2—yl)2—é’OT (©)

2
Generalized forces have the following value
06' 06’ 06’ 06" aV aV
P=X—+X,—+X,—+X,—=0, | X,=——, X, =——
05, 5, 05, S, X, ay,
26 06* 06’ 06" oV ov
Pzleai&z"'xz 3, +X387§2+X487&2=_k (xz 'xl) +(y2 yl)z_ké:o’ [Xzz_aixz’ X, _aisz

Volterra’s equations (23)
* J
dor’ ¢ d 30 _

dtox® U dtor* ¢
for the system analyzed read
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1 2 3 4
56299 5 0290 56999 5699\ _p 5 0
dr 9s, dr 9s, dt 95, dr 95,

l (63)
's'z—(aue'dag ,d 36”

d 96° d 96"
2274650 +6,0 =2 1+5,00 = |=p =5 =—k(E-
drds, O drds, O drds, O dr as'zj 2 7% (6-%)

Taking into account that

5, =86, 5, f §= \/xz_xl (v, - yl)

Eqgs (63) are reduced to Eqgs (57) and (60), i.e.
Ep+8p=0 — Sp=const., E=-k(&-§)=~

35
Ferrers’s equations (36) (differ insignificantly friom Volterra’s equations)
d oT" S ;d 007
dion® 7 dron®  “

for the link between kinematic parameters 7' = S, T ’= §, and generalized

velocities in Cartesian coordinates

X1=X1=Slsin(o=91, )'cz=j11=—$lcos¢:¢92,
P =x =5cosp=6, i*=y,=5sinp=6"
read
1 2 3 4
5 - 511.1187?4' 2255218;?4' nﬁiai+ 4455418;‘? =K - 5=0
dt 9s, dt 95, 7 dt 95 dt 95,

(64)

- + =P, =5, =k
ai o5, P aras, N aras, o dasJ 2

(5x1da€]+5 2d892+5 5 d 28 5 . d oo
2 11

Translated to real generalized velocities @, df and generalized accelerations 0, df
Eqgs (64) read just like Eqgs (57), (60) and (63)

. . oV
§p+Ep=0 — {p=const., E=—k(§-&)=~ P
The equations of Boltzmann-Hamel are given by the expression (47)
d oT 06' 9T oT (d¢' 96° 99 d¢' d 96’ e
di 37° 97° 94 o\ ag° 0x* 9" dr 9” “

Let us choose x;, y;, x, y, for generalized coordinates. The relations that associate
kinematic parameters with generalized velocities read

193



DRAGOMIR N. ZEKOVIC

S TR P R S G, BT I S S )
=8 =AX tY, =@, T =5,=X;+y, =@,

5L s e . 4 (65)
=8, =xcosQ+ysing=¢, & =5,=x,sing—y,cosQ=¢

. . . .2 .2 1 . .. ) .2 2

X, = 8,Co8Q+Sin@\[s; —5; =6, Y, =5,8in@—cos@./s; —5; =6
e .2 2 _ 3 . . . .2 2 _ 4

X, =$,sin@+cos@\/s, —$, =6°, J,=—5,cos@+singy/s, -5, =6

Kinematic parameters S‘l and Sz represent the velocities of the particles M; and M,

(66)

while the expressions ¢3 and ¢4 are nonholonomic constraints of a given system
((03 =0 and (04 =0). The expressions for kinematic energy T and T read

1 ) ) 1 ) ) ~ 1 ) 1 .2
T=—(x+y )J+=(x5+y5), T==s8 +—=5
B ( 1 1 ) B ( 2 2 ) 71T
so, considering that
oT oT d¢”
=0, ——=0, ¢S =0
dq or dq
the equations of Boltzmann-Hamel obtain a simpler form

d oT o d¢’ d 96" o )
dr 37°  9i” 3¢° dror® “

From the (67), there follow differential equations of motion for the system

5, =0, =—k\/ )cz—)c1 +(y, - y1)2+k§0

Taking into account that

§=8p, =& E=J(n-x)+(n-n)

the preceding equations are written in the form of identifiable expressions
Ep+Ep=0 > Ep=const, E=—-k(£-&) -3¢

In another variant, let us choose x;, y;,, @, ¢ for generalized coordinates. The relations

that associate kinematic parameters with generalized velocities read
#'=5,=5p=9" 1’ =5,=5=¢",
=5, =X cos@Q+y sing=¢’, (68)
it =5,=&p—X sinp+ Y, cosp=0
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p="L=0' £=35=0, % =—sin@(s,—§,)+cos@S,, ¥ =cosg(s,— 5 )+sings, ©9)

Quasicoordinates §, and s, represent the laws for the path of particles M; and M,
while the expressions (03 and (04 are nonholonomic constraints of a given system
(¢3 =0, ¢4 =0). Kinetic (7, T ) and potential energy of the system read

Lo, . 1 =~ I, .. 1. 1
T=o (i 437458 T={(3) +(5-8) [+ 58, V=_k(E-4)

Considering that
oT
— =0
9q
the equations of Boltzmann-Hamel are reduced to the expression
d of T [agoi 00° 0¢' d 96° ] 5
— Xa

dr 97° 94\ 3¢° 07 9g° dt 9%”

(70)

From the (70) there follow the equations of motion
.. .. aV
5,=0, §,=——
1 2 a f
or, in the identifiable form

o p . g dV
(p+Ep=0 — Ep=const., E=———
&
which is an identical form deriving from above mentioned types of differential equations
of motion for nonlinear nonholonomic systems.
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Abstract. I The known earlier force function of two finite bodies in the terms
of Delaunay’s and Andoyer’s is given to mind when it contains only eight
angle variables instead of nine and for one fixed set of coefficients of angle
variables we have the only one function of cosine and the only one function of
sin with summarized multipliers before them.

Key words. force funvtion, Delaunay’s and Andoyer’s angle variable,
regrouping, theorem, lemma, two finite bodies.

1. Introduction

Knowledge of force function of mutual gravitation celestial bodies is very important
for research of their motion. The first general result was obtained by Kondurar’ [1]
where the series for force function of two ellipsoids (one homogeneous and the other
unhomogeneous) were presented. A method for calculating the force function of two
celestial bodies was proposed by Sidlichovsky [2] what is based of real Stokes constant.
And also in [3] by Sidlichovsky the full force function of two general rigid bodies is
written in the terms of Delaunay’s and Andoyer’s variables. Vidyakin and Popova [4]
presented expansion of force function of mutual gravitation of two rigid bodies of
arbitrary form in series of spherical functions. The main purpose of our paper is to
transform the force function in [3] to new form more convenient for practical use as will
be seen below.

2. Presentation of the original force function

Let us describe the force function in the terms of Delaunay’s and Andoyer’s variables

[3]:
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UMM TS Y 3 A LTS sl ]+

Jj=0 n=0 m”=0 k”=0 (1)

+fM M zz z z ajlfjil |: Jm"'nk” Sﬁm an Fii nk” Cn: S:(ﬂf)j|

Jj=0 n=0 m”"=0 k"=0
where f is the universal gravitational constant, M; and M, are the masses of the

bodies,
a;and a, are the characteristic diameters of the bodies, a is the Kepler’s major semi

axis;

CSf= B Re [ 2y 4 (0" 2]
T5p= B RE [ ~Z i 4 () Z, |
e =B I [ Z = (0" 2 |-
res
B

Jjm "nk” Bjm ‘'nk” I |:Zjnm”k” + (_I)MH Zjn—m”k”j| ’ (2)

= (1) (22 (s +’””)(!(”+"”))’(n - } )

){(2j+ 1)(2n+1)

Jnmk Z Z Z Z Z Z Djnmkmkpmkqexp(l Jnmkmkpmkq) ’(4)

m=—j k=—n p=0m'=—j k'=—n g=—co
C (]2, S Enz and C Snk) are real Stokes constants for the first and the second body
respectively, Re [...], Im [...] — are real and imaginary part respectively, i — imaginary

unit.
—j—n—1,j+n-2 .
D jnm”k”mkpm’k’q= X q ! " p(e)
1 [@j+2n=2pY@pY(i+n+m+k)(j+n-—m-k)(2j+1)2n+1)]"
4 (j—m).’(j+m)/(n+k)/(n—k)/

( 1)m+m”+k +k"+j+n

AS{rtl’i)Zp,erk (I ) A(flr‘r)l',fm (Il )A(fl;r)l”,fm' (‘]1 ) A(:;)',fk (12 )A(:;(),fk (‘]2 ) ’ (5)

.2"+”p!(j+n—p)!
Xy (e) - coefficients of Hansen :

(rj expisv = qffX;”(e)exp igl » (6)
a

gm0
where r — is the distance between the centers of masses of the bodies, ¥ is the true

anomaly, e — eccentricity of the orbit, / is the mean anomaly.
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[(G+myG—myG+myG—mY}?
2 G=m' =) G+ m=g) (g +m —m)

A () (19) _ z=min(zm’jam)(= [

mm

(N

x=max(0,m-m")

ccos? 22 (9 2) sin®* (09 2)
O i imk plka = —m"l,—m'g, —mh —k"l,—k'g,—kh, +ql+(j+n-2p)g+ ®
+(m+k)h+%7r(j+n—m”—k”)
Andoyer’s variables are introduced for the i-th body (i=1,2):

L - Q: component of the angular momentum vector of the i-th body ( Q: is the axis of

inertia of the i-th body with maximum moment of inertia);
Gi — the rotational angular momentum of the i-th body (absolute value);
H, — Z component of the angular momentum vector Gi of the i-th body (M, XYZ is
the Koenig’s coordinate system of the i-th body).
cosJ,=L/G,. cosl,=H,/G, 9
The Delaunay’s variables L,G,H,l, g,h are introduced for describing the orbital

motion of bodies. Impulses L, G, H are related to the Kepler elements a,e,] as:
L=M(ua)”.
G=M|uali-¢*)]". (10)
H= MLua(]— e )]1/2 cosl,

M M
M=—1r"2 uyu=fFf\M,+M,). 11)
TRTts f(M,+M,)

Variable L is connected with constant of energy, G is the absolute value of the

where

orbital angular momentum the second body around the first body, H — Z component of
the angular momentum vector G.

3. Introducing the new angle variables

We will present the force function (1) in another way using (2) - (8) and taking finite
intervals for index of summation j : 0,1,2,...,v;; n: 0,1,2,...,v5 ; q :-V3 ,- Va+1,-v3+2,

...,0,1,2,..., v3 (as usually do in practice).

Jn
a,a,

v, V2 J n J n_ ntj J n V3
U=fmMm,y 3 ¥ 2 2 22 2 2 et Dk mipniig
Jj=0 n=0 m'=—jk"=0 m=—j k=—n p=0 m'=—j k'=—n q=—v; a
X( Ejnm”k” cos ajnm”k”mkpm’k’q +¢jnm”k” sin ajnm”k”mkpm’k’q )’ (12)
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where
E, =B (CCE =SV SO @ =B, (COL.SE+80.CE),
it m">0;
E,oi=(=1)" B (CVCR48D SC @ =(=1)" B
(" .sGL-s" .cth, if m’<0;
E =2 B CHC2. @ .=2B,..CUSE. itm=0. 3

From (8) and (12) we can see, that in linear combination of angles & i P

there are 10 indexes of summation for 9 independent angular variables, moreover the

term %ﬂ'(j+n—m”—k”) gives us function cosine or sin. For one fixed set of

coefficients {—m’",—m',m,—k” k' k , q,j+n—2p,m+k} of angle variables
g, h,l,.8,,h,1,.1,8,h there are several equal functions of cosine and sin with
different multipliers before them. It is reasonable for one fixed set of coefficients of
angle variables to have the only one function of cosine and the only one function of sin

with summarized multipliers before them. From view of &, ...
Jjnm”k"mkpm

" (8) follows that
we can introduce instead of 9 variables only the 8 new angle variables:

I = (l] +ﬂ/2)’g;=gl’ h=h—h. I, = (lz +7Z'/2), 8= 85>

W=h—h,I'=1 ,¢g'=g+7/2 .~ (14)
and new coefficient q’ :

g =j+n-2p, hence p=(j+n—q’)/2. (15)
The interval variation of q’ is from — (n +j ) to (n +j ) with step of summation
Ag' =2.

Then angular linear combination . will take next form in new

jnm”k mkpm’k'q

variables:

’

a’,jnm”k”mkpm/k/q =0 + pﬂ. ?

o mk Kk qd
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where

/

a —m’l —m'g, +mh, — k', —k'g, +kh, + ql' +q'g" (16)

m//m/mk//k/k qq/ =

This expression o is the linear combination only eight new angle

m’ m mk"k'k qq’
variables.
Then

cos O, +pr)=(—1) cos & =

—cos(a m m mk’k'k qq

m’ m mk"k'k qq’

_ (j+n7q/)/2 ,
=(-1) COS Ok a

Jjnm” kK ‘mkpm’k'q

sin o = (=) sin o (17)

janm’k"mkpm’k’q — m"m mk"k’k qq’

We rewrite the force function (12) in new notations (14)-(17):

U:fMleii 2 Z 2 Z 2 Z Z

=0 n=0 m"=— j k"=0 m=— j km—n m'=— j k'=—n g=—v;  q'=—(j+n).Aq'=2 &

j+n Jjn
(=)D
JHn+l Jjnm"k"mkpm’k’q

/+(b]nm”k” sin am m mk” kqu)

X(E;, /i €OS o (18)

m’ m mk"k’k qq

where index p is given by (15).

4. Regrouping the terms of force function

Then we change the order of summation in force function (18) in order to put together
and summarize all multipliers with index j and n before functions cosine and sin with

fixed set of coefficients {—m’,—m’,m,—k”,—k’,k,q,q }and obtain the next

expression:

v+,

U= Z Z Z Z Z Z Z > Yewwrier (19

m'=—v, m=-v, k"=0 k'=—v, k=-v, g=—v; ¢'=—(v+v,)
where

Y. . (20)

m’m’ mk” kqu

Vi V2 Vi V2
A/ ’ + An . a/
inm " m'mk”k’kqq’ cos am"m'm k'k'kqq inm " m'mk”k’kqq’ sin m’m'mk"k'kqq

Jj=vy n=vs,An=2 Jj=vy n=vs,An=2
’ al a p
Ajnm”m’mk”k’k aq fM M +n+l (_ 1) Djnm”k”m kpm’k’q Ejnm”k” ’
» a a ( )p
Ajnm”m’m k’k' k qq - fM M a- ]+n+1 - ] Djnm”k”m kpm’k’q (bjnm”k” ’ (21)
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vy = (o)
Vs =V, if (j+V)E‘q/‘(m0d2),else Vi=v+1; (22)
-J)-

is given by formula and (5), E.

here V = max(

where Djnm,,k,,m k piky o
formula (13), p —(15).

In order to prove formulas (19)-(20) which has complicated indexes of summation

ks P juy are given by

V,,Vs we begin from the simple affirmations.

Lemma 1. It is true the next equality:

)IDD D FEVINE I S 5 (z' 5 A] b

J=0 n=0 m"=—j k"=—n q'=—(j+n).Aq’=2 m’==v, k"==v, q'=—(v+v,)\_j=V4 n=vs.An=2
(23)
where
v, =max (jm].|¢]-v,).
vi=v,if (j+v)=|q|mod2), eise vi=v+1; (24)

v =max (|k’].|] - j)

In proof we use the method of mathematical induction. It easy to see that this
equality is true for the next pairs of indexes of summation V, and V,: (0,0), (0,1),
(L,0), (1,1). Let  the equality (22) will be true for arbitrary V, and V,.Then we are
proving that formula (22) is true for next pairs (V, + 1, V,)and (V,, V, + 1). That’s
all. Note, that expression (22) is symmetrical relatively indexes j and 7.

Then we prove by method of mathematical induction Lemma 2 , using Lemma I .

Lemma 2. It is true the next equality:

Vi V)

)3 Z Z Z Z VY S

j=0 n=0 m"=—j m'=—j k”"=—n q'=—(j+n),Aq’=2

v+,

=2 2> 0D D A By - (25)

m"=—v| m'=—v, k"==v, ¢'=—(vj+v,) \_j=V4 n=vs,An=2

v,),

Vs =V, if (j+v)E‘q'\(m0d2),else Vi=v+1; (26)

where

v, = max

v =max (||~ )
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Then we prove by method of mathematical induction Lemma 3, using Lemina 2,
and with their help the general Theorem from which follows formulas (19)-(20) for
force function U.

Lemma 3. It is true the next equality:
+H

ZZZ Z Z z z z Ao B =

J=0 n=0 m"=—jm'=—j m=—j k"=—n q'=—(j+n),Aq'=2

DIDIDDY Z [Z > A jﬁ @n

m’==v; m'=—=v, m=—v k"==v, q'=—(v+v,) \_j=v, n=vs,An=2

where
v, = max ql-v,).
vi=v,if (j+v)=|q|(mod 2), else vi=v+1 ; (28)
v =max (|k|¢- j)
Theorem. It is true the next equality:
V) n Jjtn
ZZ Z Z Z Z Z Z . , Ajnm”m'm k"K' k q'ﬂm"m'm K'k'k q =
j=0 n=0 m"==j m'==jm==j k"=-n k'==n k==n q'=—(j+n).Aq'=2
vi+v,
-3 35538 8 (55 tadiinn] @
m"==v; m'==v; m=—v, k"==v, K'==v, k=—v, q'=—(v;+v,) J=V4 n=vs An=2
where

vy = ()
v, if (j+V)E‘q,\(m0d2),else Vi=vV+1,; (30)

—j).

here V= max(

5. Converting the force function to the mind when for one fixed set of coefficients of
angle variables we have the only one function of cosine and the only one function of
sin with summarized multipliers before them.

It should be noted that for our purpose we can grouping the terms in force function in
the various ways beginning and continuing from any index of summation. We will point
out only the general method beginning on the example of k” index (we remark if some
subscript is equal zero, it is absent in the corresponding expression and there is not
summation on it).

Formula (19) can be rewritten in the following way:

Vv,

DYDY ID) 2 Fuwng+ Ui 6D

m"=—v m'=—v; m=—v, k"=1k'=—v, k=—v, g=—v; ¢'=(v;+v,)

where
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v+,

ZZZZZZ Z

==V, m'=—v; m=—v, k'=—v, k=—v, g=—v; ¢'=—(v+n,)
The first expression in (31) gives us the needed expression because for one fixed set

of coefficients of angle variables we have the only one function of cosine and the only
one function of sin with summarized multipliers before them.

Then we’ll transform the second expression with this aim. U ,.._, we can present as

the sum of three expressions:

Vv,
V=3 ¥ Y ST Z

m’==v; m'=—v; m=—v; k'==v, k=—v, g=—vy ¢'=—(v,+v,)

v+,
2303571535 35 Jib R SNET RETIE
m’=1m'=—v; m=—v, k'==v, k=—v, g=—v; ¢'=—(v;+v,)
where
v+,

U-moZZZZZZ G3)

m'=—v; m=—v; k'==v, k=—v, g=—v; ¢'=—(y+v,)

Transform the first expression in (32), using (20) for Y . . .. kqq' -

V) V) Vv,
SYYEEY Z Wmimtad
m’==v; m'=—v; m=—v, k'==v, k=—v, g=—vy ¢'=—(v+v,)

ViV,

DIDIDIDIDID D)

m"==v; m'=—v; m=—v, k'==v, k=—v, g=—v; ¢'=—(v+v,)

Vi V2
’, , . ,
z z Ajnm"m'mk'qu'jcos (am'm'mk'qu ) z z Ajrlﬂx mmk'kqq ]SIH(am"m'mk'qu') =

Jj=vy n=vs,An=2 J=Vy n=vs,An=2

m"==v; m'=—v; m=—v, k'==v, k=—v, g=—v; ¢'=—(v+v,)

Vi v , , 4] v , ,
z z Ajnm"m'mk'qu' COS(_a—m'—m'—m—k'—k—q—q')+ z z Ajnm”m'mk'qu' Sm(_a—m”—m'—m—k'—k—q—q') =

Jj=vy n=vs,An=2 J=Vy n=vs,An=2

ViV,

DIDIDIDIDID D)

m"==v; m'=—v; m=—v, k'==v, k=—v, g=—v; ¢'=—(v+v,)

Vi V2
’, , . ,

J=Vy n=vs,An=2

vy vy vy v, V) vy v+,

IDIDISISIDINY 39

m’=1 m'=—v; m=—v, k'==v, k=—v, q=—vy ¢'=—(v+v,)

Vi v Vi Va
, , » . ,
z z Ajn—m”—m'—m K —k—q-q' |COS (am'm'm Kkqq' ) - z z Ajn—m”—m'—m K ok—g—g |[SID (am”m'm Kkaq' )

Jj=v, n=vs,An=2 Jj=vy n=vs,An=2
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Using (34) we write (32) in the new form:

v+,

U= 2 2 2 2 2 X

m”=l m'=—v; m=—v; k'=—v, k=—v, qg=—v; q':—(vl-f—vz)

, , ” ”
Z(Amm”m’mk’qu’ + Ajn—m”—m’—m—k’—k—q—q ) cos am wimkeaq Z(Ajm”m’mk’qu’ - Ajn—m”—m’—m—k’—k—q—q ) sin am wimkeaq’ |+
jon jon

+U oo (35)
where notation
12 v,
Z means Z Z . 36)
j.n Jj=V,; n=Vs,An=2

In the first expression of (35) we have for one fixed set of coefficients of angle variables
the only one function of cosine and the only one function of sin with summarized
multipliers before them. Thus from (31) and (35) it follows:

vi+vy
m’ :—V] m :—\] m=—v k’=1k :—12 k==v, g=—v3 q'=— (v]+v2)
, ” .
z A,nm”m’mk”k’qu’ cos am wWm k'K kqq ZA,nm”m’mk”k’qu’ SN, iikgy | T
jn j.n
v v v v, v, vy vi+v,

DIDNDNDNDNDINDD

m’=l m'==v; m=—v, k'==v, k=—v, qg=—vy q'=—(v,+v,)

, , ”
|:z (Ajnm”m'mk'qu' + Ajn—m”—m'—m—k'—k—q—q ) cos am wmkigg’ T Z( nmm'mkkaq” Ajn—m”—m'—m—k'—k—q—q ) sin am ‘m'mk'kaq :| +

j.n
+U, - 37
Making the same procedure for U,.._ ._,(33) with index m” as we did for m” given

by formulas (32)-(35) and so on sequentially with other indexes of summation we’ll get:

vy vy v,y vy Vs ViV,

Uear=2 20 20 20 20

m'=l m=—v, k'=—v, k=—v, g=—v3 ¢'=—(n,+v,)

, , » »
z (A/nm’mk’qu’ + A —kegq )COS am wim K kgg T z (A/nm’mk’qu’ = Ak —kgq’ )Sm am wkkaq | T
jon Jon

V) +V2

DIDHS NP I

—v, k=—v, gq=—v; q=(y+n,)

, , » »
z (A/nmk’qu’ + A kgg ) cos am vkaq T z ( A iiad ~ Aot —kg—q ) sin amk g | T
J.n J.n
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|:2 (A;n vkag F A;n*k?k*q*q’ )COS a:f’qu’ + z (A;’nk’qu’ - A;n*k?k*q*q )Sm ak kaq’ } +

jon jn

VZ V] Vl +VZ
+ Z Z |:Z(A.;nqu' + A./,'n*k*frq' )COS a/:qq' + Z(A;,n kqq ~ A.;,n*k*frq' )Sin a/;qq':| +

k=1 g==v; q'==(v+v,) Jn J.n

vy v+,
+ Z Z |:Z( inaq o+ A.;'Hrq' ) cos a;q' + Z(A.;’nqq' - A.;n*q*q' )Sin a;q':| +

q=1 ¢'=—(v+vy)|_j.n Jj.n

+ IZ:Z{Z( ng’ +Am q)cosa +Z( ing —Am q)sma }+ZA (38)

Jsn Jj.n
The formulas (37) and (38) give us the desired representation of force function. It should
be emphasize that this representation is not the only one. It depends on what short
periodic, resonant or long periodic terms we want to extract using the method offered
above.
From mechanical meaning of angular variables it is follows that variables
l;, g;,l;, gz,l are fast, but h hz, g are slow. The term ZA is the secular term.

J.n

6. CONCLUSION

The presentation of force function of two rigid bodies given in [3] is improved in
modified angle variables of Delaunay and Andoyer: 1. instead of nine angle variables of
Delaunay and Andoyer we have only eight modified angle variables; 2. one fixed set of
coefficients of angle variables is only in one function cosine and sin; 3. all multipliers,
consisting of Kepler’s elements, before cosine and sin are summarized; 4. we can easy
to take the terms of needed accuracy.

The new form of force function is more convenient for elimination of the short
periodic perturbations and for solving evolutional and resonant problems in celestial
mechanics and astrodynamics.
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Abstract. In the hydrodynamic theory and finite elements method the bird
body was modeled as porous water-air material in the shape of flat or hemi-
spherically ended cylinder. Finite elements bird modeling was carried out by
the use of the SPH method for material of different porosity. In this way, the
dependence of sound speed and bulk modulus on porosity in equation of state
was developed. The Lagrangian target was considered as simple flat rigid
steel or elastic Al alloy plate. The comparative analysis of numerical results of
bird impact for Hugoniot shock theory and SPH method was given. As well,
some results of experimental data were included.

1. Introduction

One of possible and very dangerous accident is a bird strike into the aircraft in the flight.
This case is characterized by the high speed impact of the bird onto aircraft structure,
causing large dynamic deformations of the elements which may lead to disintegration of
the construction. Assuming the variables of target (flat rigid or elastic panel) as
constant, the number of variables, the bird strike analysis deals with, is high. This
makes the bird strike analysis relatively complex. The various parameters include bird
material and density, impact velocity, bird mass, bird material configuration, bird aspect
ratio, material porosity, obliquity of impact and contact properties.

Most of the initial models of bird impact was developed on the basis of the classical
impact theory and used force-impulse equation. Unfortunately, these models failed to
predict the damage to its details. Further, the elementary one-dimensional theory of
hydrodynamics was used to study bird impact. The mass-momentum-energy
conservation equations and simple pressure-density-energy equation of state were used
to describe the material behavior [1,2]. More appropriate interpretation of bird impact
was carried out by involving the shock wave theory.

Regarding the finite elements methods, actually, three approaches have been
successfully employed to simulate this phenomenon. These are the Lagrangian [3,4],
Arbitrary Lagrangian-Eulerian (ALE) [4-7] and Smooth Particle Hydrodynamics (SPH)
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formulations. The SPH formulation is a more recently developed finite element method
that uses particles of mass rather than an element mesh to represent the bird [4,8,9].

The basic goals of researching presented in this work can be summarized as follows:

- brief retrospective of bird impact hydrodynamic theory coupled with shock wave
equations and the definition of the elastic bulk modulus and sound speed of porous
medium depending on its proper porosity,

- numerical simulation of various cases of bird impact including the variation of
material density, shape and impact velocity, impact angle and parameters of target
plate, and

- comparing some results of the numerical simulation and the experimental testing.

2. Elementary shock theory of bird strike

2.1 DESCRIPTION OF IMPACT

Fig. 1 depicts four phases of the impact of a cylindrical body of fluid on a rigid target at
an oblique angle of 90°. More complex geometries, such as hemi-spherically ended
cylinders, complicate the theory but behave in the same broad manner.

[

——
a) Before impact by Imitial shock <) Transient stage d) Steady flow

Figure 1. Bird impact phases given by numerical simulation of impact.

The four phases (Fig. 1) can be described as follows:

a)The cylinder of fluid approaches the flat target at an oblique angle and with a purely
axial velocity. Its internal pressure is equal to that of the ambient atmosphere.

b)The leading face of the cylinder impacts the target and its constituent particles are
instantaneously stopped, creating a violent shock wave - the Hugoniot shock - that
travels back along the length of the cylinder as adjacent particles are brought to rest.
The shocked region behind the wave is subject to transient shock pressure of high
magnitude.

c)The huge pressure gradient between the radially unconfined free surface of the
shocked region and its interior causes the generation of release waves, which trigger
rapid radial expansion at the shocked end. The release or decompression waves travel
at the speed of sound back towards the centre of the cylinder, reducing the strength of
the shock wave as they progress.
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d)The transient period ends when the release waves meet at the cylinder’s central axis
[10]. Steady flow is established as the cylinder flows onto the surface of the target. A
steady stagnation pressure is reached, which is maximum at the centre of impact.

2.2 EOS OF WATER AND AIR

Additional useful information resulting from associating the bird to water is the equation
of state (EOS) used to describe the pressure-density (p-p) relationship in the bird
medium. A few equations are available and the one most commonly used for water-bird
is a polynomial of degree 3 [1]. This polynomial EOS for the bird model corresponds to
a hydrodynamic, isotropic, and non-viscous constitutive law and is given as follows:

p=Cy+Cu+Copi* +Cott® +(Cy + Cspr+ Couu*E (1)
u=L2- @)
Po

where is: E - internal energy and u - change in density during the impact.

The coefficients Cy-Cs of polynomial equation are given by expressions based on the
initial density, the speed of sound in the medium and an experimental constant k:

C\ = pocs 3)
C, = (2k-1), 4)
Cy = (k=1)Bk-1)C (5)
Cy=C,=Cs=C4=0 (6)

where is: p, - density of medium (for the water p,,, = 1000 kg/m3 and for the air py, =
1.225 kg/rnS), ¢o - speed of the sound in the medium (for the water ¢, = 1483 m/s and
for the air ¢o,= 342 m/s) and k - experimental constant (for the water k,= 2.0 and for the
air k, = 1.03).

2.3 EOS OF POROUS MATERIAL

The EOS of porous material is based on the thermodynamic equation that describes the
state of matter under a given set of physical conditions p = p(p,E) = p(V,E) = p(p,T).
Further development of the theory for porous medium requires the elastic bulk modulus
and sound speed of porous to be defined. Sound speed calculates assuming:

Cpor = (I- Z)m Co,w + 2€0,q (7)

The Fig. 2 illustrates developed distribution for exponent values m =1-5, and m = 10.
Using well-known sound speed - elasticity relation for fluid medium, the distribution of
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bulk modulus K depending on porosity (K = p,,, cpwz) was calculated and shown in Fig.
3.

Gtk snurd speedt 1871 Py | G Bl mdulaic 2200 WPa

L
- "_——-—-—-_._._-..____‘H'_E-. sl speed M2 s S o LB Ol W W

Caltuatid dorms i w
o dargd gy T F

Bk madubun nparsun, MPs

Cakulabid dure i =3
Cakulabid durel i = 4

Capuaid i 1w = 10 i

Ly i’ o 1 10
Porgty Pamsiy, -

———Calidabed tatv = 1
B Copmvsasts dats

Figure 2. Sound speed distribution depending on porosity. ~ Figure 3. Bulk modulus depending on porosity.

2.4 SHOCK PRESSURE AND SHOCK VELOCITY

A bird undergoing impact at high velocity behaves as a highly deformable projectile
where the yield stress is much lower than the sustained stress. Accordingly, the impact
can be qualified as a hydrodynamic impact. In the case of law impact velocities, i.e. at
the loads below Hugoniot limit, the single elastic wave propagates through bird material.
At higher impact velocities the Hugoniot shock wave appears. The pressure of the initial
shock, so-called Hugoniot pressure, for incompressible and compressible bird material is
given by following equations, respectively:

p 'sh = PCoVim (8)
Psi = PVshVim (9)

where is: py, - shock pressure, ¢y = ¢ - sound speed in the fluid, vy, - shock velocity of
the generated shock wave, v;, - the translational particle velocity or simply projectile
velocity and p, - initial density.

The pressure of steady flow p,,, (stagnation pressure) is calculated according to
Bernoulli and is given by equation:

[
Pstag = Epvim (10)

The equations given below apply to the bird-body with an amount of air mixed in, also
called porosity, since experience has shown that porosity has a non-negligible effect on
the overall results and is closer to the behavior of a bird upon impact [1,3] are given as
follows:
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PVsn = P2 (Vsh _vim) (1D
PLH PV = P2+ Py (Vg Vi) (12)
=
(oo 2
—=(1-z)| —=+1 +z(l-¢q (13)
2 -9 & (=
2
PiCo
A=L10 14
4k -1 (14
A 1-gq

where is: p; and p, - density of the medium before and after the impact, p; and p, -
pressure before and after the impact (p; is negligible) and z - amount of the material
porosity.

Parameter ¢ is defined as:

g=1-Pl=g -, (16)
P>
where is:
1
pei, | ’
2 — 1€0,a —2,2
C, 2pk + : —4p°k
zﬁka+plpo’” [ P, J P
1 — 2
q, = — 4> = — p=— (7
2pk? 2pk, P

Utilizing mixture theory [1] the EOS for the shock compression phase of the porous
material was derived as follows:

[ﬂj =(1—z)[ﬂj +z[ﬂj (18)
’02 porous ’02 water ’02 air

The solution for the shock velocity in the porous is found by isolating p, and p, after the
shock and by the simultaneous solution of equations (9), (17) and (18). Once the shock
velocity is known, the Hugoniot pressure can be found from Eq. (11). Fig. 4 and Fig. 5
show the shock velocity and the shock pressure for impact velocities ranging from 0 to
500 m/s. The shock velocity and shock pressure are plotted for four different porosities
(z=10.11t0 0.4) in order to illustrate the influence of that parameter.
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Figure 4. Theoretical dependence of shock velocity on Figure 5. Theoretical dependence of shock pressure
porosity. on porosity.

2.5 STAGNATION PRESSURE IN STEADY FLOW REGIME

For an uncompressible fluid like water the Eq. 10 is valuable. But for compressible
materials density increases with pressure and produces higher values of stagnation
pressure. In the case of compressible porous material we assume increasing factor equals
(1-2)":

2

1 Vin
pstag,z = Epporous T (19)
pporous = (1_ Z) Pwater t ZPair (20)

When the fluid flow reaches a steady state, it is also possible to calculate the pressure
distribution along the radius, assuming exponential dependence:

(Y
p=pmgi Z(RH @1

where is: r - radial position and R - radius of the bird body.

The Fig. 6 and Fig. 7 illustrate the stagnation pressure depending on porosity and
impact velocity, and the stagnation pressure distribution along the radius.
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Figure 7. Stagnation pressure distribution along the
radius vs. impact velocity and porosity.

Figure 6. Stagnation pressure vs. impact velocity and
porosity.

Involving Eq. 19 in Eq. 20 we would get normalized diagram of stagnation pressure
distribution with reduced number of curves in Fig. 7. In this case, the stagnation
pressure for the same impact velocity would be identical and represented by solid line.

3. FEM modeling

3.1 BIRD MODEL

For bird material a homogeneous mixture of water and air was used. The porosity
(volume presence of the air) was varied from z = 0.0 to z = 0.4. The effect of porosity
with the P-alpha EOS [4] for porous material was investigated. The appropriate
mechanical parameters of the water and water-air mixture depending on porosity are
given in Table 1.

Table 1. Mechanical parameters of the water and water-air mixture

Porosity Density Sound speed Bulk modulus

z P ¢p (for m=1) K (for m=1)
- kg/m’ m/s MPa

0.0 1000.0 1483 2200

0.1 900.12 1368 1668

0.2 800.25 1256 1260

0.3 700.37 1142 907

0.4 600.49 1026 632

For the purpose of this research, two typical bird shapes that are generally used in bird
strike analysis: flat and hemispherical cylinder, were considered. In each case, the
height and diameter of the bird was assumed to be 200 mm and 100 mm, respectively.
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The length-to-diameter ratio of 2 for each bird shape was identical. Two types of the
numerical models of body shapes based on the SPH particles distributions along the
symmetry axis are presented in Fig. 8.

7y

Figure 8. The SPH particles distribution along the symmetry axis of hemi-
spherically ended cylinder: axial (left) and radial (right).

The cylindrical projectile model had a total of 12640 SPH particles and the cylinder with
the hemi-spherical ends model had a total of 10512 SPH particles. The numerical
models of bird body were built such that the nodal density of each body was
approximately the same.

3.2 TARGET MODEL

For simplicity, the target structure was initially assumed to be rigid for comparative
analysis of the shock pressures and shock wave velocities in the porous material. In
addition, the impact velocity was assumed to be normal to the target. To simulate a rigid
target, the target structure was modeled as a steel plate, with the dimensions 800 x 800
mm and thickness of 10 mm. All degrees of freedom of the target structure were
constrained. The target structure was modeled using Belytschko-Tsay shell elements
(Fig. 9) [4].

Figure 9. Lagrangian model of rigid target and SPH model of cylindrical bird projectile.
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The target flexibility was introduced into the analysis, and the inherent coupling
between the impact loads and the target deflection was explored. The appropriate
mechanical parameters of the Al alloy are given in Table 2.

Table 2. Mechanical parameters of Al alloy target structure

Density Poisson's ratio | Young's modulus | Shear modulus Tensile yield strength
P MU E G ReH
kg/m’ - GPa GPa MPa
2.785 0.33 71.00 28.60 280.00

Besides the frontal impact, the effects of oblique impact were considered on the flexible
target. Specifically, the bird projectile direction of 45 degrees was simulated.

a) b)

p

F _

€l

d)

e)

se 8 &

Figure 10. Deformations of cylindrical SPH body at different times during
impact with rigid flat target (t= 0.0, 0.5, 1.0, 1.5, 2.0 ms).

b)

e

Figure 11. Deformations of hemispherical cylinder SPH body at different
times during impact with rigid flat target (t= 0.0, 0.5, 1.0, 1.5, 2.0 ms).
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4. Results and discussion

4.1 EFFECT OF PROJECTILE SHAPE ON A RIGID TARGET

Body deformations of artificial bird at different stages of the impact process are
presented for various projectile shapes investigated in Figs. 10 and 11.

4.2 SHOCK PRESSURE AND SHOCK VELOCITY

The impact velocity for all bird projectiles was varied from 100 m/s to 500 m/s and
normal to the rigid target. In addition, all the projectiles were assumed to have a
porosity z of 0.4. Typical history diagram of the shock pressure distribution in the frontal
plane of cylindrical body for velocities of 200 and 300 m/s impact are shown in Fig. 12.
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Figure 12. Shock pressure distribution along the radius for different impact velocities:
Vim= 200 m/s (left) and v;, = 300 m/s (right).

The history diagrams in Fig. 12 are similar and show appearances of two peaks on each
shock pressure curve that is typical for two-phase materials such is the porous.

The SPH computed shock pressures for the cylindrical bird shape are presented in Fig.
13 and Fig. 14, for an appropriate range of projectile velocities and porosity. This last
one, also, displays the experimental results from [3] for medium size birds. The exact
weights of the test specimens were not given, however, it is stated that the specimens
weighed between 0.5 kg to 1 kg. In addition, these figures display the computed shock
pressures based on Wilbeck's theory [1].
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Figure 13. Comparison of Hydrodynamic theory and Figure 14. Computed and experimental data for shock
SPH calculated data for shock pressure distribution vs. pressure distribution vs. impact velocity and porosity.

impact velocity and porosity.

Analysis of shock pressures calculated based on the Hydrodynamic theory and SPH
method (Fig. 13) shows good correlation of computed data, specially for lower values of
impact velocities (v, < 300 m/s). Further increasing of impact velocity causes higher
deviation of computed shock pressures. As well, the distribution of computed and
experimental data in Fig. 14, for shock pressure in the porous, confirms validity of the
predictive principle that assumes the bird body as porous medium.

4.3 STAGNATION PRESSURE IN STEADY FLOW REGIME

The steady-state flow pressure stage is considered to be more critical for bird impact
events. Simplified shock pressure distribution is used to determine the stagnation
pressure in steady flow regime. This diagram, implemented in the pressure history
record given for 100 m/s impact velocity, will take appearance shown in Fig. 15 (smooth
thick line).

SHUAE (WPa )

PR

7|

T T T T
00 05 i0 15 20
TIME ima)

Figure 15. Simplified shock pressure distribution with typical stages.
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Typical stages of pressure-time response are: At - stage before impact, At,; - shock
wave stage; At;, pressure release stage and Aty ; - steady-state flow regime. Stagnation
pressure calculates based on the equations:

1. 1. I
Potag == ="o——=——" (22)
Aty Aty —An, L Aty
im '
!
I, = _[ pd (23)
4]

where is: I, - specific impulse of shock pressure during stagnation stage, Aty - impact
duration or so-called bird "squash-up" time, L - length of bird body and At - time
sequence of shock wave stage (up to 30% of impact time).

Stagnation pressure computed for the case of cylindrical bird shape is presented in Fig.
16, for a range of projectile velocities at z = 0.4. This figure displays the experimental
results from [3,10] for medium size birds.

wxwne, MPa
=

& 11 150 HO =11 an

rpact valcily, s
Figure 16. Stagnation pressure distribution vs. impact velocity for z = 0.4.
From Fig. 16, it can be seen that the computed steady state pressure from the cylindrical
projectile shape match well with the experimental results. Most previous analyses
[1,3,10] were capable of predicting the steady state stagnation pressures with good

accuracy. In fact, Wilbeck's one-dimensional theory provides a quick way of checking
the steady state pressure before performing a full numerical three-dimensional analysis.

4.4 EFFECT OF TARGET FLEXIBILITY ON THE IMPACT LOADS AND DEFORMATIONS

The shell model of Al alloy plate, 3 mm of thickness and the mechanical parameters
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given in Table 2, was used to show the effect of target flexibility on the impact loads and
plate deformations. The boundary conditions assumed all edges of the plate were fixed
against displacement in any directions. Besides the frontal impact, the effects of oblique
impact (a0 = 45°) were considered on the flexible target. Pressure and von Mises stress
distributions for in Al plate at impact velocity 300 m/s are shown in Fig. 17.

i bt

a) Orthogonal bird impact (¢=90°; z=0.2; #=0.3 ms) b) Oblique bird impact (a=45°; z=0.2; t=0.5 ms)

Figure 17. Pressure and von Mises stress distributions in the metallic plate at cylinder impact velocity 300 m/s.

Regarding the pressure distribution (Fig. 17), for time that provide the full contact
surface will be reached in both orthogonal and oblique impact, the appearance of lower
pressures characterizes the oblique impact caused by enlarged contact surface at o = 45°.
Although, the comparative analysis of von Mises stress distributions in the metallic plate
shows no difference between stress values for orthogonal and oblique impact.

Effective strain distributions along 3 mm thick Al alloy plate for orthogonal and oblique
impact depending on impact velocity are shown in Fig. 18 and 19, respectively.

Timn
a) vin = 100 m/s, z = 0.2; t=T =2 ms; 60° view direction (left); side b) vim=300 m/s; z =0.2; t=T= 1 ms; 60° view direction (left);
view (right) side view (right)
Figure 18. Effective strain distribution along 3 mm thick Al alloy plate for orthogonal cylinder impact depending
on impact velocity.
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Figure 19. Effective strain distribution along 3 mm thick Al alloy plate for oblique cylinder impact (v;,, = 300 m/s;
z=02;T=1.5ms).

From Figs. 18 and 19, it can be seen that the predicted effective strain for cylindrical

bird body decreases with obliquity of impact velocity.

Finally, the pressure, von Mises stress and effective strain distributions are tested at
same above mentioned impact conditions for hemispherical cylinder bird body. The
relevant results of numerical simulations are given in Figs. 20, 21 and 22, respectively.

& Plastt ey - AT

a) Orthogonal bird impact (o= 90% z =0.2; = 0.3 ms) b) Oblique bird impact (o = 45°% z=0.2; t = 0.5 ms)

Figure 20. Pressure and von Mises stress distributions in the metallic plate at hemispherical cylinder impact
velocity 300 m/s.

hb_¥ ] JAnE
b) vim =300 m/s; z =0.2; t=T= 1 ms; 60° view direction
(left); side view (right)

e

a) vin = 100 m/s, z = 0.2; r=T= 2 ms; 60° view direction
(left); side view (right)

Figure 21. Effective strain distribution in 3 mm thick Al alloy plate for orthogonal hemispherical cylinder impact
depending on impact velocity.
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Figure 22. Effective strain distribution along 3 mm thick Al alloy plate for oblique hemispherical cylinder impact
(Vim=300m/s; z=02; T= 1.5 ms).

Comparing the results of numerical simulations of bird impact on deformable target for

flat cylinder and hemispherical cylinder shape of bird body it can be seen as follows:

- In the case of orthogonal impact maximum pressures distributions of the flat cylinder
impact (Figs. 17 and 20) show for 26% higher values of pressures than for
hemispherical cylinder impact, and for 38% higher values of pressures in the case of
oblique impact,;

- Von Mises stress distributions in the elastic metallic plate (Figs. 17 and 20) are
practically identical relative to the stress values for orthogonal and oblique impact;
and

- Effective strain distributions (Figs. 18, 19, 21 and 22) show generally that reduction of
impact angle produces strain decreasing, and regarding the body shape that would be
for 44% lower values of maximum strain in the case of orthogonal hemispherical
cylinder impact and for 14% lower values of maximum strain in the case of oblique
hemispherical cylinder impact, all at v;,,= 300 m/s.

5. Conclusion

Brief retrospective of bird impact hydrodynamic theory coupled with Hugoniot shock
wave equations was given. For bird material the homogeneous mixture of water-air
mixture was used and the equation for elastic bulk modulus and sound speed of porous
medium depending on porosity was involved in the analysis. Finite elements numerical
simulations of bird impact were carried out by the use SPH method to represent bird
body. Based on the mechanical parameters, determined by proposed equation, the effect
of porosity with the P-alpha EOS for porous material was tested.

Numerical simulation of various cases of bird impact including the variation of bird
material density, shape and impact velocity, impact angle and parameters of target plate
was successfully performed. Comparing some results of the numerical simulation and
the experimental testing, it appears that increasing the porosity might produce a better
match of predicted Hugoniot shock and the FEM pressures with those observed in
experiments. As well, the computed stagnation pressures in steady state regime,
calculated by proposed method, match well with the experimental results. Regarding the
shape, it can be seen that the predicted shock pressures associated with all of the bird
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shapes produced a good correlation with the experimental results.
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Abstract. This work is concerned with generalized van der Pol oscillators, the
damping-like force of which depends nonlinearly on the displacement and
velocity with the powers that can be any positive real numbers. The amplitude
and frequency of free limit cycle oscillations are determined first. Then,
harmonically forced generalized van der Pol oscillators are considered with
the aim of determining the region of entrainment, when the force is said to
have entrained the limit cycle oscillations.

1. Introduction

The classical van der Pol oscillator is one of archetypal models in science and
engineering. Its governing equation of motion is given by

itx=ell-x?)i, (1)

where x is a generalized coordinate, dots denote differentiation with respect to time ¢ and
the coefficient £ is a positive real number (all these variables and the constant are non-
dimensional). The damping-like force on the right-hand side of Eq. (1) is of a
changeable sign: it is positive for smaller displacements (],\1 < 1) and then feeds energy

into the system; however, it becomes negative for larger displacements (],\1 >1) and,

thus, it dissipates energy. This behaviour gives rise to self-exciting oscillations. For
small values of the coefficient £ (£ <<1), a stable limit cycle occurs with the steady-

state amplitude a;. =2, which represents its distinctive characteristic [1, 2]. When the

classical van der Pol oscillator is harmonically excited, the entrainment (locking,
quenching) phenomenon can occur. It corresponds to the case when the limit cycle
oscillations synchronise with the forcing frequency. Then, the force is said to have
entrained the limit cycle oscillations or the limit cycle oscillations are said to have been
locked/quenched [2].
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This study is concerned with the investigations of the limit cycle oscillations
and the entrainment phenomenon in the generalized van der Pol oscillators governed by
the following equation

X+ sgn(xlxia =£ (1 - |x|ﬁ)|)'c|7 sgn(x)+ &F cos Qr, 2)

where the powers «, fand y are positive real constants, while F and Q are related

to the magnitude and frequency of harmonic excitation, respectively. Here, the restoring
force and the damping-like force have a general power form: the former is an odd
function in the displacement, while the latter is an even function in the displacement
and an odd function in the velocity. The sign and absolute value functions are used to
assure that these terms have the properties as in the classical van der Pol oscillator given
by Eq. (1).

There have been few investigations concerned with the generalisation of the
classical forced van der Pol equation with respect to different powers of the restoring
and the damping-like force. The van der Pol oscillator with a pure cubic restoring force
was investigated in [3] and [4], where the first-order harmonic balance method was
applied to obtain periodic solutions, their stability was discussed and the regions of
entrainment were found. Obi [5] considered a generalized version of the van der Pol
equation (la,b) in which the power of the restoring force is 2n+1, where n is an integer,
and the geometric non-linearity in the damping-like term is raised to the power 2n+2.
He showed the differences between quantitative and qualitative properties of the periodic
oscillations corresponding to a linear and non-linear restoring force. He also obtained
the number of periodic oscillations, their stationary amplitudes and discussed the way
how they depend on the magnitude and the frequency of harmonic excitation.

In this paper, the influence of the powers of nonlinearity on the system response
in studied first for small values of the coefficient £ . By applying the averaging method,
the amplitude of the limit cycle is determined and its properties analysed with respect to
the limit cycle amplitude of the classical van der Pol oscillator. Then, harmonically
excited generalized van der Pol oscillators are investigated from the viewpoint of the
occurrence of harmonic entrainment. Locked periodic motion is obtained by adjusting
the averaging method. The steady-state amplitude is related to the amplitude of the limit
cycle. Effects of the powers of the restoring and damping-like forces on the occurrence
of this phenomenon are determined.

2. Free generalized van der Pol oscillators: Limit cycle oscillations

In this Section, the approximate analytical solution for motion of the oscillator modelled
by Egs. (2) with F=0 is found. To that end, the generalized Krylov-Bogoliubov method,
recently extended to free purely nonlinear oscillators [6] is used. The form of the
solution is taken in the form:

X=acosy, Xx=-aw@siny, (3a,b)

where
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y = )i +6(0), @)

while the frequency wis dependent both on the amplitude a and the power & [6]

( a+3 ]
CW a+1 a+1 (Sa,b)

F( o+ 1)
where I' is the Euler gamma function.
Differentiating Eq. (3a) with respect to time, one obtains

X =dacosy —awsiny —afsiny, (6)
which owing to Eq. (3b) implies that the following constraint needs to be satisfied

dcosy —absiny =0. @)
Finding the second time derivative of Eq. (3b) and substituting it together with Eq.
(3a) into Eq. (2), one obtains

. . da) .. A 2 o
—awsiny — ad—asmy/— awlcosy —aw” cosy + sgn(acosl//)|acosl//| =
a

®)
- (1 - |a cos l//|ﬂ)‘— awsin l//|7 sgn(— awsiny).

It should be noted that the last term on the left-hand side of Eq. (8) can be approximated
by the first term from the corresponding Fourier series expansion

) 1(1+Ej
‘Cl‘ab]a cosy, h] :_\/EI_M (9)

2

sgn(a cos y/)‘a cos y/‘ “ =

Now, this term can be cancelled by the term in front of it

—aw’ cos l//+|a|ab1a cosy =0, (10)

i.e. it is assumed that @ = b, |a|0H, although wis given by Egs. (5a,b) It should be

noted that this approximation holds for a certain range of the values of the parameter
aonly (for more details, see [7] and [8]).

Further, the second term on the left-hand side of Eq. (8) contains the
derivative of the frequency with respect to the amplitude, which can be obtained
from Eq. (5a) [6]

do_a-1
da 2a

(1D
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Substituting Eqgs. (10) and (11) into Eq. (9) and combining it with Eq. (7), one
derives

d(l + a2—1 sin y/j = 8(1—‘51 cos y/‘ﬂ)‘— awsin y/‘y sgn(— awsin w)sin v, (12)

ad+aZ sinycosy = 5(1 - ‘acos y/‘ﬁ}— awsinyf‘ysgn(— awsiny)cosy.  (13)

After averaging Eqs. (12) and (13), it follows that the amplitude a and the phase
shift @ are defined by the following first-order differential equations

. 2& 2”( B . ¥ . .
a=——""— [{l-|acosy] )‘—aa)sml//‘ sgn(— awsin y)sin ydy, (14)
7[(:(05+31a‘T 0
: £ 2”( B . b4 .
a=——| 1—‘acos l//‘ ‘—aa)sml//‘ sgn(—awsiny)cos ydy. (15)
27[451‘7 0

By integrating them, one can derive:

s W[ ()
) (16)

R G —

0=0. (17
Equation (17) implies that in all generalized van der Pol type oscillators modelled by
Egs. (2), the phase shift is constant to terms of order &
The steady-state amplitude, i.e. the amplitude of the limit cycle a,,

corresponds to @ =0 and is found to be
\/;F( 3+ 8+ yj
2

while Egs. (5a,b) define the corresponding frequency

@ =cyllad (19)

The expression (18) is also found in [9], and indicates that the first approximation for
the amplitude of the limit cycle depends on the values of the parameters £ and % i.e. on
the parameters appearing in the model of the damping-like force. However, in general,
the amplitude of the limit-cycle actually depends on all parameters appearing in the
differential equation of motion, but the &dependence is expected to be weak, except for
the larger values of this parameter.

1B

(18)
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Equation (18) is used to plot how the amplitude of the limit cycle changes with
the parameter £ for two different values of the power y (Figure la, b). In addition,
numerically obtained amplitudes of the limit cycle are also presented in this figure for
three different values of the parameter « corresponding to the linear a=1, under-linear
a=2/3 and over-linear restoring forces a=2. It is seen that the analytical and numerical
result agree reasonably well for all the range of the powers considered, although the
analytically obtained amplitude of the limit cycle can be considered as slightly under-
estimated for a=2/3 and slightly over-estimated for a=2. These numerical results lead to
the conclusion that as the power « increases, the amplitude of the limit cycle decreases
and this is in general agreement with the result given in [10] for =2, where an

elliptic Krylov-Bogoliubov method is used to find the amplitude of the limit cycle. In all
cases, as [ increases, the amplitude of the limit cycle decreases.

-y )
i Sy

Figure 1. Amplitude of the limit cycle obtained analytically Eq. (18) (solid line) and numerically
for £=0.1, a=2/3 (stars), =1 (circles) and o=2 (triangles): a) }=0.8;b) j=1.2.

2.1 Special case: y=1
If the velocity term in the damping force is linear, the amplitude of the limit cycle is

ﬁr(#j ”ﬁ

NES)

The change of this amplitude with the parameter £ is plotted in Figure 2. Besides this,
numerically obtained amplitudes of the limit cycle are also shown in this figure for
different values of the parameter o

The expression (20) is used, together with Egs. (3a,b) and Egs. (5a,b), to compare the
analytically found phase trajectories with those calculated numerically. Figure 3 shows
this for three different values of the power & corresponding (as in Figures 1 and 2) to
the linear a=1, under-linear =2/3 and over-linear restoring forces a=2 (note that the
case given in Figure 3a corresponds to the classical van der Pol oscillator, which is

(20)

227



228

IVANA KOVACIC

given here to see the similarities and differences with respect to other cases considered).
It is seen that the approximate analytical results obtained agree reasonably well with the
numerical solutions.

A&
b
IR N
b #—--#1_1 |
e g S Y

i@

Figure 2. Amplitude of the limit cycle for =1, £=0.1 obtained analytically Eq. (20) (solid line) and

numerically: a=2/3 (stars), o=1 (circles) and a=2 (triangles)

al

by 4

4

Figure 3. a) Phase trajectories calculated numerically by carrying out direct integration of the
equation of motion (2) with F=0 (black dotted line) and the analytically obtained limit cycle (red
solid line) for £=0.1, =2, x(0)=3, x(0) = 0 and: a) a=1;b) a=2/3;¢c) a=2.
It should also be pointed out that Eq. (20) implies that when S —0,
|aLC| - 2\/2 as well as when S — oo, |aLC| —1. When S =2, asis in the classical van

der Pol oscillator, the amplitude is |aLC| =2, which is the well-known result [1, 2] also

seen in Figure 3b.
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3. Forced generalized van der Pol oscillator: Entrainment
In order to derive the approximation for motion for the forced generalized van der Pol
oscillator (2), the method presented in the previous section is adjusted. Thus, following

the methodology defined by Eqgs. (3a)-(7), the equation of motion (2) becomes

. . do . . . 5 a
—awsiny — ad—asm W —ambcosy —aw” cosy + sgn(acosy/)‘acosyd =
a

@1
£ (1 - ‘acos Mﬁ)‘— awsin My sgn(— awsin )+ £ F cos Qr,
which due to Eqgs. (10) and (11), transforms to
—(1+“—_1jm sin y/—awécos V=
2 (22)

£ (1 —‘a cos y/‘ﬂ)‘— awsin y/‘y sgn(— amsin y/)+ €&F cos ¢,
where ¢ =Qzt.

The case investigated here is the one when the frequency of excitation Q is close
to the frequency @, i.e. Q=& +&0, where o is the detuning parameter. It should be
noted that this implies ¢ = @+ €0.

By solving the system formed by Eqgs. (7) and (22), one obtains

c'm(1+ a1 sin’ y/j—
2 (23)

—8(1 - ‘a cos y/‘ﬂ)‘— awsin y/‘y sgn(— amsin y/)sin Vv —&F cos gsin i,

—a0%sin wcosy —amly — )=

(24)
£ (1 - ‘a cos y/‘ﬁ)‘— amsin y/‘y sgn (- awsin y)cos ¥ + €F cos g cos v.

At this point, the phase difference ¢ =y —¢@ can be introduced and ¥ replaced by
¥ =¢+¢@. The phase ¢ can be considered as an independent variable and the
transformed Eqgs. (23), (24) can be averaged with respect to it. This leads to

o L )

(o +3) r( %)r{ Lﬁwj (25)

ap=—-aeo— ;—F |a|T cos @. (26)
c
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The steady-state motion characterised by a,,¢, of the forced oscillators (2) is obtained
by equating the left-hand sides of Egs. (25) and (26) with zero

D R e e ]
0=- —Esin [ 27
z r(3+7jr(3+,8+7j 2
2 2

1-a

0=a080'+;—F|a0| 2 cos d,. (28)
C

For F=Q=0=0, Egs. (27) and (28) turn into Egs. (16) and (17) for the first-order
differential equations in the amplitude of the limit cycle oscillations.

3.1 Special case: y=1
When the damping-like force depends on the velocity linearly, Egs. (25) and (26) give

2ea A 1“( ,B; lj 2eF F
_a _ a? sing, (29)

d:a+3 \/;r(%j cla+3)

1-a

a¢= —a&‘O'—g—aT cos @, (30)
2c

where the notation for the absolute value has been omitted. The corresponding steady-
state response aj , ¢, is defined by

+1
2éa a F( 2 j 2¢eF l-a (31)
=2y S N 2 2 S sing,
at3 J;F( +4j ar3) o S
2
1-a
oz%m‘;ia; cos (32)
"

These equations can be combined to derive the amplitude-frequency equation

B+1
F? a-1\? ) ) a’ F( 2
& —-a, _a=4(Q—ca0 2 ) a,’ +€&%a) | 1-———" <L (33)

* )

Stability of this steady-state response is checked by introducing small perturbations q,

and ¢, into the steady-state amplitude a, and phase ¢, satisfying Eqgs. (31) and (32)
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a-1
with €6 =Q—ca * . So, by using a=a,+a, and ¢=¢,+¢, Eqs. (31) and (32) give

the following constant coefficient system

%)
l+a 1+a+28 a, 2 4a, a-l
- 4 + 0-ca7 ) (34)
e (T Y f B+4 4 +a( C%z)
2
a-1 o« l4aQ-ca,z 1 af 1_(,6’;1]
P -1 3 —ca, 2 1 q (35)
¢ =aqac 5 a, 2 —2 7{10 + @€ 5 2&71_([”4 .
2

The corresponding eigenvalues A satisfy [2]

A —tr-A+det =0, (36)
with the trace (tr) being:

iy
s
goglr@ 1 a” \ 2 (1+1+a+2,8j’ 37)
3+

3+a 2 f‘_(,B+4j

while the determinant (det) is

2 ao r(ﬁﬂj 2 Fz(@] %)
e (l+a)-2e*(1+a+p) ‘Fr(ﬁ 4]+e M+ a+2p)R - 1“2('834]

By using Egs. (33), (37) and (38), the frequency-response curves are plotted first in Fig.
4 for the classical van der Pol oscillator (o= 1, f= 2). They are given for the
convenience of the reader and also as a reference point for the comparison with other
cases studied subsequently. As seen from Fig. 4, frequency-response curves can be
continuous or consisting of two parts: the former corresponds to the oscillations with
smaller amplitude and the latter is closed and surrounds the point corresponding to the
limit cycle amplitude, Eq. (20) (this point is labelled by a star in this paper) and is

located on a backbone curve Q, ="

force (the backbone curve is labelled by ‘bc’ and depicted by a double dotted-dashed
line). All frequency-response curves of the classical van der Pol oscillator are
symmetrical with respect to the vertical backbone curve. The line corresponding to the
trace is plotted as a dashed-dotted line. It is horizontal as Eq. (37) indicates that it does
not depend on the frequency. Curves defined by Eq. (38), i.e. det=0, are plotted as dotted

, which is Q, =1 for the linear restoring
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lines and the gray region corresponds to det<(. The boundary of the region det=0, which
separates qualitatively different types of solutions, is plotted as thicker dotted line. For
the stability, one requires tr<(0, which is above the line corresponding to tr=0, and det>0
[2]. The parts of the frequency-response curves satisfying det>0 and tr<0 are shown as
thicker lines. Thus, the entrainment can occur either between the intersection of
frequency-response curves with the curve det=0 when tr<O for smaller F or with the
curve tr=0 when det>0 for higher values of F, which is confirmed numerically by

solving directly the equation of motion and these numerical results are shown as black
dots.

@5t

0% 09 094 096 098 1062 104 106 10R LI

Figure 4. Frequency-response curves defined by Eq. (33) for £= 0.1, a= 1, § =2, different values of
the magnitude of the force F=0.75 (smaller dashes), F=1 (longer dashes) and F=2 (solid line).
Numerical results are shown as black dots. The star stands for the characteristics of the limit cycle.

=S r

a), el b g =2
1 .'

e L oo

12 il T Li 12 if 14 ] Li 12

T 1
2 52 2
Figure 5. Entrainment regions (shaded areas) for €= 0.1, =1 and different values of the power f.

Dotted lines depict the solutions of det=0 for which tr<0 and dashed-dotted lines the solutions of tr=0
for which det>0.

Further, the bifurcation analysis is conducted to construct the regions of
entrainment. The locus of saddle-node bifurcation points is found by solving the system
formed by det=0, Eq. (38) and the amplitude-frequency equation (33) and shown in the
F-Q parametric plane. This is presented in Figure 5 as a dotted line. In addition, the
locus of the points along which Hopf bifurcation occurs when tr=0 and det>0 is also
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presented as a dashed-dotted line. So, by considering these bifurcation curves, it turns
out that stable entrainment solutions exist in the shaded region. Outside this region,
beating oscillations occur [1]. Figures Sa-c show how the size of the entrainment region
is affected by the change of the power S

The case a #1 is investigated now in the same manner. First, an under-linear
restoring force (& = 2/3) is considered. The corresponding frequency-response curves are
given in Figure 6. It is seen that this curves as well as the backbone curve are bent to the
left. The curves corresponding to det=0 and tr=0 are also shown, so is the gray region
det<0 (the same legend is used as in Fig. 4). For smaller forcing amplitudes, when the
part of the frequency-response curve is closed surrounding a limit-cycle point, the region
of entrainment can occur between the intersection of the frequency-response curve with
det=0, which is the same situation as for the oscillator with a linear restoring force.
However, for larger forcing amplitudes, when the frequency-response curve is a one-part
continuous line, the entrainment occurs between the intersection of the frequency-
response curve with the curve det=0 when tr<0 and the intersection with tr=0 when
det>0. Note that this is the mixture of the cases existing for a linear restoring case,
discussed previously.

[

0

Figure 6. Frequency-response curves defined by Eq. (33) for £= 0.1, o= 2/3, = 2, different values
of the magnitude of the force F=0.75 (smaller dashes), F=1 (longer dashes) and F=2 (solid line)

Numerical results are shown as black dots. The star stands for the characteristics of the limit cycle.
J=]/2 Iy =1 b =2
] : | ! ]

| . | i /

; | [

| : o

| | J

[ g ] i 1 a " ] (1] a " i
Figure 7. Entrainment regions (shaded areas) for £= 0.1, o= 2/3 and different values of the power £.
Dotted lines depict the solutions of det=0 for which tr<0 and dashed-dotted lines the solutions of tr=0
for which det>0.
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Figure 7a-c show how the position and the size of the entrainment region change
in the F-Q parametric plane as the power « is fixed to = 2/3 and [ is varied. The
entrainment region is shifted to lower frequencies and is wider for a lower geometric
non-linearity in the damping-like force.

The frequency-response curves corresponding to a over-linear restoring force a=2
are shown in Figure 8, while the entrainment regions are plotted in Figure 9. It is seen
that the frequency-response curves are bent to the right. The entrainment region, which
is wider for a lower geometric non-linearity in the damping-like force, is shifted to

higher frequencies.

er<i)

&,

o ) ) ) ) ) ) ) )
o6 07 08 09 1 (] 1.2 1.3 1.4
Q

Figure 8. Frequency-response curves defined by Eq. (33) for £= 0.1, a= 2, f =2, different values of
the magnitude of the force F=1 (longer dashes) and F=2 (solid line). Numerical results are shown as

black dots.
a) =112 _ by, p=1__ €y __fp=2
| _:'. 15 i .5! l |
H / - i l i
! f [ i i
Fli | Fi | Fli ' f
T | L
' (1 \ ! %
L 038 § It
L' f ! I
[ 1 R ¥R ] 14 15 | % n ng III 1.2 14 III- & 2 0y U LI 14 14 | £ i
£2 0 £

Figure 9. Entrainment regions (shaded areas) for £ = 0.1, o= 2 and different values of the power f.
Dotted lines depict the solutions of det=0 for which tr<0 and dashed-dotted lines the solutions of tr=0

for which det>0.
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4. Conclusions

In this work, generalized van der Pol type oscillators have been considered. Both the
restoring force and the damping-like force have a nonlinear power form: the former with
respect to the displacement, and the latter with respect to the displacement and velocity.
The investigations have been conducted with a view to determining the limit cycle in
free generalized van der Pol oscillators and defining the entrainment region in forced
generalized van der Pol oscillators.

The first approximation for the amplitude of the limit cycle is seen to be
dependent on the parameters appearing in the damping-like force. The accuracy of the
analytically obtained results has been confirmed numerically. In all the cases considered,
it has been found that as the power of the displacement nonlinearity in the damping-like
force increases, the limit cycle amplitude decreases. Further numerical results have
showed that for fixed values of the power of the displacement in the damping-like force,
the power of the restoring force has certain influence on the limit cycle amplitude. In the
case of linear viscous damping, the higher the power of the restoring force, the smaller
the limit cycle amplitude.

The forced generalized van der Pol oscillators have been studied by deriving the
corresponding frequency-response equation and by performing its stability analysis.
Analytical approximations for the trace and the determinant of the corresponding
eigenvalue equation have been derived, on the basis of which the regions of harmonic
entrainment have been obtained in the parameter plane formed by the forcing frequency
and its magnitude. It has been shown that for a fixed forcing magnitude, the region of
frequency in which entrainment occurs is the narrowest for the linear restoring force and
is wider for non-linear restoring forces. When the restoring force is under-linear, this
region is shifted towards lower frequencies and when it is over-linear, towards higher
frequencies.

Acknowledgement. This study has been supported by the Ministry of Science and
Education (Project 11141007).
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Abstract. Nonlinear oscillatory convective regimes developed under the
joint action of buoyant and thermocapillary effects in the 47v2 silicone
oil - water system, are investigated. Transitions between nonlinear flows
with various spatial structures have been studied. Specific types of
oscillatory flows with different symmetry properties have been found. It
is shown that the region of convective oscillations is observed in a finite
interval of the Grashof number values bounded from below and from
above.

1. Introduction

Stability of convective flows in systems with an interface has been a subject of an extensive investigation
at the past few decades (for a review, see [1], [2]). Several classes of instabilities have been found.

There are two basic physical phenomena that produce convective instability in systems with an
interface: buoyancy and thermocapillary effect. When heating is from below, the buoyancy instability
generates Rayleigh - Bénard convection [3], while the thermocapillary effect is the origin of Marangoni -
Bénard convection [4], [1]. The situation when both mechanisms of instability act simultaneously is the
most typical.

It is known that the stability problem for the mechanical equilibrium in a system with an inter-
face is not self-adjoint (see, e.g., [1], [5]), thus an oscillatory instability is possible. The mechanism
of oscillations, which takes place without interfacial deformations due to the hydrodynamic and ther-
mal interaction between convective flows on both sides of the interface, was found by Gershuni and
Zhukhovitsky [6] in the case of transformer oil - formic acid system. The nonlinear oscillatory convective
structures near the instability threshold for some model systems have been studied in [7], [8].

An oscillatory instability of the mechanical equilibrium can be caused by the joint action of buoyancy
and thermocapillary effect in a two-layer system heated from below. This phenomenon was first discov-
ered in [9], [1], [10]. Oscillations just above the instability threshold have been observed in experiments
of Degen et. al. (see [11]). It should be noted that the linear stability theory for the onset of the
buoyancy convection has predicted a monotonic instability [12]. In our opinion, oscillations observed in
experiments [11] can be caused by the influence of the thermocapillary effect [13].

In the present paper, nonlinear oscillatory convective flows, developed under the joint action of
buoyant and thermocapillary effects in the 47v2 silicone oil - water system filling the closed cavity,
are studied. Specific oscillatory regimes with different symmetry properties, have been observed. New
consequence of bifurcations has been found.

The paper is organized as follows. In Section 2, the mathematical formulation of the problem in the
two-layer system is presented. The nonlinear approach is described in Section 3. Nonlinear simulations of
the finite-amplitude convective regimes are considered in Section 4. Section 5 contains some concluding
remarks.
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2 Formulation of the Problem

We consider a system of two horizontal layers of immiscible viscous fluids with different physical proper-
ties. The system is bounded from above and from below by two isothermal rigid plates kept at constant
different temperatures (the system is heated from below; the total temperature drop is 6). It is assumed
that the interfacial tension ¢ decreases linearly with the increasing of the temperature: o = o9 — o,
where a > 0. The variables referring to the top layer are marked by subscript 1, and the variables
referring to the bottom layer are marked by subscript 2.

Assume that p;, Vi, %m, Km, Xm, Bm and a,, are, respectively, density, kinematic and dynamic
viscosity, heat conductivity, thermal diffusivity, thermal expansion coefficient and the thickness of the
m - th layer (m = 1,2). Let us introduce the following non-dimensional parameters, corresponding to
parameters ratios of different fluids,

p = p1/p2, v =v1/v2,n=1m/n2,

K= K1/Ka,X = X1/X2, 0 = 51/ 02,

and to the ratio of layers thicknesses,
a=as/a;.

As the units of length, time, velocity, pressure and temperature we choose a1, a3 /vy, vi /a1, p1v?/a? and
0, respectively.

The nonlinear equations of convection in the framework of the Boussinesq approximation for both
fluids have the following form (see Simanovskii & Nepomnyashchy 1993):

a/‘arn N _ - -
% + (Um . v)vm = _emvpm + Cmv2'Um + meTm'Yv
T, dm
W + U - VT = 7v2va (1)
V- Uy, =0.

Here, ¥y, = (Uma» Umy, Umz) is the velocity vector, T), is the temperature and p,, is the pressure in
the m - th fluid; 4 is the unit vector directed upwards; by = ¢; = d; = e; = 1; by = 1/8, 2 = 1/v,
dy = 1/x, e2 = p; G = gB10a3/v? is the Grashof number, which characterizes the buoyancy force, and
P = v1/x1 is the Prandtl number for the liquid in layer 1. The conditions on the isothermal rigid
horizontal boundaries are:

z=1: v, =0, Ty =0, (2)
z=—a: TUp=0; Tp=1. (3)
The boundary conditions on the interface include relations for the tangential stresses:

Ov, _ O  aMOTy  Oviy _ Ouy, oM OTy W
92 T oz P oz’ "To: " o P ox’
the continuity of the velocity field:

z=0:

v = Va; (5)

the continuity of the temperature field:

Ty =15 (6)
and the continuity of the heat flux normal components:

oTy 0T,
— - —=0. 7
"oz 0z ™)
Here M = afai/mx1 is the Marangoni number, which is the basic non-dimensional parameter
characterizing the thermocapillary effect.

The conditions on the solid lateral boundaries, which are assumed to be thermally insulated, are
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o,

z=0,L: wv,=0, Wf(]7 m=1,2, (8)

where L =1/a.
The problem (1) — (8) for any choice of parameters has the solution:
Un =0, pm=Pn(), Tm=Tp(2), m=12, 9)

corresponding to the quiescent state. The temperature gradients in the quiescent state are:

1 K
— . Ay =dT¥/dz=——"—.
(1+ra) 7 2/d (14 ka)
The boundary-value problem (1) - (8) contains eight thermophysical (M, G, P, n, v, &, x, 3) and
two geometrical (L, a) non-dimensional parameters.

Ay =dTY/dz = — (10)

3 Nonlinear approach

In order to investigate the flow regimes generated by the convective instabilities, we perform nonlinear
simulations of two-dimensional flows (v,,, = 0 (m = 1, 2); the fields of physical variables do not depend
on y). In this case, we can introduce the stream function

Wim P

Uma = 9z y Umz = — Oz ’ (m:172)

Eliminating the pressure and defining the vorticity

Oz Oupg

¢7n - ox - 9z )
we can rewrite the boundary value problem (1) — (8) in the following form:
0pm | OYm O0Pm  OYm OPm o 9 Ty,
o "o or  ow 0s Y OmTmGGm (D
Vme = —Pm, (12)
Ty, | 0P 0T O 0Ty dm o
ot + 0z oz oz 0z ?V T (13)
(m=1,2).
0
2=1: wF%:o; T =0; (14)
0
z=—a: 1/)2:%:0; Ty =1; (15)
. _ _ 6:/)1 _ 6:/}2 _ ’r/]\[ 6T1'
2=0: ¢Y1=192=0, 2 0% ¢2—7I¢1+?%1 (16)
_ 3T1 _ 8T2
T1 —TQ, K BZ = 32 . (17)

The calculations were performed in a finite region 0 < x < L, —a < z < 1 with the rigid heat-insulated
boundaries:

My, 0Ty
z=0,L: ¢py= gﬂ? :W:(]; (18)
m=1,2.

The boundary conditions (18) correspond to a closed cavity. The problem (11) - (18) is integrated
in time with some initial conditions for ¢, and T, (m = 1,2) by means of a finite-difference method.
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Equations and boundary conditions are approximated on a uniform mesh using a second order approx-
imation for the spatial coordinates. The nonlinear equations are solved using an explicit scheme on a
rectangular uniform mesh 112 x 112. The Poisson equation is solved by the iterative Liecbman successive
overrelaxation method on each time step. The accuracy of the solution is 107°.

The details of the numerical method can been found in the book by Simanovskii and Nepomnyashchy

1.
4 Numerical results

We investigate the nonlinear regimes of convection in the 47v2 silicone oil - water system with the
following set of parameters: v = 2.0; n = 1.7375; k = 0.184; x = 0.778; 5 = 5.66; P = 25.7. This system
was used in experiments carried out by Degen et. al. (see [11]).

To simulate the motions in a closed cavity, we used rigid heat insulated boundary conditions (18) for
L = 2.74. Let us take the ratio of the layers thicknesses a = 1.

Under the conditions of the experiment, when the geometric configuration of the system is fixed
while the temperature difference 6 is changed, the Marangoni number M and the Grashof number G are
proportional. We define the inverse dynamic Bond number

e
GP  gbiprai’

Let us fix K = 0.027. When the Grashof number is sufficiently small, disturbances decay in an oscillatory
way and the system keeps the mechanical equilibrium. With an increase of the Grashof number (G >
G, = 97), the mechanical equilibrium state becomes unstable and perfectly symmetric standing waves
(type 1) satisfying symmetry conditions

Um (L —z,2,t) = = (z, 2,t), Tn(L —x,2,t) =T (z,2,t), m=1,2 (19)

develop near the instability threshold [13]. The snapshots of streamlines during one period of oscillations
are presented in Fig. 1.

With an increase of G, the period of oscillations grows (see line 1 in Fig. 2). This prediction coincides
with the observations of Degen et. al [11].

With a further increase of G, the oscillations disappear. For G close to G, = 193.8, the period of
oscillations 7 satisfies the relation 772 ~ G, — G, which is characteristic for a saddle-node bifurcation.
When G > G, the steady symmetric four-vortex motion takes place in the system. Thus, the region
of the Grashof number values, where symmetric oscillations take place, is bounded from below by the
mechanical equilibrium state and from above by the steady state.

Now, let us take the inverse dynamic Bond number K = 0.024. The decrease of the inverse dynamic
Bond number (weakening of the thermocapillary effect) changes the situation significantly. With an
increase of the Grashof number, the mechanical equilibrium state becomes unstable and the steady flow,
satisfying symmetry conditions (19) develops in the system. For G > 151.5, the steady flow becomes
unstable, and the system make a transition through the homoclinic bifurcation to a specific asymmetric
oscillatory flow (type 2) with an extremely high value of the period (see the left end of line 2 in Fig.
2). The snapshots of streamlines for the asymmetric oscillations (type 2) are presented in Fig. 3. The
solution has a following property:

(@, 2, t +T/2) = =y, (—z, 2,t), m=1,2. (20)

The period of asymmetric oscillations (type 2) changes in a non-monotonic way (line 2 in Fig. 2).
For G > 180, the inverse period doubling bifurcation takes place - the symmetry is restored and the
oscillatory flow (type 1) develops in the system (line 3 in Fig. 2). At G > 185, the period of oscillations
grows rapidly (line 3 in Fig. 2). With a further increase of G, the oscillations disappear. For G close to
G. = 188.2, the period of oscillations 7 satisfies the relation 772 ~ G, — G, (a saddle-node bifurcation).
When G > G, the steady symmetric four-vortex flow develops in the system. Thus, for K = 0.024,
the regions of asymmetric and symmetric oscillations are restricted by the Grashof number values from
below and from above by the regions of the steady states.

Let us note, that the dependence of the period of oscillations on the Grashof number for K = 0.025
(lines 4 and 5 in figure 2) is similar to that described above for the case K = 0.024.

240



Nonlinear oscillatory flows with different symmetry properties in two- layer systems

0.012 -~
0.006 -~
0

-0.006 -~
0012 -

0.016 ----
0.008

0
-0.008 -- -
-0.016 - - -

0.5

0.012 ----
0.006 -----

0
-0.006 ----
-0.012 --

0.5

0.012 ---—-
0.006 - -
0

-0.006 ----
-0.012 --

0.5

Figure 1: (a) - (f) A time sequence of snapshots of streamlines for the symmetric time-periodic motion

at G =112, K = 0.027; L = 2.74; a = 1.
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Figure 2: The dependence of the period of oscillations 7 on the Grashof number G for K = 0.027 (line
1); 0.024 (lines 2,3); 0.025 (lines 4,5); L = 2.74; a = 1.
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Figure 3: (a) - (f) A time sequence of snapshots of streamlines for the asymmetric time-periodic motion
at G =152; K = 0.024; L = 2.74; a = 1.
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5. Conclusion

The nonlinear development of the oscillatory instability in a two-layer system in
the presence of buoyancy and the thermocapillary effect, is investigated. The convective
regimes are studied by the finite-difference method. It is shown that under the joint
action action of buoyancy and thermocapillary effect, the development of oscillatory
instability leads to specific types of nonlinear oscillations with different symmetry
properties. Transitions between the flows with various spatial structures are studied. It is
shown that the period of oscillations changes in a non-monotonic way for symmetric and
asymmetric oscillations. It is found that in the course of the evolution of asymmetric
oscillations, the violation of the symmetry property decreases and the symmetry is
restored. With an increase of the Grashof number values, the oscillatory flow becomes
unstable and a steady convective flow develops in the system. The region of nonlinear
convective oscillations is observed in a finite interval of the Grashof number values
bounded from below and from above.

References

[1] Simanovskii I. B. and Nepomnyashchy A. A. (1993) Convective Instabilities in Systems with Inter-
face, Gordon and Breach, London.

2

Nepomnyashchy A. A., Simanovskii I. B. and Legros J. C. (2012) Interfacial Convection in Multi-
layer Systems, Second Edition, Springer, New York.

3

Gershuni G. Z. & Zhukhovitsky E. M. (1976) Convective stability of incompressible fluid, Keter,
Jerusalem.

4

Pearson J. R. A. (1958) On convection cells induced by surface tension, J. Fluid Mech., 4, 401.
5

Renardy Y. Y. (1996) Pattern formation for oscillatory bulk-mode competition in a two-layer Bénard
problem, ZAMP 47, 567.

[6

Gershuni G. Z. and Zhukhovitsky E. M. (1982) On monotonic and oscillatoty instability of a two-
layer immiscible fluids system heated from below, Sov. Phys. Dokl. 27, 531.

[7

Colinet P. and Legros J. C. (1994) On the Hopf bifurcation occuring in the two-layer Rayleigh-
Bénard convective instability, Phys. Fluids, 6, 2631.

8

Renardy Y., Renardy M. and Fujimura K. (1999) Takens - Bogdanov bifurcation on the hexagonal
lattice for double-layer convection, Physica D 129, 171.

[0

Nepomnyashchy A. A. and Simanovskii I. B. (1984) Thermocapillary and thermogravitational con-
vection in a two-layer system with a distorted interface, Fluid Dyn. 19, 494.

[10] Juel A., Burgess J. M., McCormick W. D., Swift J. B. and Swinney H. L. (2000) Surface-tension-
driven convection patterns in two liquid layers, Physica D 143, 169.

[11] Degen M. M., Colovas P. W. and Andereck C. D. (1998) Time-dependent patterns in the two-layer
Rayleigh-Bénard system, Phys. Rev. E 57, 6647.

[12] Nepomnyashchy A. A. and Simanovskii I. B. (2004) Influence of thermocapillary effect and interfacial
heat release on convective oscillations in a two-layer system, Phys. Fluids, 16, 1127.

[13] Simanovskii I. B. and Nepomnyashchy A. A. (2006) Nonlinear development of oscillatory instability
in a two-layer system under the combined action of buoyancy and thermocapillary effect, J. Fluid
Mech., 555, 177.

Received  September 30, 2012. Mathematical Subject Classification — MSC2010  70K65

243



ILYA B. SIMANOVSKII

244



UDK 001 SERBIAN SCIENTIFIC SOCIETY YU ISSN 0350-2910

SCIENTIFIC REVIEW (2013)
Series: Scientific and Engineering - Special Issue Nonlinear Dynamics S2 (2013) pp. 245-254

THE USE OF FINITE ELEMENTS METHOD IN VIBRATIONAL
PROPERTIES CHARACTERIZATION OF MOUSE EMBRYO

Andjelka N. Hedrih', Marinko Ugréic’2

! State University in Novi Pazar
Vuka Karadzica bb, 36300 Novi Pazar, Serbia
e-mail: handjelka@hm.co.rs

*Economics Institute
Kralja Milana, 18, 11000 Belgrade, Serbia
e-mail: ugrcicmarinko @ gmail.com

Abstract. To determine the vibration characteristics (natural frequencies and
mode shapes) of a mouse embryo the modal analysis is used. The spherical
mouse embryo 60 pm in diameter is modeled as elastic finite elements
biostructure consisting of 6um thick micromembrane and 38 pm in diameter
nucleus. The modal analysis was carried out for first six modes of embryo
natural frequencies by using the finite elements method and ANSYS software.
The numerical analysis of dependence of embryo own frequencies on the
boundary conditions are presented. The relevant illustrations of the typical
variations of the shape, deformation and particle velocities of vibrating
embryo are discussed.

1. Introduction

Although papers on mechanical properties of the oocyte exist (Liu et al, 2010, [1] and on
structural parts of mouse embryo (Murayama et al, 2008 [2], 2006) [3], there are very
few papers that regard this structure as an oscillatory system Hedrih A. (2011) [4]).
Embryo vibrational characterization represents very important researching subject of
modern biomechanical engineering.

Measurement of elastic properties of the biomembrane of the embryo can be done by
using different techniques (Murayama et al, 2008 [2], 2006) [3], Sun et al, 2003, [5]).
When fine glass micro-needle connected with force sensor, is used in experimental setup
for probing the mechanical characteristics of the mouse embryo (Sun et al, 2003, [5]),
embryo is placed in a liquid medium —eg HTF (human tubal fluid), in dish. Dish is
placed on a heating plate of a special microscope that maintains the body temperature of
the mouse. These are typical conditions (adequate liquid medium and temperature) to
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keep the embryo alive. Embryo is fixed with vacuum micropipette on one side. On the
opposite side is a fine glass micro-needle. See fig.1.

A finite elements method was used in computer-based biological training system to
simulate intracytoplasmic sperm injection (ICSI) procedures in virtual environments
(See ref Ladjaly et al, 2011 [6]).

The vibration properties (natural frequencies and mode shapes) of a bio structure such as
an embryo could be determined by modal analysis. Results of modal analysis can also
serve as a starting point for another, more detailed, dynamic analysis, such as a transient
dynamic analysis in different scenarios, e.g. artificial insemination of human embryo.
The natural frequencies and mode shapes are important parameters in the design of a
micro-robotic cell manipulation system for dynamic loading conditions [5].

Due to the nature of modal analyses any nonlinearity in material behavior are ignored.
Optionally, orthotropic and temperature-dependent material properties may be used. The
critical requirement is to define stiffness as well as mass in some form. Stiffness may be
specified using isotropic and orthotropic elastic material models (for example, Young's
modulus and Poisson's ratio), using hyper-elastic material models (they are linearized to
an equivalent combination of initial bulk and shear module), or using spring constants,
for example. Mass may derive from material density or from remote masses.

The goal activities of researching presented in this paper includes:

- Create robust finite elements model of mouse embryo and basic parts of micro-
robotic cell manipulation system (holding pipette, micropipette and liquid
environmental medium —human tubal fluid-HTF),

- Set the contacts and boundary conditions that affect the mouse embryo

vibrations,

- Run step modal analysis to simulate vibrations of embryo alone and embryo as
a part assembly with other components together,

- Determine the vibrational characteristics of mouse embryo free oscillations and
embryo oscillations affected by boundary conditions.

Embryo modeling and modal analysis were based on the use of the finite elements
method in the modal analysis system of ANSYS WORKBENCH® products [7].

Two cases were considered: free oscillations in the frame of the abovementioned
experimental setup (holding pipette, micropipette and liquid environmental medium —
human tubal fluid-HTF, mouse body temperature) at in vitro conditions and in vacuum
instead of liquid environmental medium. Micro-needle only touches, but exerts no
pressure upon the biomembrane of the mouse embryo.

2. Theory of modal analysis applied in FEM

The equations of elastic structural systems without external excitation can be written in
the following form:

[mI{i} +[Cl{u}+[K]{u} ={0} (1)

246



The use of Finite Elements Method in vibrational properties characterization of mouuse embryo

where is: [M] - structural mass matrix, [C] - structural damping matrix, [K] - structural
stiffness matrix, { i } - nodal acceleration vector, { u } - nodal velocity vector, and { u }
- nodal displacement vector.

It has been recognized that performing computations in the modal subspace is more
efficient than in the full eigen space. The stiffness matrix [K] can be symmetrized by
rearranging the asymmetric contributions; that is, the original stiffness matrix [K] can
be divided into symmetric and asymmetric parts. By dropping the damping matrix [C]
and the asymmetric contributions of [K], the symmetric Block Lanczos eigen value
problem is first solved to find real eigen values and the corresponding eigen vectors. In
the present implementation, the asymmetric element stiffness matrix is zeroed out for
Block Lanczos eigen value extraction. Following is the coordinate transformation used
to transform the full eigen problem into modal subspace:

{u} =[@]{y} ©)

where is: [@] — eigen vector matrix normalized with respect to the mass matrix [M] and
{y} - vector of modal coordinates

By using equation (2) in equation (1), we can write the differential equations of motion
in the modal subspace as follows:

(15} +[e] [Cll@{}+([ A% [+[@]" [Kugm J[®]){y} ={0} 3)

where is: [A’] - a diagonal matrix containing the first n eigen frequencies w;.

For classically damped systems, the modal damping matrix [®]"[C][®] is a diagonal
matrix with the diagonal terms being 2&w;, where ¢ is the damping ratio of the i-th
mode. For non-classically damped systems, the modal damping matrix is either
symmetric or asymmetric. Asymmetric stiffness contributions of the original stiffness are
projected onto the modal subspace to compute the reduced asymmetric modal stiffness
matrix [®]" [Kuym] [@].

Introducing the 2n-dimensional state variable vector approach, equation (3) can be
written in reduced form as follows:

[1{z} =[D]{z} @

L
{4—%ﬂ} (5)

where is:

and
0 I

[P]=| 1.2 T T
[—ﬂ\}—{¢][K%WJPb]-{¢][CH¢]
The 2n eigen values of Equation (4) are calculated using the QR algorithm (Press et al.,
1993 [7]). The inverse iteration method (Wilkinson and Reinsch, 1971 [8]) is used to
calculate the complex modal subspace eigen vectors. The full complex eigen vectors,
{w}, of original system is recovered using the following equation:

(6)
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{v}=[@]{z} (7

3. FEM modeling

In modal analysis the embryo model was considered as three-dimensional axis-
symmetric problem. The mouse embryo with basic parts of micro-robotic cell
manipulation system described in [9] and shown in Fig. 1 (left) is simplified according
the model setup shown in the same figure (right).

Figure 1. Photograph of cell (left) and simplified model setup of mouse embryo (right).

3.1. Embryo model

The full model setup (Fig. 2) used in the work is consisted of embryo (micromembrane
with nucleus and cytoplasm) plunged into the control volume filled with liquid medium
HTF. One side of embryo is connected to the holding pipette and the second is in contact
with micropipette. For all time the vacuum inside the holding pipette takes the embryo
fixed independently on the way of gravity and facilitates embryo manipulation.

- Micropipette
3-Micromembrane
4-Cytoplasm
5 - Nucleus
6- Holding pipette

7-Vacuum

1 2 3 4 5

Figure 2. Axial cross-section of 3D model setup for embryo modal analysis.

The review of model setup parts with used materials and basic physical characteristics is
presented in Table 1. As well, the table contains statistic data related to the number of
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nodes and elements for each component after medium quality meshing procedure (Fig.

3).

Figure 3. Details of finite elements mesh in the axial cross-section of model.

Table 1. Basic mechanical characteristics of model components with FE statistic data.

Name Assignment Volume Mass Nodes Elements

- - - m’ kg - -

1 | Micromembrene Biomembrene 5.3732E-14 5.4000E-11 7409 4288
2 | Nucleus Nucleus 2.8731E-14 2.9880E-11 685 350
3 | Cytoplasm Cytoplasm 3.0635E-14 3.1033E-11 1287 669
4 | Holding pipette Glass 1.0978E-13 2.7773E-10 3117 1776
5 | Micropipette Glass 1.4847E-15 3.7563E-12 3879 726
6 | Vacuum Air 2.8280E-14 3.4643E-14 1426 276
7 | Liquid ambient HTF 6.9430E-13 7.0333E-10 6953 3825

The initial contact regions and types of supports determine the boundary conditions of
the model. All contacts regions of liquid medium HTF with micromembrane, vacuum
pipette and micropipette are considered as frictional. For this kind of so-called wet
friction the value 0.1 of frictional coefficient is accepted. The identical contact
conditions are assumed on the contact surfaces of cytoplasm with nucleus and
micromembrane.

From point of view of support boundary conditions, illustrated in Fig. 4, two types: fixed
and frictionless supports, are used.

The dimensions of boundary box, represented as rectangle surface colored in dark blue
in Fig. 4, filled by liquid medium HTF are 1.6E-4x7.7E-5x7.7E-5 m. Here, of shore, let
to emphasize that its dimensions affect significantly the natural frequencies of embryo.
All outer free faces of box are bonded by frictionless supports (E). As well, free surface
of vacuum inside the holding pipette is bounded by frictionless support (D). Both the
holding pipette and micropipette are constrained (fixed supports A and B) from
movement in axial directions (z-axis).
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Figure 4. Details of support boundary conditions of model.

External loads of the embryo include conservative gravity force and surface force
produced by 733.1 Pa vacuum on the air-micromembrane contact region. But in the
modal analysis external loads make to be equal zero, so that the embryo is connected to
holding pipette along initial contact edge (C).

3.2. Material data

According to the requirements of modal analysis, all materials, including bio materials
(biomembrane, nucleus and cytoplasm), then medium materials (air and liquid medium
HTF) and, finally, mechanical equipments materials (special glass for medical
instruments) are considered as isotropic elasticity features materials.

The accepted temperature of each part of the model is same and equal to the mice body
temperature of 37 °C. Although the temperature is included in the modal analysis, it
doesn’t take any repercussions on the final results because of the absence of thermal
loads or variations of mechanical parameters that would affect the model vibrational
behavior.

Mechanical characteristics of the above mentioned materials are given in Table 2.

Table 2. Mechanical characteristics of materials

Materi . Reference Young's Poisson's Bulk Shear
aterial Density .
temperature | modulus ratio modulus modulus

- kg /m’ K Pa - Pa Pa
f‘omembran 1005 310 42400 0499 | 7.067E+6 | 14143
Nucleus 1040 310 7200 0.250 43800 2880
Cytoplasm 1013 310 17200 0.490 2.867E+5 5771,8
Liquid HTF 1013 310 1.32E+8 0.490 2.20e+9 4.430E+7
Air (vacuum) 1.225 310 3.102E+6' 0.490" 5.17E+7" | 1.041E+6"
Glass 2530 310 5.448E+7 0.300 4.54E+7 2.095E+7

' Given mechanical parameters of air represents the fictive values, adapted to solver requirements. It means,
instead adiabatic law the linear pressure-volume dependence was assumed for small variations of air pressure
up to 2E+5 Pa.
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4. Results and discussion
4.1. Natural frequences of embrio
The numerical integration of Eq. 4 facilitates the solutions for elements of diagonal
matrix [A] containing the first n eigen frequencies ;. Computed natural (own)

frequences of embryo are given in Table 7.

Table 3. Natural frequencies of free and bonded embryo for first six modes.

Natural frequences of embrio w;, Hz

f, Free e Connection with | Connection with .

B | oscillations F.ree .OSC.IHatIOIlS holding pipette in| holding pipette in F.ull.cor.lnectlon
= | in vacuum in liquid HTF vacuum liquid HTF in liquid HTF
1 0 52733 29242 52778 52782

2 0.0282 52839 2945.7 52882 52886

3 0.0462 53321 5868.6 53486 53491

4 600.32 54242 11888 54315 54317

5 931.50 55083 19333 55113 55116

6 940.79 55112 19353 55177 55180

The modal distribution of natural frequencies of embryo in liquid medium HTF is
presented in Figs. 5. It is based on tabular data.

555 o [T
43— Embryg osilabore in b HTF

== by connacsd i hoklng peats in lguid WTF F_—-_—*Q

3| Fuly tonmecid embry nguid HTF Fi

Halsral frequency |Hz)
i

" e

n-. in

i
#

33

Y P T N T

Figure 5. Modal distribution of natural frequencies of embryo vs. boundary conditions
(osillations in liquid medium HTF).

Analysis of calculated results in Table 3 and represented in Figs. 5 confirms nature of
boundary conditions influence on the natural frequency of embryo. In other words, the
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natural frequency of embryo increases continually by involving each further boundary
condition. So, In the case of contact of the embryo and liquid medium HTF the highest
jump of frequency (over 52 KHz) appears and the relevant curves of frequency
distribution are very close to each other (Fig. 5). Maximum frequency of 55180 Hz was
reached for the embryo plunged into liquid medium and connected to micropipette and
vacuum, holding pipette. Besides the abovementioned, the computed results show that
oscillations of free embryo first mode are practically almost immeasurable (w; = 0).

4.2. Typical variations of the vibrating embryo structural parameters

3D animations of the embryo movement relative to the corresponding mode can be
describes as follows:
- Mode 1: perpendicular oscillations along y-axis. Due to initial connections it looks
lake rolling in yz-plane;
- Mode 2 - perpendicular oscillations along x-axis. Due to initial connections it looks
lake rolling in xz-plane; -presentation of this mode is very similar to mode 1
- Mode 3 - rotation, i.e. torsion (due to initial connections) about z-axis;
- Mode 4 - longitudinal oscillations along z-axis;
- Mode 5 - rotation in yz-plane; presentation of this mode is very similar to mode 5,
and
- Mode 6 - rotation in xz-plane.
The appearance of scaled shape and fictive velocities distribution for typical modes 1, 4
and 6 of natural embryo oscillations are shown in Figs. 6-8.

Figure 7. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 4.
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Figure 8. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 6.

Real rate of total are varying from zero up to maximum 3.348 pm (Max 1.5107E+5 x
2.15E-11 m = 3.348E-6 m) in mode 4. In mode 4 micro-needle only taches the surface
of embryo biomembrane.

Ladjaly et al, 2011[5], used the method of finite elements in modelling the Microrobotic
Simulator for Assisted Biological Cell Injection, but they regarded the cell as a unified
structure. Our model approximates the real phenomenon better as the cell is modelled as
a three layer structure (biomembrane, cytoplasm, nucleus).

5. Conclusion

Based on the results of numerical analysis given in the paper it is shown that the robust
finite elements model of mouse embryo with basic parts of ICSI system (holding pipette
and micropipette) were correctly created. All necessary contacts and boundary
conditions were regularly involved facilitating the modal analysis and numerical
simulation of all situations of the embryo vibrations. As well, the determinations of the
vibrational characteristics of mouse embryo free oscillations and embryo oscillations
affected by boundary conditions for first six modes were successfully carried out.

To summarize, the work presented in the paper confirms possibility to use of the finite
elements method coupled with numerical modal analysis as a powerful tools in the
vibrational characterization of bio structures such as the mouse embryo. This method
can be used to analyze vibrational properties of embryos of both mice and humans, and
not only in physiological conditions, but also under pathological conditions, for example
when artifical insemination is unsucessful, or when the implantation of the embryo does
not occur. We are free to suggest that vibration properties of normal, healthy embryo
differs from unhealthy embryo and vibration properties in these two cases may be
distinguished. This opens new possibilities for developing an oscillation theory of
reproducation in reproductive biology.
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Abstract. In the present study the nonlinear vibrations of laminated plates
and shallow shells are investigated. The proposed method is based on the R-
functions theory and variational methods. Formulation of the problem is
carried out in classical shell theory (CST). New solution structures for
symmetric shallow shells with complex planform are constructed. These
solution structures satisfy the boundary conditions corresponding to simply
supported immovable and movable edge exactly. The nonlinear system of
differential equations of motion is reduced to nonlinear system of ordinary
differential equations (ODEs) by developed approach. Nonlinear forced
vibrations of five-layered cross-ply plates and shallow shells with complex
planform are investigated by proposed method.

1. Introduction

Research of geometrically nonlinear vibrations of the laminated plates and open shallow
shells is one of important issues of nonlinear dynamics. In general case this problem
may be only solved by numerical methods. Many researchers are studying this problem
[1-5]. Some review of achievements in this field is presented in works [1,6,7]. The main
approach which is applied to solve this problem is based on finite elements method
(FEM) combined with method of harmonic balance, Bubnov-Galerkin, multiscales
method and others.

One of alternatives to FEM is the effective numerically-analytical approach based on
R-functions theory and variational methods (RFM). This method is a meshless one
because it allows all prescribed boundary conditions to be satisfied exactly and present
unknown functions in analytical form. RFM has been successfully applied to linear and
nonlinear vibrations problems of plates and shallow shells [8,9,10]. In particular
laminated shallow shells have been investigated in Refs. [9,10,11]. It should be observed
that original approach has been proposed in Refs.[9,11] to solve geometrically nonlinear
vibration problem. This approach consists of some steps. First a linear analysis is
fulfilled to find natural frequencies and corresponding natural modes to be applied at



L. KURPA, N. BUDNIKOV, T. SHMATKO

solving nonlinear problem. The second step is solving sequences of auxiliary problems
like elasticity problems. The developed method uses the results of linear vibration
problem essentially. The right-hand side of these equations is some functions of linear
modes. The natural modes and solutions of auxiliary elasticity problems are used in the
third step as a basis for expanding the nonlinear displacements. Finally the procedure by
Bubnov-Galerkin is applied to reduce initial motion equations to system of ordinary
differential equations (ODEs). In studies [11] single mode and solution of one auxiliary
elasticity problem have been used.

First multi-mode expansion combined with R-functions theory has been proposed in
paper [9]. Nonlinear free vibrations of symmetrically laminated shallow shells were
investigated. First-order shell theory has been used. The analytical expressions of
coefficients have been obtained for system of nonlinear ordinary differential equations.
But numerical results were obtained applying single-mode. Recently in Ref. [12] multi-
mode approach combined with R-functions theory for clamped isotropic shallow shells
subjected to a radial harmonic excitation has been proposed. Lagrange approach is
applied to obtain a system of ODEs. Numerical results were obtained by application
multimode expansions. It should be noted, that systems of the basic functions satisfying
only kinematic boundary conditions have been applied in Refs. [8,9].

In the present study geometrically nonlinear forced vibrations of the laminated shallow
shells are investigated. New solutions structures satisfying all boundary conditions
(static and kinematic) corresponding to simply supported shallow shells (movable and
immovable edge) are constructed by RFM. In the present study classical non-linear shell
Donnel’s theory (CST) is used. Application of R-functions theory allows to study
geometrically nonlinear dynamic response of the laminated shallow shells and plates
with complex shape.

2. Problem formulation

Laminated shallow shells of M layers of the constant thickness /; with radii of curvature
R, R, are considered. It is supposed that shells have the symmetrical structures in
thickness. The principal lines of curvatures of the middle surface coincide with the
coordinates x, y of the Cartesian coordinate system, and z is directed along normal to the
middle surface of the shell. According to Donnel’s theory it is assumed that the tangent
displacements are linear functions of coordinate z and the transverse displacement w is
constant through the thickness of the shell. This theory is based on Kirchhoff-Love
assumptions. It means that the normal to the middle surface remains normal after
deformation.

Motion equations may be represented in operator form [13]:

Ly i+ Ly + Lisw = —NL (w) + m,0°u,

Lyt + Lyyv + Lysw = —=NL (w) + m,9%v, (1)
Lyt + Layyv + Lyzw = =N (u, v, w) + F (1) + m,0%w.
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Here u, v and w are displacements in directions of Ox, Oy and Oz axes relatively.

Values my, linear differential operators L,-j, I j:l,_3, and nonlinear differential

operators NI, , i=1,_3 are defined so as in Ref. [14]. The function F(¢) is lateral force.

Later we will consider force periodic in time.

The system (1) is supplemented by corresponding boundary conditions. In this study the
following boundary conditions are considered:

a) Movable simply supported on all edges:

v,=0, N,=0, M,=0, w=0, 2)
b) Immovable simply supported on all edges:
u=0, v=0, w=0, M,=0. 3)

Expressions of N,,, M ,,, and v, are defined by known formulas [13]:

N, = Ny,[* + N,ym®* +2N,,lm , (4)
M, =M, \[* +M,,m* +2M,Im, (5)
v, =—um+vl, (6)

where [ =cosa, m=cos  are directional cosines of normal vector to boundary of the

shell.
The initial conditions are taken in the form:

Wit:O = Winax» afWit:O =0. (N

Components of N; and M, (i, j=1,2) of forces {N} and moments {M } vectors in

[} ij?

case of shell with symmetrical structure can be presented as follows:
{N}:{Nu;sz;le}T:[C]'{g}’ )

{M}:{Mu?Mzz?Mu}T:[D]{Z}- )

Here:
et=lavene) . W={nirsnt. (10)
&, = axu+k1w+%(axw)2, £ =8yv+k2w+%(8yw)z,
£, =0u+0,v+(0,wd,w), (11)

X :_a)sz’ V453 =—8§,w » X2 = —Zai‘,w ’ (12)
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where kj, k, are curvatures of the shell.
Stiffness matrices [C] and [D] are:

G, Cn Cg Dy, Dy, D
[C]= Chr Gy Cuf, [D]= Dy, Dy Dy . 13)
Cis Cy Ces Dig Dys Dgs

Constants CU» and DU» are the stiffness coefficients of the shell, which are defined by

the following expressions [2,13]:

n hx
(c;.0;)=Y] | B, 22z, (i =11,2212,16,26,66). (14)
s=lp,

Here Bi(;) are stiffness coefficients of the s-th layer.

3. Method of solution
3.1. Linear vibration problem

The first step is studying the linear problem in order to find the natural frequencies and

eigen functions {U (C)}z {u(c),v(”, w'® }T satisfying the given boundary conditions. Note
that at solving this problem we will not ignore inertia forces. Solution of linear problems
has been widely discussed in [10]. Let us note that in generic case this problem can be
solved by RFM [15]. We will use the Ritz’s method. To obtain admissible functions,
which satisfy the given boundary conditions exactly we will apply R-functions theory.
The main idea of the R-functions method is using so called solution structure of
boundary value problem. These structures are basis for construction of basic functions
set. The way of construction of the appropriate solution structures was proposed by V.L.
Rvachev [15]. Let us construct new solution structure for the boundary conditions (2)
and (3).

Movable simply supported edge. In this case the boundary conditions are described by
relations (2). In order to satisfy the first boundary condition (v, =0) let us search for

unknown functions # and v as follows:

{u=q>1axw+ 0P, (15)

v==>00, 0+ 0P,

Here &, (i = 1,3) are indefinite components of the solution structure. From definition of

the solution structure [15], satisfying the given boundary condition it follows that
indefinite components included in structure can be chosen by an arbitrary way, because
the given boundary condition will be satisfied regardless of this choice. It is natural
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these components should be chosen in such manner that the governing differential
equations must be satisfied by the best way.
In equations (15) function @X(x,y) is normalized up to the first order, that is, it satisfies

the following conditions [15]:

ax,y)~0,9(x, y)e , a)(x,y]agzo, a,,ajm:—l. (16)
If we substitute (15) into expression (6) taking into account equalities

l=-0,0, m=—-0,0, a7
then it is easy to show that condition v, =0 is fulfilled.

In order to satisfy the second condition

N,=0 (18)

let us use the expression (4) for N,,. Normal forces N, ()

» for linear problem are defined

by formulas:
N = NP2+ NBm? +2NEim . (19)

Taking into account the boundary condition for deflection function (w=0) components

N;; we can write down as:

o vo: NOT <[l asd, yid urd 20)

Let us transform the expression (19) for N,(,L) and write it in normal and tangent

derivatives. It may be shown that relation (19) takes the following form:

N = 499 1+ B0 u+K%,v+1%.v, 1)
where
AO _ C 13 2 2 3
, =Cl” +3C ¢l “m+(Ciy +2Cs)Im”™ + Copgm” (22)
B =C¢l> +(2Cg — Cy I *m+ (Cyg —2C,)lm* — Crym’ (23)
K = Cil” +(Cpy +2Ce)IPm+3C,lm* + Cym’® (24)
L) = C,I° +(2Cg — C, IPm+(Cyy — 2C)lm* — Cogm® . (25)

So the second boundary condition (18) may be written as:
A9 ,u+ B u+K>d,v+109.v=0, (26)
Like Ref. [10] let us construct the extension of a functions A10 , BP , KIO , L? inside of

the domain with help of the formulas:
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A =EC(A"), B;=EC(B), K; =EC(K). L=EC(L}), i=12. (27)

Derivatives with respect to normal and tangent can be extended to inside of the domain
due to application of the specific differential operators D,, and 7,,,at m=1.

These operators are [15]:

D, f(x,)=(Va V)" f=(0,0-9,+3,0-3,)" f, (28)

T, (6 =0,09,-9,09.) f. (29)
So extension of the boundary condition (18) takes the following form:

(AQ,u+Bou+K,v+Ld,yv)=w¥,. (30)
Substituting relation (15) into (30), one can obtain:

AD|(®9,0+ 0®,)+ BT, (P 0+ 0P, )+ K,D; (@0, 0+ 0®; )+

+ LT (@0 0+ 0®; )= 0¥, 31
Using properties of operators D; and T} , we get

D (AIDI (0,@)+ BT;(9,w)+ K, D, (aya))+ LT (aya)))+

+(40,0+ K0, 0)D,®@, + (B0, 0+ Ld @)@, -

-A®, - KD, = b,. (32)
Let us solve the last equation in function ®;:

K,

= ﬁ(aﬂ”z -, (AlDl (axa))+ BT (axa))+
Ki+w

@,

+K,D,0,0)+ LT,0,0))-(49,0+ K2 ,0)D,®, -

- (B0, 0+ L, 0@, - A,). (33)
Then
u=®0 0+od,, (34
aK,

V=0 2 (¥, —@,(A,D,(0,0)+ BT, 0,0)+
K +w

+K,D,(0,0)+ LT,0,0))-(40,0+ K0 ,0)D,®, -

(B2, 0+ L2, @)@, - A®, )+ P0 0. 35)
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In similar fashion we can construct the solution structure for function w that satisfies
the third and fourth boundary conditions (M, =0, w=0). Let us write down the final

form of this solution structures:

2
W= b, ——25 5 [5,(2D,®, + 3Dy 0) +

S+ w
285,15 + 8,9, T, 0— ¥, |

Here

8, ==Dy,(0,0)" - 4D16(axw)3ayw_ 2Dy + 2D66)(axw)2(ayw)2 -

—4D, 6axa)(aya))3 -D,, (aya))4 ,

S, =-Dy4(0,@)" + (D), — Dy, —2Dge) (0, @) 0 0+
+3(D,g — D26)(axa))2(aya))2 + D26(aya))4 +

+(Dyy — Dy +2Dy)d, 000, 0f .

Sy =D, (0,0)" +2(Dys — Dy )0,0)0 00—

—(Dy, + Dy, —4Dg)(9,0)* 0, 0f ~

—2(Dyg— D26)8xa)(8ya))3 - Dlz(aya))4 .

(36)

@37

(38

(39

Formulas (36) contain special differential operators D,,T, of the second order. These

ones are defined by formulas (28)—(29) if m=2 .

Immovable simply supported edge. Analogously it may be shown that boundary

conditions (3) are satisfied exactly by the following solution structure:

u=wd,,

v=0P,,

w=wd, __@S [S,2D,®@; + ®;D,0) +
287 + %)

+28,T,®; + $;®,T,0— o).

Here S;, (i = 1,2,3) are the same with (37-39).

(40)

(41

(42)

In order to construct basic functions indefinite components must be expanded in

truncated series:
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where {(0,@} are some known complete systems of the functions, for instance, power or

(@)

Chebyshev’s polynomials, trigonometric functions, splines or other, {ak } are unknown

coefficients that can be determined from the corresponding eigenvalue problem.
3.2. Solving the nonlinear problem

To solve the nonlinear problem unknown functions u,v,w are presented as follows:

u(x, y.0)= Zy,(t) u (x, y>+22y,<t> ¥ (0 u(x, y),

i=1l j=i

v(x, y,1) = Zy,(z) vi(x, y>+22y, 0)-y ;@) v;(x, ), (44)

i=1 j=i

wx, y,1) = 3"y, (0w (x, y),

i=1

where ui("')(x, v), v}"')(x, y) and w}‘r)(x, y) are eigenfunctions of linear vibrations.

Functions u,j(x, y) and v,j(x, y) are solutions of the following system:

@f,, ) ()
Ly + Ligvy; = =NI ( “wy )

(45)
Lijuy+ Loy = ‘Nléz) (Wi(C)’ WEC))
Operators Nll(z) and Nléz) are defined by formulas:
NEP [ )= @ (Cp 9w +2C160 WS + Cyed W' )+ P
+9 w(‘)(Cmaxxw}‘)+(C12+C66)8w w! +C268Ww(]‘)) 40
1(2)( (L)’ (L)) 9, W(L)(Cléaxx wj +(C12+C66)at) wj +C2Ga)\ 5‘)) (47)

+a),w;‘)(cééam Wi +2C0 (W' +Cp00 , W )

The system (45) is supplemented by the corresponding boundary conditions. For
example, in case of movable simply supported edge these boundary conditions are:

vl =0, N, =-F, (48)
where

F = NMP2+ NYOm? + 2N Im, 49)

262



Application of R-Functions theory to study nonlinear vibrations of laminated shallow shells and plates

vl v N =l v, ) (50)
o w- 8ij-c)
{g(N)(uij,vij)}Z% 8yw,-(c) ~8yw3-c) ) (51)

8xw,-(c) ~8yw3-c) +8xw3-c) ~8yw,-(c)

Solution of the problem (45)—(48) will be carried out by Ritz’s method combined with
RFM.

So the first two equations of the system (1) are satisfied identically by this choice of
functions u,j(x, y) and v,j(x, y) provided that inertia forces are ignored.

Applying procedure by Bubnov-Galerkin to third equations of the system (1) one obtains
the following system of non-linear ODEs:

YO+ @7, y, () + Z B yi0)y ;) +
i,j=1

+ Z Y vy 0y, (0 = F, (1)

ijk=1

(52)

Here r =1,_n . Coefficients of the system (52) are defined by formulas:

(r) _ (L) g ()
/gr ” i ’ wl(‘) xx J(

1 1

+N(L)( ( ) v(c)’w(c) w(‘)+2N1(2L)(i v )a W —

— kN — kzNgVP)]wf“)dQ , (53)

(r) _ (N) (©) 4
71]2 TN J‘J. v Ml]’vl]’w bxx ¢
m

<Np>( (c), (c) © 4
+ Ny, Uij» Vija W, W} 0 Wy

+2N1(év")(uu,vu,w( )wgc) xyw](f) )Wic)d.Q. , (54)

- P .
F.(1)=P.cosQt, P, = —Ozﬂwﬁ dQ ., (55)

Below we present expressions of N,(] ), N,-(]-Np ) in formulas (53-54):

KR SRR te) Sl MERYERTL) S (56)
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IV v el = [ ™ vy il (57
O =0, k3 0,0 41l o, 42,0 (58)
0.0ty + 50,010

. 1. @A
{g(Np)(Mt/’V W( )W( ))} ay"ij +anwi( : 'ang‘ : : (59)

ij J

(c) (c)
8yuij +8xvij +0,w; ~8ywj

Obtained system (52) may be investigated by the different approaches.
In particular case if take only one mode (r=1) we can obtain [16] the simple

dependence between amplitude A =w,,, /h and ratio Q/@; :

(Q/wL)2=1+%,BA+%;A2i%. (60)

4. Numerical results

Let us investigate the forced nonlinear vibrations of the five-layered cross-ply
(0° 790" /0° 190° 107 ) shells shown in fig.1.

v

—
\\ Ey

|/

Figure 1. The geometric shape of the shell

2a

The dimensionless material properties (typical of graphite-epoxy) are used :

E//E, =40, G,/E,=0.6, v, =025. 61)
Geometrical parameters are:

R =R, =0.1a, h=00la. (62)

Further we will consider three different values of parameters 4 and x .
case A: d=b,
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case B: d=0b/2, xy/a=1.5,
case C: d=b/2, xy/a=5.

The efficacy of the proposed method is tested by studying the nonlinear free flexural
vibration of immovable simply supported square plate for which numerical results are
available in the literature. The variation of nonlinear frequency ratio @y, /@, with non-

dimensional maximum amplitude w,,, /h is evaluated and shown in Table 1. It is

observed that present results obtained by using two different of solution structures (40) —

(42) which satisfy all the boundary conditions and the solution structures:

which satisfy only the main (kinematic) boundary conditions are in close agreement with
available solutions [17].

u=od, v=awd,, w=wd;,

Table 1. The non-linear frequency ratio @y, /@,

of the square composite plate (0° /90°/70° /90° /0°)

(63)

Winax [17] RFM RFM
h (63) (40)-(42)
0.2 1.03147 1.03126 1.03129
0.4 1.12099 1.11983 1.11991
0.6 1.25723 1.25361 1.25378
0.8 1.42805 1.41988 1.42015
1.0 1.62368 1.60860 1.60897
1.2 1.83697 1.81277 1.81325

Similar results for shallow spherical shells of the complex planform (Fig. 1) are
presented in Table 2.

Table 2. The non-linear frequency ratio @y, /@, of cross-ply spherical shells (Fig. 1)

Case A Case B Case C
W"‘T RFM RFM RFM RFM RFM RFM

(63) (40)—(42) (63) (40)~(42) (63) (40)—(42)
0.5 0.81952 | 0.81974 | 081911 | 0.81911 0.80069 | 0.80069
1.0 0.64525 | 0.64563 | 0.64596 | 0.64596 | 0.62404 | 0.62404
1.5 0.48391 0.48433 | 048884 | 0.48884 | 049494 | 0.49494
2.0 035369 | 0.35382 | 0.36885 | 0.36885 | 045577 | 0.45577
25 0.29854 | 029781 | 032942 | 032942 | 052698 | 0.52698
3.0 035532 | 0.35366 | 039544 | 039544 | 0.67447 | 0.67447
35 0.48630 | 0.48408 | 0.52878 | 0.52878 | 0.85984 | 0.85984
4.0 0.64794 | 0.64535 | 0.69154 | 0.69154 1.06347 1.06347
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Next the nonlinear forced vibration amplitudes w, .. /hof immovable simply supported

max

shells (Fig. 1) under transverse harmonic pressure P = FycosQt are studied. The
backbone curves are represented in Fig. 2 by dotted lines. The nonlinear forced vibration
amplitudes w,, /h under non-dimensional excitation frequency Q/w; and load
parameter F, =0.1 are presented as full color lines for varies geometric parameters of

the given shells corresponding to cases A and C.

.
i
, —

a) b)
Figure 2. Resonance curves of forced vibrations of spherical shallow shells
a) Case A, b) Case C.

It should be noted that for solving the problem a single-mode approximation of the
unknown functions is used. Therefore obtained results we can consider as the first
approximation to real results. To clarify these results it is needed to continue research
using multi-mode approximation.

5. Conclusions

New solution structures satisfying exactly all boundary conditions corresponding to
simply supported (immovable and movable edge) of the symmetric laminated shallow
shell with complex planform are constructed. The obtained solution structures are
needed to construct a system of basic functions which are applied to reduce nonlinear
motion equation of laminated shallow shells to system of ODEs. The proposed approach
and new solution structures are applied to investigate nonlinear forced vibration of
shallow shells with complex planform. In order to realize the proposed method for
multimode approximation

it is assumed to create the corresponding software.
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Abstract. The objective of this research was a try to provide a new or
different approach to elaborate the complex phenomena that occur at
developed liquid-liquid interfaces. Since some phenomena that occur, for
example, during the processes of breaking of emulsions or double emulsions,
and coalescence are not well understood the introduction of theoretical models
known in electrodynamics were needed. A theory of electroviscoelasticity was
developed and it is shown that the electroviscoelastic droplet, and/or droplet-
film structure, that is emulsion or double emulsion may be considered as the
particular example of memristive systems. All that means that for a deeper
elucidation of complex phenomena at developed interfaces, that is at small
separations, for example in emulsions and/or double emulsions, it is necessary
to consider the electron transfer phenomenon beside the heat, mass, and
momentum transfer phenomena commonly used in classical chemical
engineering. Finally, the probable discussion and/or elucidation of the
problems in the theoretical and experimental status of decoherence is
mentioned.

1. Introduction

This presentation contains a recent development in basic and applied science and
engineering of liquid-liquid finely dispersed systems, that is, in particular the selected
emulsions and/or double emulsions are discussed. Since the events at the interfaces of
finely dispersed systems, or at small separations, have to be considered at the molecular,
atomic, and/or entities level it is inevitable to introduce the electron transfer
phenomenon beside the heat, mass, and momentum transfer phenomena commonly used
in classical chemical engineering.

The objective of this research was a try to provide a new or different approach
to elaborate the complex phenomena that occur at developed liquid-liquid interfaces.
Since some phenomena that occur, for example, during the processes of breaking of
emulsions or double emulsions, and coalescence are not well understood the introduction
of theoretical models known in electrodynamics are needed. Such an approach can



ALEKSANDAR M. SPASIC

contribute to the deeper elucidation of the complex phenomena that occur at smaller
separations, because the forces of electrical origin become dominant compared to the
forces of mechanical origin, for example. the terms electrical forces and electrical
interfacial potential (EIP) could be more appropriate than the terms mechanical forces
and interfacial tension.

New concepts were introduced, the first is a concept of an entity, and the
corresponding classification of finely dispersed systems and the second concept consider
the introduction of an almost forgotten basic electrodynamics element memristor, and
the corresponding memristive systems. Based on these concepts a theory of
electroviscoelasticity was proposed and experimentally corroborated using the selected
representative liquid-liquid system.

Three possible mathematical formalisms have been derived and discussed
related to the proposed physical formalism, that is, to the developed theory of
electroviscoelasticity. The first is stretching tensor model, where the normal and
tangential forces are considered, only in mathematical formalism, regardless to their
origin, mechanical and/or electrical. The second is classical integer order van der Pol
derivative model. Finally, the third model comprise an effort to generalize the van der
Pol differential equations, both, linear and nonlinear; where the ordinary time
derivatives and integrals are replaced by the corresponding fractional-order time
derivatives and integrals. In order to justify and corroborate more general approach the
obtained calculated results were compared to those experimentally measured [1-16].

Then after, a new idea to consider emulsions and double emulsions as
memristive systems is suggested. Finally, a probably possible further development
related to the elucidation of the problems in the theoretical and experimental status of
decoherence is mentioned [1, 14-16].

§

i

Figure 1. a) a stereographic projection/mapping from Riemann sphere; b) hierarchy of entities,
correlation viscosity/impedance Z - characteristic velocity uo, S-slow/demon (superfluid) and F-
fast/electron (superconductor); c) entity as an energetic ellipsoid (at the same time macroscopic
and microscopic), CTE - center of total energy, motions (translation, rotation, vibration,
precession, angle rotation). From Ref. [1, 2], p. 8, p. 20, courtesy of CRC Press/Taylor & Francis.
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2. Previous work
2.1. Classification of finely dispersed systems based on entities

Figure 1a shows a stereographic projection/mapping from Riemann sphere, representing
the first philosophical breakpoint; Fig. 1b shows a “hierarchy” of entities, which have to
be understood as a limit value of the ratio uy/Z; this ratio is withdrawn from magnetic
Reynolds criteria [Re,,=4mGuy/c’], where the conductivity G is expressed as a
reciprocal of the viscosity/impedance Z (G=1/Z), | is the path length that an entity
“overrides”, u, is the characteristic velocity, and c is the velocity of light.

In general, S corresponds to the slow system or superfluid, and F corresponds to
the fast system or superconductor; now, it is possible to propose that all real dynamic
systems are situated between these limits. Also, it seems sensible to think about the
further structure of entities, representing the second philosophical breakpoint, for
example, the basic entity can be understood as an energetic ellipsoid shown in Figure lc,
that is, according to the model of electrons following Maxwell-Dirac isomorphism
(MDI): an electron is an entity at the same time quantum-mechanical/microscopic N = -
2 and electrodynamics/macroscopic N=3 [1, 2, and 7].

2.2. Physical formalism-the classical approach and a new approach

Formation and rupture processes of the secondary liquid/liquid droplet-film structures
will be discussed considering mechanical and electrical principles. The analogy
interfacial tension-interfacial electric potential will be illustrated considering the
physical model of the processes appearing during the secondary separation of the
droplet-film structure submerged in the droplet homophase continuum (double
emulsion) on an inclined plate. Figure 2 shows the physical model of the processes
involved; approach, rest, disturbance, rupture, and flow up.

AFPROACH  REST DISTURBANCE RUFTURE FLOW LP

—_—
Bght heavy lasella pEmErr
pherié phass ok
fim droplet

7 —
OO0
& )
hﬂ\}' phase

rapaire

pole
Figure 2. Physical model of the processes during the secondary separation of the double emulsion
at an inclined plate; approach, rest, disturbance, rupture, and flow up (heavy phase-phosphoric
acid H3POs, light phase-sinergistic mixture D2EHPA-TOPO in dearomatized kerosene).
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The generator pole is the origin/source of the disturbance, and the rupture pole is the
point where the electrical and mechanical waves change the direction of traveling (feed
into feed back).

Following a classical deterministic approach, the phases that constitute a
multiphase dispersed system are assumed to be a continuum, i.e., without discontinuities
inside the entire phase, that is considered homogenous and isotropic [1-5, 7-9, 14-16].
Therefore, the basic laws, e.g., conservation of mass, first and second Cauchy’s laws of
motion, first and second laws of thermodynamics, are applicable.

According to the classical approach, the behavior of liquid-liquid interfaces in
fine dispersed systems is based on an interrelation between three forms of “instabilities”.
These are sedimentation, flocculation/coagulation, and coalescence. These events can be
understood as a kind of interaction between the liquid phases involved.

Furthermore, the forces responsible for sedimentation and flocculation are
gravity and van der Waals forces of attraction, respectively, and the forces responsible
for coalescence are not well known, although some suggestions have been made recently
[1-5, 7-9, 14-16].

A new approach discusses the behavior of liquid-liquid interfaces in fine
dispersed systems as an interrelation between three other forms of “instabilities”. These
are rigid, elastic, and plastic. Figure 3 show the events that are understood as
interactions between the internal/immanent and the external/incident periodical physical
fields.

“DISPERSED” PHASE
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Figure 3. A new approach, a) “instabilities”, rigid, elastic, plastic; b) the constructive elements
of phases.

Since both electric/electromagnetic and mechanical physical fields are present
in a droplet, they are considered as immanent or internal, and ultrasonic, temperature,
or any other applied periodical physical fields are considered as incident or external.
Hereafter, the rigid form of instability comprises the possibility of two-way disturbance
spreading, or dynamic equilibrium. This form of instability, when all forces involved are
in equilibrium, permits a two-way disturbance spreading (propagation or transfer) of
entities either by tunneling (low energy dissipation and occurrence probability) or by
induction (medium or high energy dissipation and occurrence probability). A classical
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particle or system could not penetrate region in which its energy would be negative, that
is, barrier regions in which the potential energy is greater than the system energy. In the
real world, however, a wave function of significant amplitude may extend into and
beyond such region. If the wave function extends into another region of positive energy,
then the barrier is crossed with some probability; this process is termed tunneling (since
the barrier is penetrated rather than climbed). The elastic form of instability comprises
the possibility of reversible disturbance spreading, with or without hysteresis. Finally,
the plastic form of instability comprises the possibility of irreversible disturbance
spreading with a low or high intensity of influence between two entities. Entity is the
smallest indivisible element of matter that is related to the particular transfer
phenomena. The entity can be either differential element of mass/demon, or ion, or
phonon as quanta of acoustic energy, or infon as quanta of information, or photon, or
electron.

Now, a disperse system consists of two phases, “continuous” and “dispersed”.
The continuous phase is modeled as an infinitely large number of harmonic
electromechanical oscillators with low strength interactions among them. Furthermore,
the dispersed phase is a macrocollective consisting of a finite number of
microcollectives’/harmonic  electromechanical oscillators (clusters) with strong
interactions between them. The cluster can be defined as the smallest repetitive unit that
has a character of integrity. Clusters appear in a micro and nano dispersed systems. The
microcollective consists of the following elements: rigid elements (atoms or molecules),
the elastic elements (dipoles or ions that may be recombined), and entities (as the
smallest elements) [1-5, 7-9, 14-16].

2.3. Structure — mechanism — dynamics: theory of electroviscoelasticity

If the liquid-liquid interface, e.g. emulsion or double emulsion, is taken as a central and
representative finely dispersed system it is possible to propose a theory of
electroviscoelasticity based on a new constitutive model of liquids [1-5, 7-9, 14-16].
Thus, a hydrodynamic and electrodynamics motions are considered in the presence of
both potential (elastic forces) and nonpotential (resistance forces) fields. The elastic
forces are gravitational, buoyancy, and electrostatic/electrodynamics (Lorentz), and the
resistance forces are continuum resistance/viscosity and electrical resistance/impedance.
The principles of conservation of momentum, energy, mass, and charge are used to
define the state of a real fluid system quantitatively. In addition to the conservation
equations, which are insufficient to define the system uniquely, statements on the
material behavior are also required; these statements are termed constitutive relations,
e.g. Newton’s law, Fourier’s law, Fick’s law, and Ohm’s law.

Now, the droplet or droplet-film structure is considered as a macroscopic
system with internal structure determined by the way the molecules (ions) are tuned
(structured) into the primary components of a cluster configuration. After rearrangement
or coupling at resonant/characteristic frequency a probable equivalent circuit is shown in
Fig. 4. a. and b.. Electrical analogue Fig. 4. a., consists of passive elements (R, L, and
(), and an active element (emitter-coupled oscillator W). Further on the emitter-coupled
oscillator is represented by the equivalent circuit as shown in Fig. 4. b.. Figure 4.c.
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shows the electrical (oscillators) and/or mechanical (structural volumes V) analogues
j

when they are coupled to each other, e.g. in the droplet. Hence, the droplet consists of a
finite number of structural volumes or spaces/electro-mechanical oscillators (clusters)

V, and of a finite number of excluded surface volumes or interspaces V , and of a finite
] S

number of excluded bulk volumes or interspaces V . Furthermore, the
b
interoscillator/cluster distance or internal separation S represents the equilibrium of all
1

forces involved (electrostatic, solvation, van der Waals, and steric or fluctuation). The
external separation S is introduced as a permitted distance when the droplet is in
e

interaction with any external periodical physical field. The rigid droplet boundary R
presents a form of droplet instability when all forces involved are in equilibrium.
Nevertheless, two-way disturbance spreading (propagation or transfer) of entities occur,
either by tunneling mechanism (low energy dissipation and occurrence probability) or by
induction mechanism (medium or high energy dissipation and occurrence probability).
The elastic droplet boundary E represents a form of droplet instability when equilibrium
of all forces involved is disturbed by the action of any external periodical physical field,
but the droplet still exists as a dispersed phase. In the region between the rigid and
elastic droplet boundaries, a reversible disturbance spreading occurs with or without
hysteresis. After the elastic droplet boundary, the plastic form of droplet instability takes
place, then electro-mechanical oscillators/clusters do not exist any more and the beams
of entities or atto-clusters appear. Atto-clusters are the entities that appear in the atto-
dispersed systems. In this region one-way propagation of entities occurs.

‘@ f L fafudn

g

<)

Figure 4. Graphical interpretation of the structural model: a) electrical and mechanical analog of
the micro collective/cluster; b) equivalent circuit for the emitter coupled oscillator; c) the
macrocollective: a schematic cross-section of the droplet and its characteristics (V; — structural
volumes/clusters; V, — excluded surface volumes/interspaces; Vi, — excluded bulk
volumes/interspaces; S; — internal separation; S. — external separation; R — rigid droplet
boundary; E — elastic droplet boundary).
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3. Mathematical formalisms
3.1. The stretching tensor model

According to Newton’s second law, the general equation of fluid dynamics in diferential
form is given by

p%:Zﬁi(dxdydz)mh (1)
1 i

When a droplet or droplet-film structure rests, for example, on the inclined plate, the
term on the left-hand side of Eq. (1) becomes equal to zero, furthermore, since the
droplet or droplet-film structure is in the state of “forced” levitation, and the volume
forces balance each other, then the volume force term is also equal to zero. It is assumed
that the surface forces are, for the general case that includes the electroviscoelastic
fluids, composed of interaction terms expressed by

dF. =T "dA @

where the tensor T” is given by

T =-0,0" + 6" + o, {7 + ol i LY 3)
where TV is composed of four tensors, & is the Kronecker symbol, and é’J is the
stretching tensor, and fk;kj is the stretching coupling tensor. In the first isotropic tensor
the potentiostatic pressure oy=ay(p, U) is dominant and the contribution of the other
elements is neglected. Here U represents hydrostatic or electrostatic potential. In the
second isotropic tensor, the resistance &;=o;(p, U) is dominant and the contribution of
the other elements is neglected. In the third stretching tensor, its normal elements &, o
are due to the interfacial tensions and the tangential elements 0T are presumed to be of
the same origin as the dominant physical field involved. In the fourth stretching
coupling tensor, there are normal, o;04, and ;6" elements, and tangential o 7 and
;7 elements that are attributed to the first two dominant periodical physical fields
involved. Now, the general equilibrium condition for the dispersed system with two
periodical physical fields involved may be derived from Eq. (3), and may be expressed

by
amm(ajm(f’j
] 1 2 31
= d d 4)

‘ e, + )

where 7; are the tangential elements of the same origin as those of the dominant
periodical physical field involved. Note that for dispersed systems consisting of, or
behaving as Newtonian fluids, oz=a;5(p, U) is equal to zero.

The processes of formation and destruction of the droplet or droplet-film
structure are nonlinear. Therefore, the viscosity coefficients are complex functions £ (i
= 0, 1, 2), where each consists of the real bulk component, and imaginary shear and
tensile components, when correlated to the tangential tensions of mechanical origin 7,
can be written as
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ey e, A (du) 5)
y = Hy i H e H, dx

where u is the velocity, and x is one of the space coordinates.

Using the electrical analog, the impedance coefficients Z; (i = 0, 1, 2), where
each consists of the real Ohmic component, and imaginary capacitive and inductive
components, will be correlated with the tangential tensions of electrical origin 7,, as
following:

dt® dt
where ¢, is the electron flux density, and ¢ is the time coordinate.

2 2
T, =2, a9. +Z, a9, +22[d¢*j (6)
dt

3.2. Integer order van der Pol derivative model

Postulated assumptions for an electrical analogue:

1. The droplet is a macro system (collective of particles) consisting of structural

elements that may be considered as electro-mechanical oscillators, named
clusters.

2. Droplets as micro collectives undergo tuning or coupling processes, and so

build the droplet as a macro collective.

3. The external physical fields (temperature, ultrasonic, electromagnetic, or

any

other periodic) cause the excitation of a macro system through the excitation of

micro-systems at the resonant/characteristic frequency, where elastic and/or

plastic deformations may occur.

Hence, the study of the electro-mechanical oscillators is based on
electromechanical and electrodynamics principles. At first, during the droplet formation
it is possible that the serial analog circuits are more probable, but later, as a consequence
of tuning and coupling processes the parallel circuitry become dominant. Also, since the
transfer of entities by tunneling (although with low energy dissipation) is much less
probable it is sensible to consider the transfer of entities by induction (medium or high
energy dissipation). Figure 5 presents the resultant equivalent electrical circuit,
rearranged under the influence of an applied physical field, such as an antenna output
circuit.

A nonlinear integral-differential equation of the Van der Pol type is selected as
the convenient to represent the initial electromagnetic oscillation

C‘lv+(v—avj+w3+ljvdt:0 )

d \R L
where v is the overall potential difference at the junction point of the spherical capacitor
C and the plate, L is the inductance caused by potential difference, and R is the ohm
resistance (resistance of the energy transformation, electromagnetic into the mechanical
or damping resistance), ¢ is time; « and ¥ are constants determining the linear and
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nonlinear parts of the characteristic current and potential curves. vy, the primary steady-

state solution of this equation is a sinusoid of frequency close to ay=1/(LC)"’ and

amplitude Ap=[(c-1)/R/3y4]>.

)
W %} C, L, R,
T

Figure 5. Definition sketch for easier understanding of the theory of electroviscoelasticity: a)
rigid droplet; b) incident physical field, e.g., electromagnetic; c) equivalent electrical
circuit-antenna output circuit. Wq represents the emitter-coupled oscillator, Cq, La, and Rd
are capacitive, inductive, and resistive elements of the equivalent electrical circuit,
respectively. Subscript d is related to the particular diameter of the droplet under
consideration. Courtesy of Marcel Dekker, Inc. and CRC Press-Taylor & Francis Group
(From Ref. 1, 2, 5, 9).

The noise in this system, due to linear amplification of the source noise (the
electromagnetic force assumed to be the incident external force, which initiates the
mechanical disturbance), causes the oscillations of the “continuum” particle (molecule
surrounding the droplet or droplet-film structure), which can be represented by the
particular integral

Cdv+£l—0{Jv+7v3+1J.vdt=—2An cos ax
dr 8\ R L
where @is the frequency of the incident oscillations.

Finally, considering the droplet or droplet-film structure formation,
“breathing”, and/or destruction processes, and taking into account all the noise
frequency components, which are included in the driving force, the corresponding
equation is given by

c (Ll g v+iJ‘vdt+ wi=i(r)= L jexp(jat)An(a))da)
dt \R L 2z 7 )
where i(t) is the noise current and A,(®) is the spectral distribution of the noise current

as a function of frequency.
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In the case of nonlinear oscillators, however, the problem of determining of the
noise output is complicated by the fact that the output is fed back into the system thus
modifying in a complicated manner the effective noise input. The noise output appears
as an induced anisotropic effect.

Now again, the initial electromagnetic oscillation is represented by the
differential equations, Egs. (7) and (8), and when the nonlinear terms are omitted and/or
superposed, the simpler linear equation is given by

Cdv+(l_aJv+1J.vdt=—2A”cosat (10)
dt \R L

with a particular solution resulting in the following expression for the amplitude:
2aCA, (11)

{4(@0 —o) + (% - T TS

and for all the noise frequency components, the simpler linear equation is given by

dv 1 1 17
C—+|=——ap+—|vdt=ilt)=— |exp(jax)A, (@)dw 12
O e [e=it)= - [esolianh (o) )
with the particular solution expressed by
- iaA, expliat) iaA, exp(-iat) (13)

Clap - )+ l(lle - a)a) Clap - ?)+ l(lle - )a)
Now, considering Eqs. (7)-(13) and Fig. 5. after the cluster’s rearrangement the
resultant equivalent electrical circuit can be represented as shown in Fig. 5c. Figure 6.

shows, the behavior of the circuit depicted in Fig. 5c, using the correlation impedance-
frequency-arbitrary droplet diameter.

Z 1. Laoas couplrg Righ O d
O = I; i 2 r-_'-f-.‘?u'lr'cb::u!i!-q l-:'e-uu.nlL."'
LT LY 3 Glecimingiond

"""""""T."-."-l' """""" dl
.‘.-— —...‘ Ed
R LTINS N g
Vs N \\
Re | / e eeeen wN d
ey, Oy O, 0

Figure 6. Impedance of the equivalent electric circuit versus its frequency. (From Ref. 4. 1997, p.
441, with permission from Academic Press).
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Since all events occur at the resonant or characteristic frequency, depending on
the amount of coupling, the shape of the impedance-frequency curve is judged using the
factor of merit or Q factor [1-5, 7-9, 14-16]. The Q factor primarily determines the
sharpness of resonance of a tuned circuit, and may be represented as the ratio of the
reactance to the resistance, as follows:

2 al
p=2AL_ck (14)
R R
Furthermore, the impedance Z can be related to the factor of merit Q as it is given by
equations

,_CaR) _(al)’ (15)
R R

Z = alQ

and

(16)
From these expressions and Fig. 6. it can be seen that the impedance of a
circuit is directly proportional to its effective Q at resonance. Also at the resonant
frequency ap the impedance Z is equal to the resistance R, R. meaning critical, and Ry
meaning supercritical, respectively. These resistances and Z-@ curves correspond to the
various levels of coupling (1) loose coupling and high Q; (2) medium coupling and
medium Q; (3) critical coupling and low Q; (4) over-coupling and low Q). @,; and @,
represent the hump frequencies that appear during the over-coupling, curve (4) in Fig. 6.
On the right axes of the Fig. 6. the corresponding critical diameters d;, d», and d; are
arbitrary plotted.
The experimental simulation of the antenna output circuit was performed in the
Bruker MSL 400 spectrometer; Magnet 9.395 T, H;PO Standard Solution, 3p
Frequency 161.924 MHz, Applied Sweep Witdh 15000 Hz — (Shift - 10 — 90 ppm), Pick
at 7 ppm D2EHPA, Pick at 63 ppm TOPO [1-5, 9, 15, 16]. The obtained experimental
results were in a good agreement with the developed and calculated theoretical
predictions.

3.3. Recent development: van der Pol fractional order derivative model - linearized

In an effort to generalize equations (7 and 8) the ordinary time derivatives and integrals
are now replaced with corresponding fractional-order time derivatives and integrals [1-
8, 13- 15]. Here, the capacitive and inductive elements, using fractional-order p<2 (p =
n-90,n=1,2,8 << 1) enable formation of the fractional differential equation, i.e. more
flexible or general model of liquid-liquid interfaces behaviour. Now, a differ-integral
form using Riemann-Liouville definition is given by
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d ¢ v) _ 1 ¢ wz
D)= — dr; D7v()|=—— dT
pol=2 rﬁ ard a7 o2 b0l= j an
O<p<l1 p>0
Further on, a linear fractional differential equation with zeros initial conditions is
obtained
1 1 .
C,D’ [v(n]+ = v+ZOD,P[v(r)]=z(r) (18)

Further evaluation and calculation related to the solutions of the linearised, both
homogeneous and nonhomogeneous, fractional integro-differential equations is
presented in references [1-9].

In the case of nonhomogeneous solution obtained result appears as a band
because the input (cos) is of the fractional order too; and output is in a damped
oscillatory mode at high frequencies!

3.4. Van der Pol fractional order derivative model - nonlinear case

Nonlinear fractional differential equations have received rather less attention in the
literature, partly because many of the model equations proposed have been linear. Here,
both cases a nonlinear homogeneous i(#)=0 and nonhomogeneous i(t) # 0 are
considered. Equivalent nonlinear problem applying differentiation of Eq. (7) is
presented by

d 1
o BLAp +w3+—jvdt=0 (19)
dt \R L
In an effort to generalize the previous equation fractional order van der Pol equation

become

D) == L[ =@ D)=Ll D)= o) oo

Further evaluation and calculation related to the solutions of the nonlinear, both
homogeneous and nonhomogeneous, fractional integro-differential equations is
presented in references [1-9].

4. “Missing” basic element- memristor

Based on the definition of a “missing” basic element memristor for electrical circuit
analysis, and taking into account four fundamental circuit variables, electric current i,
electromotive force v, charge ¢, and magnetic flux ¢ the set of fundamental functional
relations is given by [10]:

dv =Rdi 2n
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dqg = Cdv (22)
do = Ldi (23)

do = Mdg 24)
de = vdt (25)
dq = idt 26)

Hence, the memristor as a current-controlled device is defined with the Egs. (27) and
(28), where w is the state variable of the device and R is a generalized resistance that
depends upon the internal state of the device. In 1976 Chua and Kang generalized the
memristor concept to a much broader class of nonlinear dynamical systems, named
memristive systems, described by the Egs. (29) and (30), where w is a set of state
variables and R and f can, in general, be explicit functions of time [10].

v=R(w)i @7)
and

aw_, (28)

dt

v=R(w,i)i (29)

and

dw .

D f(w, 30

= 1) (30)

Further on, when an incidental uniform physical field, for example electromagnetic, is
applied on the system emulsion/droplet or double emulsion/droplet-film-structure,
causing the motions of both electrons and ions, than the memristance may be obtained
as:

the application of an external bias v () across the device (droplet or droplet-
film structure) will move the boundary between the two regions (I and II). For the
simplest case of ohmic electronic conduction and linear ionic drift in a uniform field
with average ion mobility p;

v(t) = {Rm % + lel(l - W([)Hi(t) €29)

D
dwl(r) R .

— gy Zlint 32
T i(t) (32)

now w (1) is given by

R
wit)= u, —2qglt 33
(1) = =5 qle) (33)

By inserting Eq. (33) into Eq (31) the memristance for this system, which for R, << Rpu
become
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R.
M(g)=R,, [l - ﬂ’T q(t)} (34)

where R;, is the low resistance at the interface and close to the interface layers (region
D), Ry, is the much higher resistance in the bulk layers (region II), x4, is the average ion
mobility, D is the thickness of the considered fragment/’device”. The ¢ (t) term present
the most important contribution to the memristance, and it becomes larger in absolute
value for the higher ion mobilities g and smller device thickness D. This term is
substantially larger (~10° times) in absolute value at the nanometer scale than it is at the
micrometer scale, because of the factor of /D’ and the memristance is correspondingly
more significant.

4.1. Emulsions and double emulsions as memristive systems

Now, according to the presented electrohydrodynamic approach, emulsions and double
emulsions will be considered as the composite system “droplet + film” or “droplet-film
structure + droplet homophase (S + E)”. The history of this system consists of the
initial/formation, intermediate/transition, and final/rigid states. 1. Every stationary state
(initial, intermediate, and final) is characterized by interaction in the composite system
that is of the same kind — being able to give rise to the occurrence of decoherence with
the cluster arrangements as the “pointer basis states”. 2. The nonstationary state is
characterized by the change in the character of interaction in the composite system. The
net effect takes the following “phases” each having its own characteristic time: a) under
the action of an external or incidental physical field a formation, excitation, of the
droplet-film structure occurs, producing the nonstationary state; b) the transition,
relaxation, of the electroviscoelastic droplet-film structure into the rigid one,
establishing the new final stationary state, this transition or relaxation process may be
considered as a kind of a memory storage process, therefore, the system either
electroviscoelastic droplet or droplet-film structure submerged into the other immiscible
liquid phase, could be considered as the particular example of memristive systems; c)
decoherence process, the final stationary state.

Based on these statements, and looking at figure 5c, following important
propositions may be withdrawn:

e for every nonstationary state (excitation and relaxation) the resistor Rp
have to be exchanged with the memristor Mp;

e for every stationary state (initial, intermediate, and final) the nonlinear
memristance M (the generalized resistance) degenerate into the linear
resistance R.

5. Probably possible further development: classical limit of quantum mechanics

This part will treat one important question of the classical limit of quantum mechanics,
that is, is a quantum mechanics applicable at macroscopic level? This question resulted
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during the research of complex systems by the end of the last century. According to the
developed strategy, the proposition appeared is: if the macroscopic physical systems are
only the special case of quantum-mechanical systems than it is possible to observe,
under specified conditions, their quantum mechanical behavior [11].

The behavior of a droplet-film structure submerged into the droplet homophase
or double emulsion, including its formation-existence-destruction states, described in
this presentation will be considered as a close to the representative open macroscopic
quantum system (OMQS), under the specified conditions. Hence, OMQS are quantum
subsystems, that is, open quantum systems that are in inevitable permanent interaction
with other physical systems, which may be named environment [11]. Does the theory of
electroviscoelasticity, here presented, may be useful in discussion and/or further
elucidation related to the problems of the experimental and theoretical status of
decoherence?

Some needed definitions [11]:

1. The choice of an OMQS has to be in accordance to the criteria that confirm its
description by the motion equation in a “classical domain”.

2. It is convenient that the classical motion equation of the OMQS contain
dissipative term.

3. The motion equation of the OMQS must be related, clearly and unequally, to
the physical units whose values define distinguishable macroscopic states of the
system.

4. The choice of a needed conditions for the following of the behavior of one
OMQS have to be limited by the condition that some of the parameters values
may correspond to the limit of the correspondence principle, that is, the
condition n — oo is invalid.

5. It is convenient to consider, theoretically, the behavior of the choused OMQS,
and therefore to prepare possible predictions comparable with experimentally
attainable situations.

The Leggett’s Program:

These five points present a Leggett’s task and basis for exploration of the
macroscopic quantum phenomena of the second kind, that is, the confirmed quantum
mechanical nature of the OMQS is related to these physical situations where the
quantum effects are unequally linked to the macroscopically distinguishable states [11].

5.1. Suggested Problem — The Model
Finely dispersed system, emulsion and double emulsion, discussed, now will be

considered as the composite system “droplet-film structure + droplet homophase (S +
E)”. The equivalent electrical circuits of the composite system are presented in Figures
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4.a and 4.b and 5c; the history of this system consists of the initial/formation,
intermediate/transition, and final/rigid states.

Keeping in mind all the requirements, the needed definitions and Leggett’s
program the model assumptions are [11-16]:

1.

Every stationary state (initial, intermediate, and final) is characterized by
interaction in the composite system that is of the same kind — being able to
give rise to the occurrence of decoherence with the cluster arrangements as
the “pointer basis states”.

The nonstationary state is characterized by the change in the character of
interaction in the composite system. The net effect takes the following
“phases” each having its own characteristic time:

a)

b)

Under the action of an external or incidental physical field a
formation of the droplet-film structure occurs, producing the
nonstationary state, taking time te, = 125 ms. This time was
measured using developed liquid-liquid contact cell (LLCC) [1-5,
7-9, 14-16]; the measured variations of the EIP with time, for the
representative system, are shown in Figure 7.

The transition or relaxation of the electroviscoelastic droplet-film
structure into the rigid one, establishing the new final stationary
state, taking time t.,x = 8 min. This time was measured using
developed LLCC; measured spontaneous oscillations of the EIP
with time are shown in Figure 8. Now, this transition or
relaxation process may be considered as a kind of the memory
storage process;

50

I

40

\

30

Ac,,(mV)

20

10

-

100 200 300 400 500 600 700 800 t(ms)

Figure 7. Measured variations of the EIP with time for the examined system: phosphoric
acid/D2EHPA-TOPO-kerosene at the spherical interface.
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therefore, the system electroviscoelastic droplet and/or droplet-
film

structure could be considered as the particular example of
memristive systems, which is shown in figure 8.

c) Decoherence process, in the final stationary state, taking time tp.,
(decoherence time).

Therefore, the complete generation of the dispersed system or, for example, a
double emulsion, takes overall time expressed by:

t,=t,, +t,,. +t, (35)

relax
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Figure 8. Measured spontaneous oscillations of the EIP during the “breathing” period;
transformation of the electroviscoelastic sphere into the rigid sphere.

5.2. Suggested experimental confirmation

Since the equivalent electrical circuit, Fig 5.a may be considered as a kind of
Superconducting Quantum Interference Device (SQUID), probably, it may be possible to
couple, at the resonant frequency, where all events occur, one adjusted, sensitive tunnel
diode oscillator as one detector of Macroscopic Quantum Tunneling Effect (MQTE).
Also, the circuitry, described in the sections 2.3. and 3.2., Fig. 4. and Fig. 5. may be
modified, when taking into account definition of a current-controlled memristor,
sections 3.[1-5, 7-9, 14-16] and 4. [1, 10, 15, 16], by replacement of the linear resistance
(electro-viscose) with nonlinear memristance (electro-elastic) during the nonstationary
periods; that is during the formation of electroviscoelastic sphere and its transition or
relaxation into the rigid one.
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6. Conclusions and implications

Three possible mathematical formalisms have been developed and discussed related to
the developed theory of electroviscoelasticity. The first is stretching tensor model where
the normal and tangential forces are considered, only in mathematical formalism,
regardless to their origin, mechanical and/or elctricacal. The second is classical integer
order van der Pol derivative model. Finally, the third model comprise an effort to
generalize the previous van der Pol integral-differential equations, both linear and
nonlinear; where the ordinary time derivatives and integrals are replaced by
corresponding fractional-order time derivatives and integrals of order p<2 (p =n- §, n =
1, 2, 6<<1).

Each of these mathematical formalisms, although related to the same physical
formalism, facilitates better understanding of different aspects of a droplet existence,
that is, its formation, life, and destruction states.

Stretching tensor model discusses the force equilibrium at the interfaces, either
deformable or rigid, but its solution is difficult because the tensor contain nonlinear and
complex elements.

The van der Pol derivative model is convenient for discussion of the “antenna
output circuit”, the resulting equivalent electrical circuit; but, since in the case of
nonlinear oscillators, that is here the realistic one, the problem of determining the noise
output is complicated by the fact that the output is fed back into the system, thus
modifying in a complicated manner the effective noise input. The noise output appears
as an induced anisotropic effect.

The theory of electroviscoelasticity using generalization of van der Pol
derivative model applying fractional approach constitutes a new interdisciplinary tool to
the colloid and interface science. Hence, 1-more degrees of freedom are in the model, 2-
memory storage considerations and hereditary properties are included in the model, and
3-history or the impact to the present and future is in the game!

Finally, the electroviscoelastic droplet, and/or droplet-film structure, that is,
emulsion or double emulsion may be considered as the particular example of memristive
systems. All that means that for the elucidation of developed interfaces, for example, in
colloids it is necessary to include the electron transfer phenomenon beside the heat, mass
and momentum transfer phenomena commonly used in the classical chemical
engineering.

All this research may have impact, for example, to the entrainment problems in
solvent extraction, breaking of emulsions, deeper elucidation of adhesive processes,
rupture processes, and coalescence; colloid and interface science, chemical and
biological sensors, electro-analytical methods, biology or biomedicine (hematology,
genetics, electroneurophysiology), classical limit of quantum mechanics, ionics,
spintronics, fractional-quantum Hall effect-fluids, decoherence sensitivity, quantum
computation, entities-quantum particles entanglement, [1-5, 7-9, 14-16].
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Abstract. In this paper, finite-time stability problems for a class of singular
time-delay systems are studied. The concept of finite-time stability is extended
to singular time-delay systems and some conditions have been derived using
two approach based on the Lyapunov-like functions: classical and LMI
approach. The first approach is based on the algebraic matrix transformations,
while the second approach uses the linear matrix inequalities. LMI approach
provides a simple numerical solution and does not impose additional restriction
on the state vector. Numerical example is given to show the effectiveness of the
proposed approaches.

1. Introduction

A singular system describes a natural representation for physical systems. In general, the
singular representation consists of differential and algebraic equations, and hence it is a
generalized representation of the state-space system. The class of singular systems is
more appropriate to describe the behavior of some practical systems like electrical
systems [1], mechanical systems [2], and chemical systems [3-5]. It is well known that
study of singular systems is much more complicated than that of regular ones.

It has been observed that variety of singular systems is characterized by the phenomena
of time delay. Such systems are called singular systems with time delay. Time delay can
appear in the input variables, output variables and/or the state space vector. In general,
the dynamic behavior of continuous-time singular systems with delays is more
complicated than that of system without any time-delay because the continuous time-
delay system is infinite dimensional. For this reason, over the past decades, there has
been increasing interest in the stability analysis for singular time-delay systems and
many results have been reported in the literature [6—11].
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Often Lyapunov asymptotic stability is not enough for practical applications, because
there are some cases where large values of the state are not acceptable, for instance in
the presence of saturations. For this purposes, the concept of the finite-time stability
(FTS) and practical stability are used. A system is said to be FTS if, once a time interval
is fixed, its state does not exceed some bounds during this time interval. A little work
has been done for the finite-time stability and stabilization of singular time-delay
systems. Some results on FT'S and practical stability can be found in [12-18] (singular
systems) and [19-20] (singular time-delay systems). However, according to the author's
knowledge, there is no result available yet on finite-time stability and stabilization for a
class of linear time-delay systems using linear matrix inequality.

In this article, we consider the problem of finite-time stability for a class of linear
singular time-delay systems. The concept of finite-time stability is extended to singular
time-delay systems. New conditions have been derived using two approach based on the
Lyapunov-like functions: classical and LMI approach. The first approach is based on the
algebraic matrix transformations, while the second approach uses the linear matrix
inequalities. Numerical example is given to show the effectiveness of the proposed
approaches.

2. Notation and preliminaries

The following notations will be used throughout the paper. 3R"denotes the n-
dimensional Euclidean space, C" complex vector space and R™" is the set of all real
matrices of dimension nXm. Superscript “T” stands for matrix transposition. X >0
means that X is real symmetric and positive definite and X >Y means that the matrix
X —Y is positive definite. In symmetric block matrices or long matrix expressions, we
use an asterisk (*) to represent a term that is induced by symmetry. / stands identity

matrix and /1(X ) eigenvalue of matrix X . Matrices, if their dimensions are not

explicitly stated, are assumed to be compatible for algebraic operations.
Consider a linear continuous singular system with state delay, described by

Ex(1)= Ax(1)+A,2(1-7) (1)
with a known compatible vector valued function of the initial conditions
2()=9¢(r), —7<1<0 )
where X(t)e R" is the state vector, 7 is constant time delay, AeR™ and A , € R

are known constant matrices. The matrix £ e R™" may be singular, and it is assumed
that rank(ﬁ) =r<n.
It is known ([12]) that there exist invertible matrices M and N such that
E=MEN = {I’ 0}, A=MAN = {A“ A‘z}, A, =MAN = {A%ll Aﬂ 3
O O 21 A22 Ad Ad
Then, by the nonsingular transformation
x=N"'% 4
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the system (1) can be described by the following system:
Ex(t) = Ax(t)+ A, x(t —17)
xO) =), eO)=N"9@), te[-7,0]

The following definition will be used in the proof of the main results.
Definition 1. Matrix pair (E,A) is said to be regular if det(sE— A) is not identically

(5)

zero [6].
Definition 2. The matrix pair (E,A) is said to be impulse-free if

deg det (sE— A)=rank E [6].

The linear continuous singular time delay system (5) may have an impulsive solution.
However, the regularity and the absence of impulses of the matrix pair (E,A) ensure the
existence and uniqueness of an impulse-free solution of the system. The existence of the
solutions is defined in the following Lemma.
Lemma 1. Suppose that the matrix pair (E,A) ((E,f\)) is regular and impulsive free,
then the solution to (5) ((1)) exists and is impulse-free and unique on [0, o) [6].
In view of this, we introduce the following definition for singular time-delay system (5)
or (1).
Definition 3. The singular continuous system with state delay (5) ((1)) is said to be
regular and impulse-free, if the matrix pair (E, A) ((E,A)) is regular and impulse-free
[6].
Then, based on Definition 3, the singular continuous time-delay systems (1) and (5) are
regular and impulse-free.
Lemma 2. For any symmetric, positive definite matrix Z=Z" >0 the following
condition is satisfied:

2u” ()v(t)<u” ()T 'u(e)+v" (1) (1) (6)

3. Main results

Lemma 3. Continuous singular time-delay systems (1) and (5) are regular and impulse-

free if matrix A,, , which is defined by (3), is invertible.

Proof. Let A,, is invertible. Then
det(sE — A) = det(M ™) det(sE — A)det(N™")

=d -1 [_Slr_An _AIZ}J -1
=det(M " )det det(N™)
L _A21 _Azz

-1 [_Slr_An _A12}|: Ir 0 }J -1 (7)
=det(M " )det 4 det(N7)
_A21 _Azz _Azz A21 In—r

[sI, —A, + A, A0 A, —A
= det(M ™"y det St — Ay 124 Ay 2| | det(N)
0 -A,

= det(M ™) det(=Ay, ) det (sI, - (A, — A,A7 A,))det(N™")
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which implies
det(sE—A) = 0, degdet(sE—A) =r, det(sE—A) =0, degdet(sE—A) =r (8)
Definition 4. Singular time delayed system (5) is finite-time stable with respect to

{a, 8. T}, a<p.if

wp o' (1o()<a )
implies
() E"Ex(t)< B, Vre[0.T] (10)

2.1. Classical approach

The classical approach is based on Lyapunov-like functions using algebraic matrix

transformations.
Theorem 1. Consider a singular time-delay system (5) with
x" (t—ﬂ)x(t—ﬂ) <gx" (t)x(t), q>0, Qe [—T,O], Vte [O,T] (1D

If the matrix A,, is invertible and if there exists a positive scalar g, matrix P and

positive define symmetric matrices Q and R, such that the following conditions hold:

PE=E"P" >0 (12)
PE=E"RE (13)
Be ™ A (R —alA, (PE)+T A, (0)]<0 (14)

where:
A, =max|x" (t)Ex(t): x"(t)PEx(r)=1] (15)
E=A"P"+PA+Q+PA@ AP +qA  {pI-0}I (16)

then system (1) is regular, impulse free and finite-time stable with respect to
{a, B, T}, a< p forall T>0.
Proof. Based on Lemma 3, the condition A,, #0 provides that the system (5) is regular

and impulse free.

Next, we show the stability. Let us consider the following Lyapunov-like function:

V(x(1))=x" (t) PEx(t)+ [ x" (5)0x(s)ds (17)
Total derivative V(x(t)) along the trajectories of the system (5) is:
V(x(t))=1"(t)E"P" x(t)+x" (t)PEx(t)+x" (t)Qx(t)—x" (t—7)Ox(t—7)

=x"(1)(A"P" +PA)x(r)+2x" (1) PA,x(t - 7)

(13)
+x" (1) 0x(t)—x" (t—7)Qx(t-7)
=x"(1)(A"P" + PA+Q)x(t)+2x" (1) PA,x(t—7)—x" (t—7) Ox(t—7)
Based on Lemma 2, we get:
2x" (1) PA,x(t—7)<x" (1) PA o ' AT P x(1)+x" (1 —7)gpox(t—7) (19)

292



On stability of syngular time delay systemsover the finite time interval: Classical and LMI criteria

SO
V(x(1))<x" (¢)(A"P" + PA+Q)x(1)+x" (1) PA,o™ A} P"x(1)
+x' (1-7)(p1-0)x(t-7)
Using (11), it is clear that (20) is reduced to:
V(x(r))<x" (1)(A"P" + PA+Q)x(1)
x" (1) PA,@ AT P x(1)+x" (1=7) (I - Q) x(1—7)
<x"(t)(A"P" + PA+Q+PAp " Al P ) x(1)
+ e {01 -0} X" (1-7) x(1-7)
<x"(t)(A"P" + PA+Q+PA© " AL P ) x(1)+ g, {901 - O} X" (1) x(1)
X" (t)(A"P" + PA+Q+PA@ " AL P" + A, {@I-0}1)x(1)
(1) Ex(1)
ATPT + PA+Q+PA, 0 ' ATPT +qA {pT-0}I
From (21) we have
dv (x(r )) 1)Ex( x' (1) Ex(1) x' (1) Ex(1)
V() ( z) dt<xT 0 PEx() " =™ ¥ () PEX ()

where:

T
X

—
)
—

}dt =A,dt

A, = max[xr (t)Ex(t): x"(t)PEx(t)= IJ

After integrating the previous inequality we get:

V(x(1)) <V (x(0))e”
Then:
0
V(x(0)) =x" (0)PEx(0) + j x" (5)0x(s)ds
0
(PE)x 0)x(0)+ 4, (Q).[ X" (s)x(s)ds
0
<ah,, (PE)+ak,, Q)| do
< a[ max (PE)+ Tﬂ’max (Q) ]
On the other hand,

V(x(@) = x" (t)PEx(t) + j x" (5)0x(s)ds = x" (t)ET REx(t)

-7

>A (RX"(OE"E"x(t)> BA_ (R)

Combining (24)-(26) we get:
A (R)x"()ETE"x(t) < a[ o (PE)+TA (Q)] eM!

‘min

If the following condition is satisfied:

(20)

2n

(22)

(23)

(24)

(25)

(26)

27
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[ Ay (PE)+ 7, (Q)]- €™ < A (R), Vite[0,T] (28)
then:
x" (E"Ex(t)< 8, for all te[0,T] (29)

From (28) follows (14). This completes the proof.
In order to improve the previous result, we formulate the following theorem.
Theorem 2. Consider a singular time-delay system (5) with

X (1-0)x(1-0)<gx’ (1)x(r). q>0. Oe[-7.0]. Vie[0.T] (30)
If the matrix A,, is invertible and if there exists a positive scalar , matrix P,
positive define block diagonal matrix Q =diag{Q,.0,} and positive define matrix R,

such that the following conditions hold:

PE=E"P" >0 @31
PE=E"RE (32)
Bl A R)+ PA, (@] €™ — [ A, (PE)+ P, (Q)] <0 33)

where:
A, =max|x" (1)Ex(t): x"(t)PEx(1)=1] (34)
E=A"P"+PA+Q+PAp 'A P +qA,, {0I-0}1 (35)

then system (1) is regular, impulse free and finite-time stable with respect to
{a, 8. T}, a<p foral T>0.

Proof. From (17), based on properties of matrices E =diag{I,,0} and
0 =diag{0,,0,} , we have:

V(x(t)) = x" (t)PEx(t) + j x"(0)0x(0)d0 = x" (r)E" REx(t)

-7

+j X" (0)E" QEx(6)d 6 (36)

>A

‘min

(R)X"(E"E"x(t)+ A

‘min

(Q)j X" (0)E"Ex(8)d8

Combining (24), (25) and (36) we get:
A

‘min

(R)X"(OETE"x(t)+ A,

‘min

Q) j x"(Q)ETEx(0)d6 < e a[A,, (PE)+p A, (Q)] (37)
If the following condition is satisfied:
A (PE)+ pA, (D)) ™ < Bl Ann(R)+ A (D], V2€[0,T] (38)
then:
x"(E"Ex(t) < B, for all 1€ [0,T] (39)
From (38) follows:
[ A (PE)+ pA,, Q)] ™" < B[ A (R)+ pA,, (O)] (40)
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and (33).

Remark 1. Expressions (15) and (34) are known as Rayleigh quotient which minimum
can be determined using appropriate standard numerical methods.

Remark 2. Conditions (11) and (30) are main sources of the conservatism in Theorem 1
and 2. Namely, it is difficult to determine the parameter g so that (11) or (30) are
satisfied because it is considered that the solution of the system (1) is not known. One
way to estimate the parameter ¢ is the simulation of system (5) for known initial
conditions.

Furthermore, it is very difficult to numerically solve the inequality (12)-(16) (Theorem
1) and (31)-(35) (Theorem 2). Therefore, the above mentioned theorems have more
theoretical than practical significance.

2.1. LMI approach

Finally, by using linear matrix inequalities, we give the sufficient conditions under
which the system (5) will be regular, impulse free and finite time stable. LMI approach
has been applied in order to get less conservative conditions and to easier solve
numerically this problem. These stability conditions have a great practical importance
because they are based on standard numerical optimization methods.

Theorem 3. Singular time delayed system (5) is regular, impulse free and finite time
stable with respect to {a, ,B,T} , a< B if there exist a positive scalar g, nonsingular
matrix P and two positive definite matrices R and Q, such that the following

conditions hold:

PE=E"P" 20 (41)
PE=E"RE (42)
A"P" +PA+Q-@PE PA
== , TQ e 1<0 (43)
AJP -0
AI<R, AI>PE, A1>Q (44)

e "4 ar, ari,

*k — 2‘2 O

* *k — 2‘3
Proof. The proof of this theorem is divided into two parts. First, we deal with the
regularity and impulse-free properties. Second, we treat the finite-time stability property.

First we show that the singular delay system (1) is regular and impulse-free. Using (43),
it is easy to see that the following holds:

ATP" + PA-pPE <0 (46)

<0 (45)

By (41)-(42) we have
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PE:|:P]] 0:|=ETPT=|:PIIT PZIT:|’ PE=|:P” 0:|=ETRE=|:RII 0:| (47)
F, 0 0 0 2, 0 0 0
i.e.
P11=P11T’ b, =0, R,=F, (48)
Based on (46) and (48) we have
0 0
L AP +P22Azj <0 @

where the symbol "[J "stands for a matrix irrelevant to the following development.
From (49) we deduce that

Ay Py +PyA, <0 (50)
ie. A, #0, because P, #0 (P is regular matrix). Therefore, based on Lemma 3, we

conclude that the system (5) is regular and impulse-free.
Next, we show the stability. Let us consider the Lyapunov-like function (17). Total

derivative V (x(t)) along the trajectories of the system (5) is

V(x(t))z i (t)PEx(t)+x" (t)PEfc(t)+% :[ x" (s)Qx(s)d®

=x"(1)(A"P" +PA)x(r)+2x" (t);;\dx(t—r) (51)
+x" () Qx(t)—x" (t—7)Qx(t-7)
= (Tt (1)

where:

(52)

cr()=[A (1) A (t-7)]. r:{
From (43) and (51), one can have:

V(x(1) =" ()T E () =" (r)(z{‘”’f ODcm

ATPT + PA+Q PAd}
ATPT -Q

0 0

@PE 0

~e e 0] 7"

}c(r)

(53)

<px (t)PEx<go(xT (t)PEx(t)+goj x" (ﬂ)Qx(ﬂ)dﬁJ

=pV(x(1))
Integrating (53) from 0 to r < T, follows:
V(x(t)) <e”V (x(0)) (54)
Then:
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V(x(0))=x" (O)PEx(O)+.(fxT () Q x(88)d?

0

< Ao (PE)" (0)x(0)+ 2, (Q) [ ¢ (8) ()

<A,.(PE)-a+i,, (Q)~a.? dd <a(A,, (PE)+7-4,,(0))

max
-T

On the other hand, we have:

V(x(1)) = " (1) PEx(1)+ j 7 (5)0x(s)ds

-7

T (1) ETREx(r)+ j ()0 x(s)ds

t

oA (R)X (1) E"Ex(1)+ 4., (0) j o (5)x(s)ds

Combining (25), (26) and (54) leads to:
A (R)x"()ETE"x(t) < a[/im

If the following condition is satisfied:

a[A,, (PE)+TA, (O)]-¢" < A, (R), Vie[0,T]

max

(PE)+14,_, (Q)] e

ax

then:
¥ () ETEx(1)< . Vie[0.T]
From (58) follows:

-pA.. (Re ™ +a[A,, (PE)+14, (0)]<0

Let
0<A <A, (R), A4>4,(PE), 24>2%,(Q)
then
AI<R, ALI>PE, A1>Q0
—Be A +ad, +atd, <0
From (63) we have:

~Be T A +ath, —Jah, (-4,) Nad, <0

and using Schur complement:

[—ﬂe”%am J&}O

Jaa, -4
e A +atd, a| [Jar =
{ o %H ﬂ(—m ez, o]<o

we get (45). This completes the proof.

(55)

(56)

(57

(58)

(59

(60)

(61

(62)
(63)

(64)

(65)

(66)
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In order to improve the previous result, we formulate the following theorem.

Theorem 4. Singular time delayed system (5) is regular, impulse free and finite time
stable with respect to {a, ,B,T} , a< B if there exist a positive scalar g, nonsingular

matrix P, positive definite matrix R and positive definite block diagonal matrix
Q0 =diag{Q,,0,}. such that the following conditions hold:

PE=E"P" >0 67
PE=E"RE (68)
o A"P" +P1é+ﬂQ—50PE PA, <0 (69)
AP -0
AI<R, AI>PE, AI<Q<Al (70)
~Bla+ale” Nar, Jara,
* -4, 0 |<0 (7D
* * _,14
Proof. Combining, (54), (55) and (36) we get:
A (RXT(OETE" x(t) + A, (Q) .[ x"(O)E" Ex(8)d8 < e 0{[/1mzlx (PE)+74,,, (Q)] (72)
If the following condition is satisfied:
a[ﬂ’max (PE)+Tﬂ’max (Q)]epr < ﬂ[ﬂ’min(R)-‘-Tﬂ’min (Q)]’ Vl € [O’T] (73)
then:
x" (E"Ex(t)< 8, for all te[0,T] (74)
From (73) follows:
_ﬁ [ﬂ’min (R) + Tﬂ’min (Q)] e*f?' + a[ﬂ’max (PE) + 7'ﬂ’max (Q)] < O (75)
Let
O<ﬂ1 <ﬂ’min (R)’ 2‘2 >2’max (PE)’ 2‘3 <ﬂ’min(Q)’ 1’4 >/lmax(Q) (76)
then
AI<R, ALI>PE, AI>0>A1 an
-plA+4]e” + a4 +74,]<0 (78)

Finally, using a complement, from (78) we get (71).

Remark 3. According to our knowledge, there are no results available yet on finite-time
stability in the sense of Definition 4 for a class of linear continuous time-delay systems
which use linear matrix inequality and therefore we cannot to compare our results with
existing ones.

4. Numerical example

The effectiveness of the results presented in the previous section is now shown by means
of numerical example. Due to numerical problems, Theorem 1 and Theorem 2 have
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more theoretical than practical significance (Remark 2). For this reason, in the following
example, we only consider the stability conditions derived in Theorems 3 and 4.

Example 1. Consider following singular continuous time-delay system:
Ex(t) = Ax(1)+ A,x(t —7)

1 00 -2 1 0 111 (79)
E=0 1 0|, A=|0 -2 0|, A=[111| z=1
000 -1 0 -2 111

In order to verify stability properties of the system (79), the system operation is
simulated under the conditions @(r)=[1 1 I]T, te[-7,0]. Figures 1-2 show the

initial state response and the norm of initial state response of the system (79). It is
observed that the values of state variables x, =, i =1,2,3 when ¢ — oo, which proves

that the system (79) is not asymptotically stable.
Now we seek the maximum allowed upper bound of 7', T, for the time interval [O,T]

so system (79) is regular, impulse free and FTS with respect (&, 3,T), a=3, =100

using Theorem 3 and Theorem 4.
Based on Theorem 3, for fixed g =2.93, we can obtain the following feasible solutions:

1366.3 -210.6 | —479.4 2699.7 137.2 1636.7
P=|-210.6 1808.0 1131.8|° Q=| 137.2 30704 12657 |°
0.0 0.0 | 1394.6 1636.7 1265.7 1556.9

1366.3 —210.6 | 00| 4 =1281.9,4,=18928,
R=[-210.6 18080 ~ 0.0| A =4469.1,
0.0 0.0 {41333| T,6=0.65

30 120
100
20 = 80

x

= i
=3 w 60
10 b l—;/ 40
J/ 20
0 : : ‘ . ‘ 0

0 2 4 6 8 10 12 0 1 2 3 4 5 6 7

Time

Fig. 1 The initial state response (x(¢)) of the Fig. 2 The norm of initial state response

system (79). (x" (1) E" Ex(1)) of the system (79).

Using Theorem 4, for fixed g =2.68 we get:

69.24 -0.13 } 0.00
=[-0.13 71.65! 0.00 |
0.00 0.00 | 71.54
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1400 -1.88 0.00| 4 =13.67, 1,=276l
R=|-188 2727| 000|. 4,=69.16, 4 =71.79

0.00

000 5237| T,=124

Further, based on simulation of the system (79), the parameter 7 is estimated (7,,)

m

from the norm of initial state response (x (f)E” Ex(r)) and the following value is
obtained: 7, =6.8.

According to data, it can be seen that the condition of Theorem 4 is less conservative
(T, =1.24) than the condition of Theorem 3 (7, =0.65), because it gives T, that is

nearer to the estimated value, 7., =6.8.

est

5. CONCLUSION

This paper extends some of the basic results in the area of the non-Lyapunov stability to
the particular class of linear singular time-delay systems. The finite-time stability
problems of linear singular time-delay systems are studied. Using classical and LMI
approaches novel sufficient conditions for finite-time stability are presented. The
obtained LMI conditions can be checked by using the standard numerical optimization
methods. Finally, numerical example is given to show the effectiveness of the proposed
approaches.
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Abstract. The aim of this paper is a detailed synthesis and analysis Cable-
suspended Parallel Robot — CPR (aerial robot), which should enable their
strong progress. This would be reflected in the implementation of highly-
automated system that would lead the camera precisely in space with minimum
participation of human labor. Setting and achieving this goal provides a much
wider possibilities for its future use. The unique general type of the CPR-B
mathematical model is defined. Kinematic model is generated for the system
via Jacobi matrix. An adequate choice of generalized coordinates (in this
paper, the internal coordinates), provides a mathematical model that
illuminates the mapping of internal (resultant forces acting on the shaft of
each motor) and external forces (acting on a camera carrier) by the Jacobi
matrix on motion dynamics of each motors. Such an operation of this system
can provide only with application of his high-fidelity mathematical model
during the synthesis and analysis, which would further enable the development
and application of modern control law. Several numerical examples are used
for the CPR model validation.

Nomenclature
degree of freedom
Cable-suspended Parallel Robot
time
sample time
gravitational acceleration

position of camera carrier in space of Cartesian coordinates
(external coordinate)

i=1,273... total number of DOF
¢=16, 6, 631 [rad] vector of internal coordinates
F,=[F, F, F3"[N] vector resultant force acting on the shaft of each motor (motor

force load)
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F,=IF, F, FTIN] force acting on the camera carrier

P, =[P, P, PN perturbation force acting on the camera carrier

F=(F, +P,)IN] whole forces acting on a camera carrier

My =M, M, M;\[Nm] motor moment load

6. ( 0;, Yrad] 1(1)1tlzl11tégm angle of the motor shaft after the reducer (desired

R; =0.15[m] wiqch radius. (it is assumed that all 3 winch have the same
radius, than in Example 3)

J, Jacobi matrix

R, = 0.917(Q) rotor circuit resistance

u;[V] voltage

ii [A] rotor current

Cpi =3.3942[V [(rad I 5)] proportionality constant of electromotive force

Cyi =2.5194[Nm/ A] proportionality constant of the moment

Bc; = 0.0670{Nm /(rad / 5)] coefficient of viscous friction

Ji= l.5859[kgm2] inertia moment of the rotor and reducer

characteristic of motor inertia

J.R.
G, = —1-0.1787
CMI'

R, B, characteristic of motor damping
L,;=—""—*+Cg; =3.4186
C .
Mi

geometric characteristic of the motor

R
S, =—=0.364
c

Mi
m=1[kg] mass of the camera carrier
d =3.2[m] length of the recorded field
s =2.2[m] width of the recorded field
v =2.0[m] height of the recorded field
86,(1,)=0(rad),56:(t,)= 0[rad | 5] initial deviation of motor rotating angle

Klp = diag[800 3500 3000] positional, velocity amplification for motion control

K,, =diag[60 120 110]

0=05 factor that characterizes two parallel guided ropes
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1. Introduction

The goal of this research is to show modeling and control of the Cable-suspended Parallel
Robot (CPR). Similar systems were analyzed and modeled as presented by the following
publications.

In paper [1], the design of a planar three-degree-of- freedom parallel manipulator is
considered from a kinematic viewpoint. Four different design criteria are established and
used to produce designs having optimum characteristics.

The paper [2] presents the first and second order kinematic analysis of a three-degree-of-
freedom 3-RPS parallel robot mechanism. The position and orientation parameters of
the moving platform of this mechanism are six.

In paper [3] authors present algorithms that enable precise trajectory control of
NIMS3D, an under constrained, three-dimensional cabled robot intended for use in
actuated sensing. They begin by offering a brief system overview and then describe
methods to determine the range of operation of the robot. Next, a discrete-time model of
the system is resented.

In paper [4] author presents several prototypes of wire-driven parallel robots, recently
designed and which use two different actuation schemes. Two of them have been
completed and submitted to extensive tests. These tests have allowed determining
interesting open problems related to kinematics that are presented.

The wrench-closure workspace of parallel cable-driven mechanisms is the set poses of
their mobile platform for which the cables can balance any external wrench. The
determination of this workspace is an important issue in [5] since the cables can only
pull and not push on the mobile platform.

Parallel cable-driven Stewart-Gough platforms consist of an end-effector which is
connected to the machine frame by motor driven cables. Since cables can transmit only
tension forces, at least m = n + 1 cables are needed to tense a system having n degrees-
of-freedom. This results in a kinematical redundancy and leads to a (m — n)-dimensional
solution space for the cable force distribution presented in [6].

This paper presents the recent results from a newly designed parallel wire robot which is
currently under construction. Firstly, an overview of the system architecture is given and
technically relevant requirements for the realization are identified. A technique to
compute and transfer an estimation of the workspace to CAD tools is presented in [7].
The paper [8] presents an auto-calibration method for over constrained cable-driven
parallel robots using internal position sensors located in the motors. A calibration
workflow is proposed and implemented including pose selection, measurement, and
parameter adjustment.

Wire-driven parallel robot has attracted the interest of researchers since the very
beginning of the study of parallel robots [9]. This type of robot has the advantage of
having light mobile mass, simple linear actuators with possibly relatively large stroke
and less risk of interference between the legs. On the other hand their major drawback is
that wire actuator can only pull and not push.

A nonlinear dynamic analysis of the suspended cable system is carried out with some
sensible results presented in [10] that could be useful to the real engineering of LSRT.
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Integrated mechanical, electronic, optic and automatic control technologies are
employed to make considerable improvement upon the same system.

For the requirement of trajectory tracking of large spherical radio telescopes, a large fine
tuning platform based on the Stewart platform is presented in papers [11] and [12]. The
mathematical model for kinematic control is developed with coordinate transformation,
and a dynamic analysis is carried out using the Jacobi matrix, which, with a singularity
analysis, built a solid base for the tracking control.

This work was done for the suspension system in four points, i.e. to be hung on all four
edges of the workspace shape parallelepiped. It is a necessary geometric condition so as
to provide camera motion through the entire space. See Fig. 1.

Camera’s carrier moves in space freely allowing the capture of objects from above. It gives
a unique feeling to the event viewer to follow smoothly from an unusual proximity, and
that is very close to the action regardless of the size of observed space. Free motion in
space opens up completely new and unique perspective. The commands for the
synchronized motion of each winch are provided, with control of motion of each motor,
which ultimately provides three-dimensional continuous camera motion.

The gyro sensor, which is installed in the carrier, is stabilized towards the horizon.

The CPR system should fly over the audience without being able to be off and fall to the
ground. The whole system is very reliable in the physical sense, because there is only
minimal possibility that the camera carrier falls to the shot ground.

This would happen only if both ropes broke at the same time. Two parallel guided ropes
through the system are inevitable for the physical functioning of the system in Fig. 1.
Winch 4 is driven by a motor that generates the angular displacement 8, for winding or
unwinding fiber-optic cable, depending on the position of the camera carrier in the space.
The purpose of the motor angular displacement @, is used to ensure that the fiber-optic

cable is never too tight or too loose and it is used to control the position of the camera
relative to the moving objects.

The CPR system has different areas of applications and promising research future. Our
goal is to implement this system with maximum precision.

The Section II represents a detailed description of the CPR-B system. The same Section
describes the mathematical model for the CPR-B. The samples of the system responses are
analyzed for different conditions in section IIl. In the section IV there are concluding
remarks.

2. Mathematical Model of the Cable-suspended Parallel Robot — CPR-B

In this paper, a new original CPR-B has been developed. Over the pulley system, ropes
are run on the winches (reel) 1, 2, 3, powered by motors.

First and second motors are used to wind up the ropes about the coils. During the rotation
one side is winding while another side is unwinding. See Fig. 2.

The third motor is used to wind up the two ropes about the coil only in one direction.
Those motion produce winding or unwinding of both ropes at the same time. This can be
seen in Figure 1. Ropes coil on winches has radius R .

Synchronous motion of the motors produces camera carrier to move in the x, y, z
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Cartesian space.

motor 1 _motor 3
winch 4 winch 1 Winch 3

el N
m

winch 2

a)

motorized motorized

pulleys motorized winch 4 0, winch-1 elwincj};

of fiber-optic kable

motorized
winch-2

o, T —
%%\L B 5/64
2% lleys
u
% b) pulley:

Figure 1. CPR-B, a) in 3D, b) top view.

The desired motion trajectory of the camera is defined in x, y, z, Cartesian coordinates,
and it is generated by motion of three motors 6, 6,, 65 . The kinematic model of the

CPR-B has been developed as essential part for solving the CPR-B dynamics. See Figure
L.

The relation between the camera motion in the Cartesian space x, y, z and angular

positions of each motor 6, 6,, 65 is solved by the Jacobi matrix J,, which connects
velocities of external coordinates changes p=[x y 21" with velocities of internal

coordinates changesg=[6, 6, 6;]”. For generation of any trajectory in x, y, z

space, it is necessary to provide very precise and mutually coordinated motion of all three
motors @, , 6,, 65.
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The geometrical relationship between the lengthsk, h, m, n, and Cartesian
coordinates x, y, z, is defined by the following equations:

k=yx?+y2+22. (1)
h=y/(d—x)2+y2+z2. 2
mz\/(d—x)2+(s—y)2+z2. 3

n=\/x2+(s—y)2+z2 . 4

For every sampling time the relations are defined:

A6,
l.R—A7k+M

= : (%)
At At At
A8
2 po Ak AR (6)
At At At
AG
s o _Am Aan A9
— - R=—+4+—+—="R
Ar At At Nt ) N
A¢93 _Am AR Aé’l
— R=—+—+—"-R
At At At At
The equation (8) is obtained by substituting (5) and (6) into the (7):
AG
Ak Ah Am A
N B S (®)
At At At At At
If the sampling time Ar is small enough it follows that:
6 -R=k+rn. ©)
6, R=k+h. (10)
Oy - R=k+h+m+n. (11)

By differentiating (1)-(4) and substituting them into the (9)-(11), the relationship

between velocities of external coordinates changes p=[x y 2]’ and velocities of

internal coordinates changes ¢= [91 92 93]T has been obtained:

d=J, p. (12)
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Tor o2 o3
To =01 Tpn Tpos |-
Tt T2 Ti3s

(13)

It is evident that Jacobi matrix J, in (13) is not diagonal but full matrix. The elements of

this matrix beyond diagonal show the strong coupling between the external and internal
coordinates.
The kinetic energy E; and potential E, energy of the camera carrier motion with mass

m are given in the following equations:

Ep=Yoom i+ Voom 3%+ Vo om- 2%, (14)
Ep=m-g-z. (15)

First the analysis was done where the ropes are rigid. In that case a system mathematical
model has the following form:

u=G, - ¢+L,-¢+S,-M,. (16)

Vector equation (16) is given by applying Lagrange’s equation on generalized
coordinates 6, , 6,, 6.

motorized 61 4"\

winch-1 ‘

motorized
winch-3

motorized
winch-2

a) b)
Figure 2. a) The ropes forces before motor 1, motor 2 and motor 3 and after motor 1 and motor 2 , b) the ropes
forces which carry a camera.

Where: 4 = [u; uy 143]T > Gv(3x3) = diag Gvi > Lv(3x3) = diag Lvi > Sv(3x3) = diag Svi >

acc:[o 0 _g]T'

M,=F,-R. (17)
-1
bzw.p (18)
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F:(FP+PPJ- (19)

F,=m-(p+ag)- 20)
-1

b:((JObR)TJ , 1)

Jop = f(0.Tp). (22)

Since the CPR-B has two parallel ropes, suspending cameras in all four directions, then
(22) has the following form:

Jop =0T, (23)

The presence of factors ¢ is a consequence of structural systems with Fig. 1.

<>=% is a factor which multiplies only the direction of two parallel ropes. In this

direction, a force in each rope is a half of the force impact F that is acting on the
camera carrier. Observed CPR-B model has two ropes from a camera carrier to all four-
point suspension (line k, h, m, n).

The relation between the resultant forces F, and total force F acting on a camera
carrier in Cartesian space is given by (18). This is a geometrical relationship, which is
uniquely defined.

In order to obtain the relationship between internal and external forces, the virtual work
principle can be applied. Equation (18) is particularly important because it participates
in the configuration of the CPR-B dynamic model.

Vector resultant force acting on the shaft of each motor is F, =[F, F, F;]’.
Substituting (17)-(23) into the (16) produce a dynamic model of CPR-B which is
expressed in (24):

u=G, ¢+L,-¢+S, R-Cp,-F. (24)

Matrix C;, describes a strong coupling between the presented motors.

Control law is selected by the local feedback loop for position and velocity of the motor
shaft in the following form:

o A0 A
uj = Ky (87 =6)+ Ky (87 -6). (25)

3. Simulation Examples

The example CPR-B from Fig. 1 is analyzed. In order to make results comparable, they
are made for the same desired trajectory and the same all other system parameters, as
defined in the Nomenclature.
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Camera carrier has the starting point p° =[04 0.1 —0.2][m], and the end point
start

p’ =[2.6 1.7 —0.2][m]. See Fig. 3a).

end
os
g s oo -
& ; Bo
- y £
£ w T o9
Z s . -k
g Y 25
S G S ea
S8
> o5 [SIR5}
% Z g
0 z° e S o
2%g s 5 s LI ) T 5 s 5 9
time (s) time (s)
a)
- " . .o
Figure 3. Reference frame a) position x”, y”, z°. b) velocity of camera carrier p =0417(m/s).

max

The level of control signals is given in Fig. 4f) and does not exceed the limits of
+24[V]. In Fig. 4c) there are three resultant forces that are not exceeding 34[N].

Xxo
yo

/
z z°

O]

B R

n (m)
2

=8
NS

X, Y, Z positiol

rotation angle of the
motor shaft (rad)
S
resultant force (N)

time s) c
a) b) <)

control signal (V)

deviation in 6
direction (rad)

deviationinx, y, z
«direction (m)

time (s) time (s) time (s)
d) e) f) F
Figure 4. a) Reference frame and real coordinate x, y , z of camera carrier, b) reference and real coordinate 0,

0,, 6, of motor shaft, c) reference frame and real resultant forces F, d) deviation real from the reference frame
values of a motion trajectory of camera carrier, ) deviation real from the reference frame values of a motion

trajectory of motor shaft, f) reference frame and real control signal u;, (for CPR-B, Example 1).

The camera moves in x and y directions, whiles the coordinate z is constant. Camera

motion velocity has a trapezoid form and pr‘;ax =0.417[m/s], as shown in Fig. 3b).

The motors are of Heinzman SL100F type and gears are HFUC14-50-2A-GR+belt.
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Example 1: The mathematical model of the system, at the reference frame, is defined by
(12)-(24). The radius of motorized pulley is R; = R, = R; =0.15(m), in this Example.
All three motor’s angular positions 6, 6, , and 6'3 are involved in the coordinated task

generation. This is clearly shown in Fig. 4b), and it is a proof that all these motions are
mutually coupled. There is a good tracking of a desired trajectory at the level of motor

motions (in the order of about 1073 [rad], see Fig. 4e)) and at the level of motion of the

camera carrier (on the order of about 10~ 3[m] , see Fig. 4a) and Fig. 4d)).

Example 2: All system and control parameters are the same as in the Example 1. This
example is done with one illogical assumption, which is the case when the system user
assumes that the system at the reference level is uncoupled. In that case the Jacobi
matrix has the diagonal form:

p=Jye P (26)
J 0 0
b1l . 27
Ie=| 0 J,, 0 27
00 .,
u:Gv‘é+Lv'¢£+Sv'Mb®' (28)
Myp =Fye-R. (29)

The resultant force is defined as:

(b, @)TJ_I . (30)

Fpe = R
-1
Voot
0b®
Cb@Z(R]' 3D
J()b@:O'Jb@- (32)
u=G, - @+L,-9+S, -R-Cpg -F. (33)

Directly follows that the matrix C,q is diagonal like matrix J,g .

Unlike the previous example, the mathematical model of the system at the reference
level in this example is defined by (26), (27), (14), (15), (28)-(30), (19), (20), (31)-(33).
At the real level the system is coupled and its kinematic and dynamic model is defined by
(12)-(24).

Fig. 5a) shows the results of the camera carrier motion in all three directions of the

Cartesian coordinate frame x, y, z and the reference frame x?, y°, z°.
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Trajectory of motor angular positions at the real frame 6,, 6,, 6; and reference 01" s

6’20 , 6'30 frame is given in Fig. 5b).

)
D

0
/
o 6

7 8 e

resultant force (N)

motor shaft (rad)

X, y, z position (m)
- \
rotation angle of the

PR s .
time (s) time (s)

a) b)
o 10°
~
~N o o >
X-X 0563 ~
Y N ) 3-03
ES \\ s =
. 02 \ D T =
» = o 5
z ’é\oa . R 0,65 20
S N\ EEE 3
S Sos \ S-S 5.
- 0 —
S O N yd SRS RE S |,
Z B/ N0 /S 354 ©
= 270/
© Ty \_/ 1 o
O e e s R e Tt s s e 7 e s
time (s) time (s) time (s)
d) e) f)

Figure 5. a) Reference frame and real coordinate x, y, z of camera carrier, b) reference and real coordinate 0,

0,, 6, of motor shaft, c) reference frame and real resultant forces F, d) deviation real from the reference frame
values of a motion trajectory of camera carrier, ) deviation real from the reference frame values of a motion

trajectory of motor shaft, f) reference frame and real control signal u;, (for CPR-B, Example 2).

Since the positional control law is applied (with local feedback on the position and
velocity) for each motor angular position, defined in equation (25), the control of motor
motion is ideal, see Fig. 5b) and Fig. 5e). However, the coupling characteristics are not
taken into the consideration at the reference frame, and because of that there is no good
enough tracking of a real trajectory comparing to the reference signal in the Cartesian

space, see Fig. 5a) and Fig. 5d). The unknown coupling characteristics significantly affect
the accuracy of the trajectory tracking, which value reaches (z — z")min =-0.85(m) .
This will happen in the period of 5.3[s]. The value of control signals is given in Fig. 5f).
In Fig. 5c¢) there are three resultant forces, until to32[N1].

Example 3: The importance of this example is that the radius of motorized pulley is
R, =R, = Ry =0.08(m).
All other system parameters are the same comparing to the one in Example 1. The

system mathematical model at the reference frame is defined by equations (12)-(24). It
can be seen in Fig. 6d) and Fig. 6e) that the desired trajectory at the camera motion frame
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and at the motor motion frame is worse than in Example 1. This is because the selected
radiuses of motorized pulleys are smaller.
The first motor achieves the saturation point at ¢ =4.7[s] referred to the real and

reference frames. At the reference frame the signal goes out of saturation at 6.8[s], while
at the real frame it goes out of saturation at ¢t =7.45[s], see Figure 6f). The second and
third motors do not enter saturation at all.

This causes a significant deviation of the real position of first motor comparing to the
=-0.137[rad] , see Fig. 6b) and Fig.

6e). This is all reflected in a bad position tracking of the camera carrier in the Cartesian

reference frame, which reaches value (6, - 6’10 ) min

coordinates ((z—z");, =-0.063[m],(x—x") . =-0.068m]), see Fig. 6d). The
resultant forces in Fig. 6¢) are up to35[N].

Reducing the radius of all three motorized pulleys significantly affects the dynamics of
the motor i.e. it increases their speed.

This analysis shows that the motion dynamics of individual motors depends significantly
on the choice of CPR-B construction type and its parameters.

This example confirms the property of the coupling between the motor motion and camera
motion, as well.
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Figure 6. a) Reference frame and real coordinate x, y, z of camera carrier, b) reference and real coordinate 0,

0,, 6, of motor shaft, c) reference frame and real resultant forces F, d) deviation real from the reference frame
values of a motion trajectory of camera carrier, e) deviation real from the reference frame values of a motion

trajectory of motor shaft, f) reference frame and real control signal u;, (for CPR-B, Example 3).
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Figure 7. Organized work space with CPR system.

The CPR-B is modeled and analyzed by software package AIRCAMB.

The CPR device is developed in the Mihajlo Pupin Institute and is used to observe space.
It is a part of more complex system presented in [13], see Fig. 7. The CPR observes the
area in which the humanoid robot and robotic vehicle.

4. Conclusion

The unique general type of the CPR-B mathematical model is defined.

It is clear that the system has double led ropes that move the camera carrier through the
3D space. Another import specification of the system is reflected in the work done by the
first and the second motor within construction. Each motor unwinds the rope on one
side, and winds it on the other side, while the third motor unwinds or winds two ropes at
the time only from one side. These properties have an important influence on the
complexity of both kinematics and dynamics of the CPR-B model. Kinematic model is
generated for the system via Jacobi matrix. The presented CPR-B model is functionality
generated by formulating and applying its highly authentic kinematic and dynamic model
during synthesis and analysis which will enable further development and
implementation of the current control laws. Software packages AIRCAMB is developed
and used for individual and comparative analysis of the CPR-B from various aspects.
The influence of changing any parameters of the system (workspace dimensions, the
mass of a camera carrier, change the size and dynamics of power disturbances, the
choice of control law, the reference trajectory, and the presence of singularity avoidance
system and a number of other characteristics) can be analyzed through this software
package.

The selection of the motor components is extremely important for the CPR-B
performance. The simulation results show the importance of the motor parameters
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selection, especially for the cases when some system properties are unknown. Motor type
can significantly affect the response of the system or accuracy of the desired trajectory
tracking.

The general mathematical model of the CPR-B presented in this paper has been
evaluated using several numerical examples. The model can be used for different
applications, especially for following moving objects using integrated intelligence.
Future research intend at implementing the elastic ropes (type of nonlinear dynamic
elasticity as defined in [14]-[31] in the mathematical model of the CPR-B. In this
research several different models were developed and new models will be developing for
different applications. All these models will be unified according to their similarities
into one reconfigurable model, using the approached presented in [32] and [33].
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ABSTRACT Vector expressions for linear momentum and angular
momentum and their corresponding derivatives with respect to time
describe rigid body nonlinear dynamics with coupled rotations around
axes without intersection. Vector method based on mass moment
vectors coupled for pole and oriented axes was defined by K. Hedrih in
1991. and it is applied for analysis of a heavy gyrorotor nonlinear
dynamics. Series of graphical presentations and their parametric
transformations in relation with changing orthogonal distance between
axes of coupled rotations is presented.

1.Introduction

Tern or a toy top is just a simple well-known toy with unusual property that when it
rotates by high angular velocity about its axis of symmetry, it keeps in the state of
stationary rotation around this axis. This feature has attracted scientists around the
world and as a result of year’s research many devices and instruments are created; from
simple to very complex structures, which operate on the principle of a spinning top that
plays an important role in stabilizing the movement. Ability gyroscope that keeps the
line was used in many fields of mechanical engineering, mining, aviation, navigation,
military industry, and in celestial mechanics because heavy bodies in motion, rotors of
turbines, different mobile installations on ships, artillery projectiles in motion, aircraft
propeller rotating possesses special properties known as properties of gyroscopes.

Each mechanical gyroscope is based on coupled rotations around more axes with one
point intersection. Most of the old equipment was based on rotation of complex and
coupled component rotations which resulting in rotation about fixed point gyroscopes.
The classical books contain a classical and very important elementary dynamical model
of the simple case of the gyrorotor, and present an analogous and useful dynamical and
mathematical model of nonlinear dynamics. This work is different in that the equations
of motion are derived using vector method proposed by K. Hedrih [1], and propose
stability analysis for the system based on the derived model. The vector approach is very
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suitable to obtain new view to the properties of dynamics of pure classical task,
investigated by numerous generations of the researchers and serious scientists around
the world.

2. Equations of rigid body dynamics

Mass moment vectors for axis and pole was introduced and defined by Hedrih
(Stevanovic) K., and presented in the monograph [1] as well as in the series of papers
[2-4] listed here.

Here is considered a heavy rigid body which rotates around two coupled axes without

intersection and with orthogonal distance defined by vector iy = 0,0, . The body is

eccentrically and inclined positioned on the self-rotation axis (Figure 1). Two angular
velocities around two axes oriented by unit vectors 7z; and 7, are denoted as @, = @i, and

@, = w1, . By using basic definitions for linear momentum and angular momentum as

well as expression for velocity of elementary body mass particle
rotation v = @, 7, |+ [@ +@,. 5], the following vector expressions are presented: a’ for

. -
linear momentum and b for angular momentum.

a KZ[@’70W+5)1§£?')+E)2§£?') W
Ly = oy M + @)\ pe. i 7 M + |7, S |+
b @)

roln S0l @l v 0,7
2 1 2
WhereS 0' .”J[nl Pldm andS jjj[nz pldm, dm=odV are corresponding body

mass linear moments of the rigid body for the axes oriented by direction of component
angular velocities of coupled rotations through the movable pole O, on self rotating

axis, J %02) = Ijj[ﬁ, [,.plim and J ézoZ) = ”I[[), [ii,, 5]m are corresponding body

mass angular moments of the rigid body for the axes oriented by direction of component
angular velocities of coupled rotations through the movable pole O, on self rotating axis.

Using first derivatives of linear momentum and angular momentum two vector
equations of rigid body coupled rotation around axes without intersection are obtained.

dK
B ol i W+ @l i M + 080+ ot S0 1 G
080+ il 80 200,80
dL - =
d:l :@zron+w1wz{[ﬁ1afgl)]+[ﬁzafélol)]"'S(Ol)[ﬁzaﬁl]}"‘
4

+ o [n,,J(O‘)]+a)§[ﬁz,J( )]+a)J +@,J
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These vector expressions can be used in general case when considered system has two
degree of freedom. Differential equation of self rotation and equation of phase
expressions for kinetic pressures to bearings of self-rotation shaft with corresponding
components as well as for corresponding vector rotators can be obtained [5-7].

The dynamical equations for motion on a straight inclined rotor can be easily obtained
from the theorem of angular momentum derivative which in this case is in a form[5]:

= Mo (F)-l@y.7 )@ + @y, 5 IM 5)

dL,,

This leads to the two vector equations of rigid body coupled rotation around axes without
intersection which can be used in general case when considered system has two degree
of freedom[7]. In case when the second angle ¢,is a rheonomic coordinate which is

defined by a time function ¢, = @,t + ¢,,, we have one vector equation and it is in a

form:
@, +Q*(A—cos @ )sing, + Q2w cosp, =0
(6)
Here, in differential equation there are some constants which are in following form:
Q% = esin® f-1 ! 6=1+(k)L, . gle—1)sin B = 2easin
gsin? f+1 r ea)zziesinz/i’—li er‘é‘sinzﬂ—l) 0

Transforming previous nonlinear differential equation into system of two first order
nonlinear differential equations it is possible to obtain stationary values which
correspond to the relative equilibrium positions of the rotor on the self rotating axis. For
each of relative equilibrium position Lyapunov criteria of stability can be applied and
then it can be concluded about center or saddle points.

Relative nonlinear dynamics of heavy gyrorotor disc around self rotation shaft axis is
possible to present by means of phase portrait method. Forms and transformations of
phase trajectories by changing of initial conditions and for different cases of rotor
eccentricity (¢), angle of inclination (£) or orthogonal distance between axes (a) express
nonlinear phenomena.

The solution-first integral of differential equation (6) with the initial conditions #, =0,

o,(ty) =@ #(ty)= @10 . is obtained in the following form:

o=@} + ZQZLﬂcos(pl —%cos2 o+ l,//sin(pIJ— ZQZLﬂcos(pm —%cos2 @p +Ysin (pmJ )

The energy integral because the conservative system is analyzed is in a similar form.

EP = Qz(é‘,ﬁiﬂ(é‘,ﬁ)(cos ¢ —cos ¢10)+ %(0032 Po — cos® ? )+ l//(é‘,ﬂ,a)(sin @ —sin@y, )J )

Some curves of potential energies are shown on Figure 2 where one can see extreme
values that correspond to stable or nonstable relative equilibrium positions.
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3. Phase portrait of the gyrorotor

Using obtained vector expressions by applying software tool, series of graphical
presentations depending on the orthogonal distance between two axes of coupled disk
rotations are obtained.

Characteristic potential energy curves, and corresponding homoclinic separatrix phase
trajectories for different parameters values of the basic system correspond to the dynamic
model illustrate the trigger of the coupled singularities and coupled triggers of the
coupled singularities and homoclinic trajectories in the form of the number eight and
also in the form of the duplicate number eight.
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Figure 1- Model of gyrorotor who rotates around Figure 2 - Potential energy

two no intersecting axes

Phase trajectories for different values of parameters of system and for different initial
conditions are shown on Figure 4.There are many types of trajectories which are relared
to oscilatory or progresive motion. One-sided separatrix, which are “prolating”, and
open phase trajectories, which are comprising enclosed phase trajectories which are
matching to the periodical oscillator motion-rotations system around stability
configurations of equilibrium positions for specific initial conditions when initial
angular velocity are small and small angles elongation of rotations, and when that
condition are satisfying for any time are illustrated on Figure 3.

In Figure 4. on phase portrait we notice augmentation of singular points, and it can be
deduced by researching that for some kinetic parameters of system one stable
equilibrium position loses stability and that positions now on phase portrait response to
homoclinic point by type unstable saddle, but in symmetrical neighborhood appear two
near-by stable equilibrium positions (configuration of masses), which on phase portrait
response two singular points by center type. All of three points are coupled in one
“trigger” (trigger of coupled singularities). Two stable singular points by type centers
enclose one, and the new, closed homoclinic orbit which goes around three singularities,
and passing trough one homoclinic point by type saddle in which it self-cross, that it is
shaped like form of the number eight or in the form of duplicate of number eight or
multiplication. Inside that new separatrix trajectory homoclinical orbit a series of
common closed phase trajectories which los instability relative equilibrium positions or
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relative rest positions, which correspond to periodic oscillatory motion for certain initial
conditions, apropos oscillations around new stable position of equilibrium can be
noticed.

Figure 3 - Parametric transformation of phase trajectory for different values of orthogonal
distance between axes

o(g)

Figure 4 - Transformation of a closed phase trajectory of the heavy gyro-rotor-disk dy
rotations inside a trigger of coupled singularities
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4. Concluding remarks

By use derived vector expressions as well as graphical presentations of the system
nonlinear dynamics, we can

conclude that body mass inertia moment vectors and vector rotators are very suitable for
obtaining linear momentum and angular momentum and their derivatives of the system
with coupled numerous rotations around axes without intersections, as well as for vector
method analysis of system vector parameter dynamics. Analysis of rotation of a heavy
gyro-rotor show us that in graphical presentations of the system kinetic parameters exits
a set of the fixed points not depending of change of rigid body eccentricity or angle of
inclination or of the orthogonal distance between axes of rigid body coupled rotations.
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Abstract.The paper contains analytical descriptions of heavy material particle which moves
on a rotating circular smooth line, radius R, which rotate around vertical axis, eccentrically
positioned in relation to center of circle line on distance e, angular velocity €, (see Figure 1).
By using software GeoGebra three-parametric testing of singularity and position of non-
linear dynamics relative balance of heavy material particle on eccentrically rotating smooth
circle line is examined.

1. Introduction

Dynamics of heavy material particle is a very old engineering problem with many
different research results and discoveries of new nonlinear phenomena (see Refs. [1-3]).
Many researchers pay attention and interest for research the nonlinear dynamics by
using new analytical, numerical and experimental methods to discover the properties of
nonlinear dynamics (see Refs. [4-10]).

2. Motion of the heavy material particle along circles

In Figure 1, for generalized coordinate we will take the angle ¢, by which we mark
relative position of material particle on circle line. The system has one degree of moving
freedom, and two degrees of moving freedom because one reonomic relation is imposed-
rotating by constant angular velocity.
Velocity of heavy material particle has two components:

1. component of relative rotation for circle line:

v, = Ro (1)
2. component due to transmitting moving by rotation of circle line:
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v, =(e+ Rsin 9)Q 2)

Figure 1. Moving of heavy material particle on circle
line, radius R, which rotates around vertical axis,
eccentrically positioned in relation to center of circle
line on distance e, by angular velocity Q.

The components are normal in relation to each other, so the square of angular velocity of
material particle is presented in following form:

vi=vl, +v) =(RP)® +(e+ Rsin )’ Q° 3)
Expression of kinetic energy of the system is in the form:

E, =%mv2 :%m((R(p)z +(e+Rsin@)’Q?) @)
Potential energy of the system equals operation of weight force by improving height
h=R(I-cosp) and with changed mark.

E, = mgh=mgrR(1—cos @) 5)
On the basis of Lagrange's equations: 4 dE, _OE, + JE, _

dt d¢ Jdp Jd@

Differential equation of heavy material particle moving illustrated in figure is:

(p+Qz(szz —cos(pjsin(p—Qz%cos(pzo (6)

If we introduce following symbols k:% and S:E:\V, previous differential
R R

equation is in the following form:
¢+ Q*(A—cos@)sin— Q> ycos =0 @)
Using the previous ordinary nonlinear differential equations of second order, form non-
linear system of differential equations of first order in the following form:
e _
ar " (8)
du 2 . 2
o —Q* (A —cos@)sin @+ Q*ycos @
For angular velocity we introduce symbol u. We are interested in the values of the

parameters Aand W leads to changes in dynamic systems. The paper deals with the
specific parameter values Aand wyfor which there is a substantial change in the
dynamical system.



Three parametric testing of singularity and position of non-linear dynamic relative balance...........
3. Nonlinear differential equation

The initial problem that we had, describing of the dynamics movement of heavy material
particle which moves as already described, reduced to solving nonlinear differential
equation:

¢+Q2(h—cos @)sin ¢—Q2ycos ¢ =0 - )
Introducing a shift @ = u, u = u(¢) we lower row of differential equation for one, i.e.
we come to the equation:

uti + Q% (A —cos ¢)sin @+ Q> ycos ¢ = 0. (10)

From there we get 4 = i\/Q *(2hcos @ +sin @ — 2y sin @) + ¢.From here we get
connection between angle ¢ by which we denoted position of material particle on circle
line and time ¢, i.e. we come to a general solution of starting differential equations.

t=%] a9 +e,, Q#0. (11
\/Qz(Zcos @ +sin>@—2ysin ¢ +c,)

Of course, in our particular case we start from assumption that there is determined
angular velocity Q, and we will not consider case when Q=0.

4. Three-parametric testing of singularity

To determine the stationary points of differential equations system (8), which correspond
to positions of relative heavy material point equilibrium on eccentrically-rotating smooth
circle line, it’s necessary to find position where relative angular velocity and relative
angular acceleration of material points on the circle line equal zero. From there follows
that it is necessary that the functions, i.e. expressions on the right side of the differential
equations system (8) equals zero.
In order to determine the stationary points of differential equations system (8), we
introduce next conditions:

u=0 (12)

— Q*(\sin @—sin Qcos@+ycosp)=0
In order to determine the stationary points, it is necessary to solve next nonlinear
equation:

Asin @—sin @cos @+ycos@=0 (13)
However, a set of roots which we seek from the previous equation (13), having
considered the fact that it depends on three parameters of systems, radius circle line R,
eccentricity e, center’s C circular lines in relation to the axis of rotations, as angular
velocity Q rotation around the circle line, we can express by using two coefficients

a=-—8 and ¢- ¢ _ y contained in previous equation.
RQ? R

This means that it is necessary to examine the influence of these two coefficients on the
set of roots of nonlinear transcendental equation.
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If sing=0 i.e. ¢ = kx, k e Zthen for y=0 points (0, kx) ,k € Z are stationary points of
system of differential equations. Assuming that sin @ # 0 ,and if we divide equations (13)
with sin ¢ then follows:

A =cosQ—Vyctg® 14)
Coefficient A =2(p,y) we will observe as a function of two variables: coordinates ¢ and
relative eccentricity e=e/R=y  of the axis rotation from center around circle line.
Depending on the properties and values of coefficient k((p,\u) in the function of the

coordinates ¢ and relative eccentricity e=e/R=y of the axis rotation from center around
circle line, we come to following conclusions.

5. Mathematical conclusion

First, it is necessary to explain what we mean when we say ,,Mathematical conclusion”.
Mathematical conclusion implies determining the stationary points of system differential
equations, but when parameters A, Q and y can be of arbitrary values from the set of real
numbers, i.e. when these values we do not observe as the physical size, but rather as
mathematical constants.

For each fixed A and Q#0 we can find stationary points of the system. We will differ
cases:

1. For y <-1 or y >1 there will always be two stationary points on interval [o, 27). It

can be seen in Figures 6 and 7.

2. For fixed y e [-1,1] let’s consider A as a function of ¢ i.e. A= M@). If A <A, or
A>A s
Figures 2 and 4). If A=A, or A=A, .,
points on interval [0, 27 ) (See figure 8). If A, <A <A
have four stationary points on interval [0, 2z ) (See Figures 3 and 5).

system dynamics will have two stationary points on interval [0, 27 ) (see
system dynamics will have three stationary

system dynamics will

max

3. Forg = arcsin 3fy » A will reach extreme values .If we mark with ¢* = arcsin 3/ .

Then it is 3 =cos ¢ -y crg ¢ .Of course for fixed values of the parameters A,

ekstremo
Q and vy, i.e. on the concrete example, stationary points can be determined
completely.

6. Conclusion about system dynamics properties

In our particular case, we consider the problem when Q#0 and 2>0. Then we can get a
little closer information about the stationary points. We will differ cases:

1. For y <-1 or y >1 there will always be two stationary points in interval [o, 2z). If

<-1 then the first will be in interval (QE), and second will be in interval (m Ej
2 2
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If w >1 then the first will be in interval (E nj, and second will be in interval (@ an
2’ 277

2. For fixed ye [-1,1] and if X<ﬂminor A>A

max » System dynamics will have two

stationary points on interval [o,2x) For fixed ye[-1,0] then the first will be in

interval [Q “j, and second will be in interval [m 3"), and for fixed e (01] then the
2

first will be in interval (E’nj, and second will be in interval (37”,2,1} For fixed
2 2

wel|-1,1]andif A=A or A=A, system dynamics will have three stationary

points in interval [o, 2xn). For fixed ye[-1,0] in the interval (ﬁ' ﬂ.] will not be
>

L

2

system dynamics will have four

stationary points, and for fixed ye (0,1] in the interval ( ] will not be stationary

points. For fixed e [-1,1] andA, <A <A

max *

stationary points on interval [o, 2x). For fixed y e [-1,0] in the interval gnj will

not be stationary points, and for fixed ye (0] in the interval (ml’t] will not be

2
stationary points.

This can be seen in Figures 2, 3, 4, 5, 6, 7 and 8.

7. Linearize of system and behavior of solutions in singular points environment

We are interested in behavior of solutions in singular points environment. Therefore we
exert linearization of the starting system (8). Linearized system is:

e _,
dt
du

o —Q?*(hcos @, —cos> @, +sin’> @, —ysin ¢ )@ (15)
t

Where we marked ((pj ,0) stationary points.

If we marked:
R:—Qz(?\.cos(pA —cos’ @, +sin’ @, —\Vsin(pl). (16)

We will differ cases for:
1. If R>O0, then the equation will have real roots, and in such a way that the first

is lower than zero, and second higher than zero, than in this case, stationary
points will be saddles.
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2. If R<O, than the equation will have complexity-conjugated roots, and in such a
way that their real parts equal zero, then in this case, stationary points will be
centers.

We are interested in a change of dynamic system due to the value of parameter ¥. For
that reason we will observe next equation.

Acos@, —cos” @, +sin” @, —ysin @, =0. an

For @ matter A=cos® —yctgp, for @ #km ke Z. When we convert this in the
previous equation (17), we obtain: —W+sin® @, =0. This equation will have solutions
for ye [— 1, 1]. For A=cos®, —yctgp, and W >sin’ @, system dynamics will have a
different structure, then when is y<sin® @, . If we marked v, =sin’ @,, we can see

that for each fixed A, we can determine VW, , such that for W <y, system dynamics has

one structure, and for y >, other structure.
We distinguish cases:

1. If y>1 (then —y+sin’ ¢, <0)
For ¢, € (0,m)) R>0, so in this case stationary point will be a saddle. For
(OIS (m,2m) R <0, so in this case stationary point will be a center. (See Figure 7)

2. If y<—1 (then —y+sin’ @, >0)
For ¢, € (0,m) R<0, so in this case stationary point will be a center. For

¢, € (m,2m) R >0, so in this case stationary point will be a saddle. (See figure 6)

3. 1f welo,1]
For ¢_€e [O, ), if is such that —y +sin® ¢, <0, then R >0, so stationary points are

saddles, while if y is such that —\V+sin3 ¢, >0, then R<0, so stationary points are

centers. For ¢, e [7:, 27) then R <0 so stationary points are centers. (See Figures 3 and
2)

4. If ye (0,1]
For ¢_e [0, 7) then R < 0, so stationary points are centers. For (S [n, 2m) if  is such
that —1|J+sin3 ¢, <0, then R>0, so stationary points are saddles, while if y is such

that —y+sin® @, >0, then R <0, so stationary points are centers (See Figures 5 and
4).
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8. Figures

Figure 3. Portrait phase of dynamic system for,
y=008, Q =1 and A=071

NI

Vi NV

Figure 2. Portrait phase of dynamic system for
y=0.61, & =1 and A=071

Figure 5. Portrait phase of dynamic system for

w=-008 Q =1and 1=0.71

} 001

Figure 6. Portrait phase of dynamic system for
y=-3,Q =1and 1=0.71

Figure 4. Portrait phase of dynamic system for
y=-096Q =1and 1=0.71

Figure 7. Portrait phase of dynamic system for

v=3,Q =1and =071
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Figure 8. Portrait phase of dynamic system for

¥ =035.Q =1and 1=035
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Abstract. In this paper a method to find optimal places of piezoelectric actuators and
sensors on different structures is presented. The genetic algorithm and multi-objective genetic
algorithm are selected for optimization and H. norm is defined as a cost function for the
optimization process. To optimize the placement concerning the selected modes
simultaneously, the multi-objective genetic algorithm is used. The optimization is
investigated for two different structures: a cantilever beam and a simply supported plate. The
vibrating structure is controlled in a closed loop with feedback gains obtained from optimal
control. Finally, output of a structure with optimized placement is compared with output of
the structure with not optimized placement of piezoelectric patches.

1. Introduction

In recent years, focus of many researchers in the field of vibration control has been
concentrated on implementation of active piezoelectric materials due to their numerous
advantages. For instance, they response very fast to changes of circumstances and they
flexibly can be used as a sensor or an actuator. They are also lightweight materials and
can be embedded on different structures.

The problem arises here to find the best location of the piezoelectric patches on
structures to control the structure in an optimal way. Many researches have been done
on this problem and lots of solutions have been recommended. Nevertheless all of them
have some advantages and also disadvantages. The placement problem grows when not
only optimization of one mode, but also some modes simultaneously are demanded.

Arbel [1], Hac [2], and Devasia [3] have used the grammian matrix as criterion for
optimization propose to maximize the controllability and observability of the structure.
For optimization process usually classical algorithms such as conjugate gradient and
Newton-Raphson are used but they crash down when there is more than on local optima.
To overcome this problem genetic algorithm (GA) has been proposed in several papers.

In this paper, the H, norm is selected as a criterion or fitness function for
optimization process within GA. The advantage of the GA over some other placement
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methods can be seen in the fact, that many objectives can be optimized simultaneously
(in our case norms of different modes) and it results in optimal locations of piezoelectric
patches, whereby unlike with some other methods, there is no need to specify in advance
limited number of predefined places.

2. Genetic algorithm

For very complicated cases, which cannot be optimized with other numeric optimization
strategies, the evolution strategies are good choice of design optimization. The evolution
strategies are slow and they have convergence problems. But they are well suited for
complex situations: multi-modal problems that don't have only one single local
optimum, problems where the objective function or the constraints or parts of constraints
are not differentiable, problems with discontinuous solution spaces with local optima,
etc. This strategy is a member of the down-hill-climbing methods since we are
considering minimization as a goal of an optimization process.

The genetic algorithm is one method of the evolution strategies, which was
introduced by John Holland and Kenneth around 1975. This method was introduced
from natural science to mathematics and therefore lots of biological names are used in it.
The GA has to code the phenotype information into bits using mostly the floating point
representation known from computer science [4].

One genetic algorithm consists of three parts:

1. Chromosomes (Individuals) are selected from the solution space. They can be
optima or non-optima but generally they are result of a problem. In GA the
chromosomes are built of genes, which encode the independent variables. These
codes can be Boolean, integers, floating point, string variables or any
combination of them. Traditionally, genes or codes are binary numbers as
strings of Os and 1s. One set of different chromosomes forms a generation.

2. Cost or Fitness function is a criterion to evaluate each of chromosomes.

3. Operators are used to create new chromosomes from old ones.

The goal of GA is to minimize fitness function. The sequences of this optimization

are listed in the following steps.

2.1. Initialization of population
In this step as a first guess to find the best result, an amount of chromosomes is
randomly created. The number of these chromosomes P, depends on the number of
variables of the problem. Usually two methods for P are suggested (n is the number of
variables):

Pon+l (1)

P =10n 2
2.2. Evaluation of chromosomes
In this step, each of chromosomes are evaluated according to the value of their fitness
function, i.e. the chromosome X which has lower F(X) will have higher value and more
chance to be chosen and to generate a new population.
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2.3. Selection

Some of good chromosomes are selected in this step using usual selection procedures:
e  Roulette Wheel
e Tournament selection
e Ranked-based selection

2.4. GA’s Operators
With use of GA’s operators, new individuals will be created. The GA’s operators are:
Mutation and Crossover.

2.4.1. Mutation

This is a random process where one allele of a gene is replaced by another to produce a
new chromosome. This operator is mostly used to avoid the local optima but it can cause
convergence problem and reduce the speed of convergence. Mutation is randomly
applied with low probability in range of 0.001 and 0.01 [5].

Point Mutation: 1101001000 ———» 11101011000

Figure 1. Sample of mutation in binary representation

2.4.2. Crossover

This operator uses an exploitation method to create new individuals, where with
combining of two chromosomes of current population it creates new chromosomes. This
combination is done by replacement of genes of parent chromosomes (Fig.2). This
operator is important to reach the optimum point more quickly, therefore it executed
with high probability in range of 0.5 to 0.9 [6].

Ome-podnt Crossaver

I e B SEEEEE

NN [T T
Two=-poin crossonver

1 o ) | HEEE

[(TIITITI1] (T T T
Unislioem erossover

HEEEEEEE T

Figure 2. Three kinds of crossover operator

2.5. Termination factor

Two methods for termination of optimization iteration are introduced [5]:
e  After reaching the specified number of generations.
¢  When not a big improvement for last N generations is observed.
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An overview of a genetic algorithm is represented by the flowchart in Fig.3.

generate initial
population

!

Cabeulate the fitness
Tamcibom

L

nexl generalio

s -~

Chperators

Figure 3. General scheme of a genetic algorithm or any evolutionary algorithms.

3. Multi-objective genetic algorithm

In many complex engineering problems simultaneous optimization of some objective
functions is required, while optimizing one objective can cause an unaccepted result
from other objectives. Traditionally GA was defined to solve one objective problem but
lots of methods are developed to increase its capability. Generally there are two
approaches for multi-objective optimization: Weighted sum method and Pareto optimal.
In this paper, the Pareto optimal is used.

3.1. Pareto based approach
In many real-life problems, objectives are in conflict with each other. Hence,
optimization with respect to one objective can cause unacceptable result for other
objectives but a perfect multi-objective solution that simultaneously optimizes all
objective functions is almost impossible. A reasonable solution to a multi-objective
problem is to find a set of solutions, where each of them satisfies the objectives at an
acceptable level without being dominated by any other solution.

To define a Pareto optimal, domination should be defined at first. A vector v
dominates vector u if:

Vie (L2,...k}: £.(V) < f.(u); 3)
3j € (L 2k} 1 f,(V) < f, (W)
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A vector x€ S (S: Solution space) is a Pareto optimal solution, if and only if there
would be no vector like y€ S , where f (y) = ( fi(y),..., fi(y)) dominates f (x) =( fi(x),...,
fux)) [7].

Finding the non-dominated set of solutions from a given set of solutions is similar in
principle to finding the minimum of a set of a real numbers. Two approaches are
presented in following for finding the non-dominated set from a given population.

3.2. Naive and slow approach
In this approach, each of solutions in population is compared with each other to see
which one is dominated and which one not. If the solution i is found to be dominated by
another solution, it means that there exists at least one solution which is better than i. A
step-by-step
procedure of finding non-dominated set is given in the following [8]:
1. Set the solution counter i=1 and create an empty non-dominated set P".
2. For a solution j € P (but j < i), check if solution j dominated solution i. if yes
go to 4.
3. If more solution are left in P, increment j by one and go to 2; otherwise, set
P=PU {i}.
4. Increment i by one. If i £ N, go to step 2; otherwise stop and declare P~ as the
non-dominated set.

3.3. Non-dominated Sorting of a Population
There exists some algorithm to classify the entire population into various non-dominated
levels. The best non-dominated solutions are called non-dominated solutions of level 1.
Once the best non-dominated set is identified, they are temporarily neglected from the
population. The non-dominated solutions of the remaining population are then found
and are called non-dominated solutions of level 2 and then it is neglected. This
procedure
is continued until all population individuals are classified into non-dominated levels.
The steps of procedure are represented in the following [9]:
1. Set all non-dominated sets P;, (j = 1, 2,...) as empty sets. Set non-domination
level counter j=1.
2. Use non-domination approach like naive and slow to find the non-dominated
set P of the population P.
3. Update P;=P“and P = P/P".
4. If P# P, increment j by one and go to 2. Otherwise, stop and declare all non-
dominated sets P;, fori =1, 2,..., j.

4. Controllability and observability

Controllability and observability are structural properties that carry useful information
for testing and control.

Definition 1: System states given by state equation are controllable if it is possible by
admissible inputs to steer the states from any initial value to any final value within some
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time window. Observability is a measure for how well internal states of a system can be
inferred by knowledge of its external outputs [10].

Definition 2: A structure is controllable if the installed actuators excite all its
structural modes. It is observable if the installed sensors detect the motions of all the
modes [11].

4.1. Continuous-time systems
A linear time invariant system (A, B, C) with s inputs is completely controllable when
the controllability matrix

S.=[B AB A’B .- A"'B] @)

has rank N (N is number of states). And the system is completely observable if the
observability matrix has rank N [10].
C
CA
S, =| CA’ ()

The above criterion is simple but it has two disadvantages that first they answer the
controllability and observability question in yes or no terms and second they are not
useful for a system of big dimensions, since it causes numeric problems and enlarge the
calculation time. Grammians are the alternative approach for determining the system
properties. Grammians are nonnegative matrices which can express the controllability
and observability in qualitative form and they are free of the numerical difficulties. The
controllability and observability grammians are:

W, (t):jeAfB BTe* “dr ©)

0

W, (=[eCCTe dt 7
0

For a stable system, the grammians can be obtained by (9) which is called Lyapunov

equations:
AW_+W A" +BB"=0
A"W +WA+C'C=0

The eigenvalues of the product of grammians are independent of coordinate

transformation and can be denoted as:
7, =4 (W.W,)) ©

They are referred to as the Hankel singular values of the system [11].
4.2. Controllability and observability of a structural modal model
The modal state-space representation of flexible structures has specific controllability
and observability properties, and its grammians are of a specific form.

®)
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When the damping is small, the grammians in modal coordinates are diagonally
dominant and by using appropriate scaling they are approximately equal.
W, =diag(w,1,)
W, =diag(w,1,)
Therefore, the approximated Hankel singular values are obtained as a geometric
mean of the modal controllability and observability factors.
Vi ENWiWei (11)
For flexible structures the grammians of each mode can be expressed in a closed
form. This allows for their speedy determination for structures with a large number of
modes, and allows for the insight into the grammian physical interpretation. In modal
coordinates the diagonal entries of the controllability and observability grammians are in
form:

(10)

B, C.:

WCI_ — || mit {2 , W”I — || mi (|2 (12)
46,0 46,0

and the approximated Hankel singular values are [11]:

_ "Bmi 2 "Cl 2

' Yo
The form of (14) is similar to norm of a system. System norm serves as a measure of
intensity of its response to standard excitations such as unit impulse or white noise of

unit standard deviation. Typical system norms are: H,, H,, and Hankel. In this work H,,
is used, which is defined as [12]:

13)

o PO,
"G||°° B us(ggo "u(z)"2 (14
or alternatively as:
IG].. = max o, (G(e)) (15)
where
G(w)=C(jal-A)" (16)
is the transfer function of a system and
0, (G(®)) a7

is the largest singular value of G. The peak of the transfer function magnitude is the H,
norm of a single-input-single-output system.
The H,, norm in modal coordinate for each mode is expressed as following:

O, v (C B )) "Bmi 2 "Cmi 2
G — 0 ’ G a) — max mi mi — 18
161 = 0 G20 260 260, 4
The acquired equation is similar to (14), hence it is a good criterion for measurement
of controllability and observability of a system.
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5. Application of optimal placement

This section includes the results for different host structures of piezoelectric patches.
These host structures are a cantilever beam and a simply supported plate. At last, the
frequency response of the different structures is depicted to show how well piezo-patches
are placed on the structure. In Fig.4 the general algorithm, which has been used in this
work to find optimal places of piezoelectric patches, is depicted.

Start:
- Model the structure
- Place piezos on the structure and
specify x as location variable

v

Genetic Algorithm
- Run GA

- Initialize random x

v

FE software: Analysis the output of FE:
- Model the structure - State-space representation
- FE analysis
- Modal analysis
A

- H - horm as a cost function

Go back to GA:
- Improve x according to H « 18 optimal?
cost function

End:
- Determine optimal feedback-gain
from optimal solution
- Compare optimal with not-

A 4

optimal piezo places

Figure 4. Flow-chart of the optimization procedure applied throughout this work

In this paper, when analyses are made on a beam, the beam has properties and size
as shown in Fig.5.

5.1. Optimal locations of four piezo-patches on a cantilever beam

In this section, the optimization is done for optimal places of four piezoelectric patches
based on the first mode of the system which is the most important mode, and then for
first four modes of the structure with use of multi objective genetic algorithm.

5.1.1. Optimization based on first mode

It has been assumed that there are four patches, two of them act as sensors and other two
act as actuators. The sensor and actuator are placed on the same location on the beam
but on opposite sides. Therefore just finding the x;, X, is enough.
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In this case the genetic algorithm is run with population size of 20 in 100
generations. After 11 generations, the genetic algorithm converges to the best result
(Fig.6) and gives x1 = 0.01; x2 = 0.07 as optimal places of piezoelectric patches. After
finding the optimal places, it has been analyzed how well this optimization is done. For
this propose, the output of system with optimized placement is compared with not-

optimized one (Fig.7).

x2
L1 Hl HT
<+ L
‘1
Length of beam L 0.44 m
Width of beam B 0.04 m
Height of beam H 0.0028 m
Length of patch L1 0.05 m
Width of patch B1 0.03 m
Height of patch H1 0.0005 m
Elastic modulus E 0.7x10" N/m*
Poisson’s ratio v 0.33
Density P 2800 kg / m’
Beam element type in Ansys | Solid45
Stiffness matrix C 12.29%10°  7.66x10"°  7.02x10" 0 0 0
7.66x10"°  12.29x10"°  7.02x10" 0 0 0
7.02x10°  7.02x10°  9.71x10" 0 0 0
0 0 0 2.32x10" 0 0
0 0 0 0 2.32x10" 0
0 0 0 0 0 2.32x10"
Piezoelectric element type in Solids
Ansys
Piezoelectric constant matrix | [ © 0 7.07
d 0 0 7.07
0 0 -13.82
0 0 0
0 -1191 0
|-11.91 0 0
Permittivity matrix & [929 0 0
0 929 0
Lo 0 857

Figure 5. A cantilever Beam with its properties.
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Best: 3581759.0554 Mean: 38818264851

[+ Best liness |
‘ * Mean filness
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Figure 6. The genetic algorithm process for a cantilever beam with four patches (Pop.=20, Gen.=100).

—opt x, =0.01 [ =007
—not opt. x, =0.0185 |« =0.058

e

Output

Figure 7. The outputs of optimized and not-optimized placement for the cantilever beam (opt. is based on first modes).

5.1.2. Optimization based on first four modes

The procedure of finding optimal places of four piezo-patches on a cantilever beam
regarding the first four modes of the structure is almost like the previous procedure with
some small changes. In this optimization process, the multi-objective genetic algorithm
has

been used. The multi-objective GA has ran with 40 as population size in 200
generations. The multi-objective GA uses Pareto front approach and gives the best
Pareto front as shown in Fig.8. The optimization process gives fourteen good places for
piezo-patches. All these results are optima and are far better than not-optimized ones
(Fig.9) but to see which result is the best one and which one is more compatible with our
requests, the optimal control method is applied again, similarly as mentioned in the
previous section (Fig.10).

342



Optimal acement of piezoelectric actuators and sensors for smart structures using genetic algogorithm
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Figure 8. The best Pareto front after 150 generations for optimization based on first four modes (Pop.=40,
Gen.=200).

opt. x, =0.19692722 . x, =0.28009848
* —not.opt. x, =0.0185 ; x, =0.099
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-0 06

—opt. x, =0.19682722 . x, =0.26009648
—opt. x, =0.16730336 ; x, =0.22655046

Figure 10. Comparison of two opt. places of four patches on a cantilever beam regarding first four modes.

5.2. Optimal placement of four piezoelectric patches on a plate
In this approach, the same procedure is followed as for the cantilever beam but now
there are four design variables X, X, X3, and x4, which are defined as in Fig.11.
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Figure 11. A schematic of the plate L = B = 0:44m.

5.2.1. Optimal places of piezo-patches for plate regarding first mode of the structure
After defining the geometry and material properties of the structure, the optimization of
the placement for piezoelectric actuators and sensors is performed. The GA is used
again to find these optimal places. The GA was run for population size 40 in 150
generations and it has converged to best result after 52 generations (Fig.12).

Fig.13 shows that the optimization is ended with very convenient results.

gt ¥ Beost 86443330 Mean: B5455 1305
o + Besf fitness
& Mapan filness
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"
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.
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Figure 12. The GA performance to find optimal places of piezos on a plate regarding its first mode. (Pop.=40,
Gen.=150).

. not-opt, x1#0,11, x2=0,18 x3=0.15, xd= 0.20
—opt. *1=0017, ¥2=0 23, ¥x3=0.18. x4=0.23

. 11
i - || iil | |
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Figure 13. The comparison of output of two systems: one with optimal places and other one with random placement.
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5.2.2. Optimal places of piezo-patches regarding first four modes of the structure
The multi-objective GA was executed with the 40 population size in 150 generations.

This optimization process ends with giving final Pareto front which is depicted in
Fig.14.

As Fig.15 shows, the best optimum placement is placement with: x1 = 0.19, x2 =
0.25, x3 =0.19, x4 =0.23.
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Figure 14. The final Pareto front (Pop.=40, Gen.=150).

apt. x1=0.18, x2=0.38, x3=0.18, x4=0.35
—opt, x1=0.18, x2=0.25x3=0.19, x4=0.23

]
Time

Figure 15. The comparison of output of optimized with not-optimized placement.

6. Conclusions and outlook

It is very important to find the places on the structure with the highest value of
controllability and observability with limited number of piezoelectric patches. The GA
has been used to find the optimal places. At first the structure has been analyzed with
use of ANSYS to obtain the eigenmodes and eigenfrequencies of the structure.
Afterwards, the output of ANSYS has been fed into MATLAB to build state space
representation of the structure and at the end a criterion has been introduced for the
optimization process with GA. The use of GA or multi-objective GA depends on the
optimization purpose that whether optimization should be based on one mode or more
than one mode. The process has been applied to two kinds of structures: a cantilever
beam and a plate. The optimization process gives very convenient result as it can be seen
from figures. The results show the different positions of piezopatches when optimization
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based on one mode or more than one mode. From design point of view, it is very
important beforehand to make a decision which mode shape or mode shapes are
important to be controlled. In the GA, it is also possible to define some constraints
regarding the position of piezo-patches since in some designs there are some predefined
places that the patches cannot be embedded there. It is also possible to apply this
optimization process to different types of structures.

In this paper, the optimization is done with limited numbers of piezo-patches but it is
also possible to generalize the code to find optimal number of piezo-patches.
Optimization of the number of pizo-patches as well as implementation of the procedure
with complex geometries is a part of the ongoing research.
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Abstract. This paper considers the problem of optimal actuator and sensor
placement for active large flexible structures. The proposed placement
optimization method is based on balanced reduced models. It overcomes
disadvantages arising from demanding numeric procedures related with high
order structural models. Optimization procedure relies on H, and H. norms,
as well as on controllability and observability Gramians, related with
structural eigenmodes of interest. The optimization procedure was
documented by several examples showing a good agreement between the
results obtained using different placement indices.

1. Introduction

The study and development of piezoelectric smart structures involves a very important
investigation of optimal actuator and sensor placement. Especially for piezoelectric
smart structures and systems, the placement once applied cannot be changed easily and
it is often related with the need to build a new structure in order to perform another
placement constellation for actuators and sensors. Development of appropriate and
reliable optimization procedures, which can be applied prior to real structure or a
prototype building, is therefore the task of a great significance. In this paper we have
proposed a reliable method for determining appropriate actuator/sensor placement,
based on structural models developed using the finite element (FE) approach. Model
based approach represents an indispensable tool in the optimization procedure due to
requirement for iterative problem solution.

Optimization problem was treated by several authors and investigated for different
structures. An overview of the optimization criteria for optimal placement of
piezoelectric sensors and actuators on a smart structure was given in a technical review
by Gupta et al. [1]. In [2] based on the modal approach, optimal geometrical conditions
were obtained for several cases of active beams with different boundary conditions.
Optimization criterion for finding optimal actuator/sensor positions for piezoelectric
beams in [3] is the performance of an optimal LQR controller. In [4] efficiency indices
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based on the mode shapes for a clamped piezoelectric beam were determined for typical
eigenmodes.

Kumar and Narayanan [5] have applied the LQR controller based criteria to find optimal
location of piezoelectric actuators/sensors for vibration control of plates and used genetic
algorithm (GA) for solving a zero-one optimization problem. Peng et al. [6] involved
maximizing of the controllability Gramian as the optimization criterion for optimal
placement on a clamped plate using GA. Similar approach with modal controllability
and observability Gramians and GA were also used in [7].

In this paper we present a general approach to optimal actuator and sensor
placement applicable both for beam and plate structures, but also for other complex
geometries of structures. The optimal placement procedure is based on the method for
balanced model reduction, which assumes models with equally controllable and
observable retained modes. The method has advantage over modal truncation and
mathematical criteria for controllability and observability, since the retaining of the
modes of interest is founded on their equal controllability and observability expressed in
terms of appropriate Gramians. Further the paper deals with optimization criteria based
on the A, and H., norms, which are calculated for all possible candidate locations. In
this way the fulfillment of the criteria is not limited to a narrow set of selected assumed
favorable locations, but it relies on verification through all candidate positions by
finding the placement indices with largest values.

2. Models and objective functions used for optimal placement

The procedure for finding optimal placement of actuators and sensors relies on the state
space models of smart structures, which are obtained through the finite element (FE)
modeling procedure and model order reduction.

2.1. FE based state space models
Applying general FE modeling procedure the model of a smart structure can be
represented as a set of equations of motion in matrix form (1) obtained by assembling all
finite elements of the structure (more details on FE modeling of piezoelectric structures
can be found in [8,9]).

Mq+Dyq+Kq=F D
Vector q contains all degrees of freedom and it can be formed e.g. by node-wise
arranging of degrees of freedom for all elements. For modeling of piezoelectric materials
besides mechanical degrees of freedom, electric voltage or charge is included as
additional degree of freedom to model electro-mechanical behavior.
The total load vector F is split, for the purpose of the control design later, into the vector
of external forces Fg and the vector of control forces Fc:

F=F +F.=Ef()+Bu(t)=B,u. )
The forces are here generalized quantities, which include also electric charges or electric

potentials. Matrices E and B describe the positions of generalized external forces f
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and the control parameters U in the finite element structure, respectively. Matrix By
represents the input matrix, and vector u includes all model inputs.

For the controller design purposes equation (2) is accompanied by the output equation in
the form:

y=C,,94+C,q 3)
where in a general case C,, represents the output displacement matrix, and C,, the
output velocity matrix. In the output equation (3) q represents a generalized
displacement vector containing all degrees of freedom defined in the modeling

procedure, like in (1). Matrices Coy, and Cy, are obtained through an FE procedure by
defining appropriate sensor locations.

Solution of the equation (1) is determined in the form q = q)ejwt by solving the

eigenvalue problem for a homogeneous case.
The nodal model representation (1) is transformed into a model in modal coordinates
applying the following modal transformation:

q=%q, “
where q,, represents the vector of modal degrees of freedom or generalized modal
displacements and @ is the modal matrix.
Introducing the modal coordinates (4) into (1) after normalization with respect to mass
and appropriate transformations, taking into account the orthogonality properties the
modal model is obtained, which after introducing the coordinate transformation in the
state space form:

x=| 4 )
q,
can be obtained as a state space realization:
x=Ax+Bu, y=Cx+Du (6)

Considering that flexible structures can be described in terms of independent
coordinates, the modal state space model can be expressed in terms of state space
realizations (A, B, C,;) for each mode i (7). With the coordinate transformation as in
(5) corresponding matrices in the realization (A,,;, B, C,;) are determined by [10]:

A 0 “ B 0 C Cong (7
.= .= .= — C 7
mi ’ mi ’ mi my;

—0 200 b, @
with natural eigenfrequencies w; and dampings ; of the eigenmodes. The elements of
the realization (A,;, B,:, C,;) are used for assessing the optimal actuator/sensor
locations based on candidate input/output transfer functions relating corresponding

actuators and sensors.
2.2. Norms — objective functions for optimal placement
Optimization of the actuator/sensor placement in this work is based on the properties of

the H, and H.. norms and approximations for their determining, which enables norm
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calculation in cases of large structures with high model orders. Exact calculation of the
norms in such cases would require high computational effort and computational time.
Proposed approach represents a suitable basis for optimal actuator and sensor placement
in large structures due to reduced required computational time. The norms and their
properties, which are considered and implemented in optimization procedure, are
defined for a single mode, for a structure and for a system including a set of actuators
and sensors. The main norm properties are summarized below. The proofs are derived in
[10].

H, norm of a single mode. For a transfer function G,(@)=C, (jol—A, )"'B, of

the i"™ mode obtained from the realization (7), the H, norm of the mode is estimated as:

B | |C,. B | |C, .
o], < BoblCal. _[BaLlCal_, N
N V280,
where B,,;, C,; represent the input and the output matrices of the modal state space
model defined in (7), & is the damping of the i™ mode, o; the Hankel singular value
corresponding to the ™ mode, and Aw. =2 .@.is a frequency segment at the i

resonance for which the value of the power spectrum is one half of its resonance value.
H., norm of a single mode. For an i mode given by its modal realization (A,,;, B,.;, C.;)
or by the parameters (@, &, b, ¢,;) the H., norm of the mode is estimated as:

G, = Bl €l _ Bl il
- pI0) 2fw
H, norm of a structure. Given a modal state space realization (A,, B,, C,) of a

structure, the H, norm of the structure can be determined approximately as the root
mean square of the modal norms:

€

(10)

where n represents the number of the modes, and G and Gi are the transfer function (or
the transfer matrix) of the structure and of the i mode respectively.

H., norm of a structure. Since the modes are almost independent, the norm H.. norm of a
structure is approximately determined as the largest of the mode norms:

|G|, = max|G,|_. i=1..,n. (11

For a system including a set of actuators and sensor, for the H, and H. norms an
additive property both for a single mode and for a structure is valid and can be used in
the approximated calculation or the norms.

H, and H..norms of a system with a set of actuators and sensors
for a single mode:

Gl... =

2”@\\;}, i=ln 1)
j=1
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for a structure:

[6]...=

i}HGj [, (13)

with s representing the number of actuators or the number of sensors, which may be
different in a general case.

For a given structure the actuator/sensor placement problem requires the selection of
optimal locations as a subset from a given set of possible candidate locations with regard
to the specified objective function. The set of possible candidate locations consists of a
larger number of elements then the subset of locations to be optimized.

In the first approach the placement is performed based on the placement indices and
matrices, where the actuator and sensor placements are solved independently using
similar procedures. Definition of placement indices and matrices is based on the additive
properties of modal norms on the structural level.

For a flexible structure represented by a modal state space model, the norms of any mode
i are determined based on appropriate input (B,;) and output (C,;) matrices of the
corresponding mode, (8), (9). If s represents the total number of defined inputs
(actuators) j =1,...,5 , and r the total number of outputs (sensors) k =1,...,r, then the

corresponding input and output matrices are:

Bmi=|:Brlm' :anu' : : B, : : B:u':|
C=[C i ChiiChliC] (14)

mi mi |

where each of the matrices B ;1 ; represents the 2x1 block of the j™ actuator and Cn’;i

represents the 1x2 block of the k™ sensor, both having the form as in (7). Then
according to the additive properties of the H, and H.. norms, the norm of a mode with a
set of actuators (sensors) can be approximated by the root mean square sum of the norms
of this mode with a single actuator (sensor), which can be expressed as:

for actuators: ”Gi”(zz’m) = ZS:HGin(ZZ’w) , (15)
=

for sensors: ”Gi”(zz’w) = Zr:HGikH(zz’w) ) (16)
k=1

Here the H, norms of the i mode with a single actuator corresponding to the j* position,
and of the /™ mode with a single sensor corresponding to the k™ position are given
respectively by:

I/ _IBuLlc.l, I¢] _IB.Li[Cu,
il 2 é’,a)l ’ i, 9 é’la)l .

Similarly the H.. norms of the i mode with a single actuator corresponding to the ;"
position, and of the /™ mode with a single sensor corresponding to the k™ position are
expressed as:

(17
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1Bl B, .
HGi]HDQ — H 2”3(()1 2 ’ HGikHw _ 221”601 Hz .

Placement indices are defined in terms of H, or H., norms for an actuator or a sensor

placement. Each index 77;;2 o)

(18)

evaluates the K™ actuator (or sensor) in the i™ mode in

terms of the H, or H.. norm and it is defined with respect to all modes i =1,...,n and all

admissible actuators k =1,...,s (or sensors k =1,...,7):

el
e,

(2,00)
Here the norms ”Giku(z ) are determined accordingly as in (17) or (18), and G is the

transfer function of the system with all candidate actuators (or sensors). Placement
indices determined according to (19) can be arranged in the form of matrix, where each
row corresponds to the i™ mode and each column to the k™ actuator or sensor. Actuator
and sensor placement indices are then obtained from the placement matrix by
performing column-wise appropriate operations on the elements over all modes. For the
objective function in terms of the H, norm, actuator (subscript a) or sensor (subscript )
placement indices are determined as the root mean square sum of the column-wise
elements:

=L...p (20)

and p =y (for s actuators) or p =r (for r sensors). For the objective function in terms

of the H.. norm, the actuator/sensor placement index is the largest index over all modes:
me.,, =max(n'), i=l..n, k=L..p @1)
where again p =5 (for s actuators) or p =r (for r sensors). The placement indices

77(’; 5y determined in this way characterize the importance of the k™ actuator or sensor,

and represent therefore a criterion for the actuator/sensor placement in the presented
approach, which treats the actuator and sensor placement individually.
Placement index for simultaneous actuator/sensor placement is defined as

Jk
N
i T ill?
|.]

. ik . . . .
for each mode i, where G/* characterizes the i™ mode in the presence simultaneously of

i=L..,n (22)

the actuator placed at the j™ candidate location and of the sensor at the k™ candidate
location.
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Besides the introduced placement indices, for the comparison purposes, the
controllability index is introduced as an objective function for the optimal placement as
well. The influence of the actuators to structural eigenforms is determined by the term

Bm =®'B , se Eq. (2). Different actuator configurations and their influence on the
controllability of the ™ mode @ are investigated by determining the value of
T.(j) = q)iTB]. for the j™ actuator location. The controllability index is calculated based

on the squared value of % and divided by the scalar product of the eigenvectors, in order
to obtain the controllability index as a measure which is independent of the sign
influenced by placement and independent of the eigenvector scaling. The controllability
index can thus be determined as [19]:

#BBO

W =—z3—" 23)

In a similar way the influence of the sensor placement can be considered through
appropriate observability indices for the k™ sensor location:
T (T
-C.C,o.
v,k =2l
P

3. Results of optimal placement for investigated beam and plate structures

To illustrate the optimization of the actuator/sensor placement, the results of the
placement for a clamped piezoelectric beam and plate are presented in this section.
Clamped beam

In this example a steel beam clamped on both sides is considered. It is modeled as a 2D
beam using the ANSYS software. As a result of the modal analysis, the eigenfrequencies
and eigenvectors are determined, which represent an input to the algorithms for the
optimal actuator/sensor placement procedures. Meshing the beam along its length
results in 101 nodes, and possible candidate positions for this analysis are represented
schematically in Figure 1 with pointed nodes 10, 20, ... , 90.

[10] [20] [30] [40 ][50 ][ 60| 70]]80][o90]

Figure 1. Candidate locations for actuator/sensor placement along the beam clamped on both sides

For the comparison purpose the optimal placement procedure was performed applying
the algorithms for separate and simultaneous placement as well as the controllability/
observability indices. Several representative examples are presented below.

Qualitative representations of the curves presenting the values of the placement indices
for different positions along the beam are similar for separate placement based on the H,

24
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and H., norms. Depending on the number of eigenmodes, which should be considered
(sensed or actuated) at the same time, the positions for optimal actuator/sensor

placement may differ. Figure 2 shows different possible candidate positions with largest

placement indices calculated based on the H, norm under consideration five bending

eigenmodes of interest.

Eigenmodes 1 to 5

80 90

70

60

40 50
Candidate locations

30

20

Xopurl juawade[d

Figure 2. Placement indices calculated based on the H, norm for the first five eigenmmodes
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Figure 3. Placement indices based on the H.. norm for separate and parallel consideration of the eigenmodes
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Placement indices determined based on the H., norm are represented in Figure 3. Left
hand side plot in represents the placement indices for individually considered
eigenmodes 1 to 5. In the right hand side plot the placement indices were calculated
based on parallel consideration of several eigenmodes of interest (here 1 to 5). Locations
with largest placement indices indicate the candidates for optimal placement, depending
on the number of employed actuators/sensors and on the number of considered modes of
interest. Figures 2 and 3 represent the sensor placement indices. The forms of the
placement indices curves for actuators are qualitatively the same and for the reason of
brevity are omitted here. For the comparison, the method based on the
controllability/observability indices is also applied. The results regarding the first five
eigenmodes of the beam are summarized by the controllability index representation in
Figure 4.

Maodes 1o S

bility ingdex

o

Candidae |-I-C';‘;In'ﬁ~
Figure 4. Controllability indices calculated for eigenmodes 1 to 5 for different candidate locations

The results of the three methods applied to the beam clamped on both ends are
summarized in Table 1. It can be seen that all three methods provide identical results,
when considering eigenmodes individualy. For parallel consideration of several
eigenmodes of interest, optimal candidate locations depend on the performance index
which was adopted as a criterion for placement.

Table 1. Candidate locations with largest placement indices (beam clamped on both sides)

Modes Separate placement Simultaneous placement Controllability/observability indices
H, Ho Hy H.

1 50 50 50 50 50

2 29,71 29,71 29,71 29,71 29,71

3 21,79 21,79 21,79 21,79 21,79

4 16, 84 16, 84 16, 84 16, 84 16, 84

5 13,87 13,87 13,87 13,87 13,87

1,2 43t057 50 34, 35, 36, 64, 65, 66

1to3 48t052 50 26,74
l1to4 471053 50 21,79,41,59
1to5 49to51 50 17, 83, 69,31
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Clamped plate

The plate structure in this example was modeled as a 3D plate in ANSYS software and
corresponding eigenvectors of interest were obtained through modal analysis. The
meshing of the plate, i.e. the nodes which correspond to candidate locations for
actuator/sensor placement are represented in Figure 5. Here the corresponding rows and
columns are numerated for a better preview.

[l tlalsl7]a[n]malslr[wlz]a]z=]2]m]

[ R R NN A 1 A N N O O O -
[ 8 '
G .

2
A
[ )1
5 1
i
[78
A
[:H)
5t

[:_I_T'!:_‘!. _________ ISER IS B i B R PR S B R

Figure 5. Candidate locations for the plate denoted by corresponding row and column numbers

Table 2. Candidate locations with largest placement indices (plate)

Modes Separate placement Controllability index
H, H..
[ 10.15) 10.,15) 10.15)
) (10.8), (10,9), (10.8), (10.9), (10.8), (10,9),
1021), (10,22) 10.21), (10,22) 1021), (10,22)
3 (14.15). (6.15) (14.15). (6.15) (14.15). (6,15)
4 (10.6), (10,15), (10.24) (10,6), (10.15), (1024) | (10,6, (10,15), (10.24)
S (63), (622), (6.8), (6.22), (63), (622),
(14.8). (1422) (148). (1422) (14.8). (1422)
1.2 (10,9), (10,10), (10,20), (1021) (10,15) (10,10), (10,20)
103 (9,9, (9,10), (9.20), (9.21) 10,15) (7.11), (7.19),
9), 0,10),(9,20), O, : (13.11), (13,19)
104 10,7), (10,22) (10,15) (5122282)) ((8882)2)
78), (133), (138), (7.8),
1005 (7.22).(13.22) (10.15) (13.22), (122)

Due to a very high number of nodes, i.e. candidate locations for the plate, the
simultaneous placement procedure would not give a clear representation and therefore it
is omitted from this analysis. The results of other two methods, separate placement and
controllability index, are compared and summarized in Table 2. Besides, several
representative results of the actuator/sensor placement for the clamped plate are shown
in the figures below. Complete agreement of the results is available for individual
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consideration of the eigenmodes. For parallel consideration of several structural
eigenmodes of interest, the arising differences are based on the calculation, i.e. on the
definition of the placement indices for the structure. Qualitative representations of the
placement indices based on H, and H..norms as well as of the controllability index for
individually considered modes are the same. Actuator placement indices based on the H,
norm for selected individual modes are represented in Figure 6.

Mode 1

Placement index
Placement index

5
Row number 20 Column number Row number 20 Column number

Figure 6. Placement indices based on H, norm for individually considered selected eigenmodes of the plate

Figure 7 represents the values of the placement indices calculated for all selected
candidate locations based on the H, norm under parallel consideration of several
eigenmodes of interest (left: modes 1 and 2; right: modes 1 to 5).

Modes 1 and 2 Modes 1to 5

Placement index
Placement index

0.01

5 5
Row number 20 Column number "0 Row number 20 Column number

Figure 7. Placement indices for the plate based on the H, norm (parallel consideration of eigenmodes of interest)

4. Conclusion

In this paper the optimization methods for actuator/sensor placement for large flexible
structures are presented, based on balanced reduction of structural models. Balanced
modal reduction of the model orders for structures with large numbers of degrees of
freedom is proposed as an efficient modeling procedure, which results in a realization
with equally controllable and observable retained states. Optimal placement procedure is
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based on the properties of the H, and H.. norms and approximations for their
determining. Proposed approach represents a suitable basis for optimal actuator and
sensor placement in large structures due to reduced required computational time.

Optimization procedure is proven by showing examples of a beam clamped on both
sides and clamped plate. For these examples an extensive analysis was conducted and
systematized results of separate and simultaneous placement procedures for individual
and parallel consideration of the structural modes are shown. The efficiency of the
proposed method is also proven by the comparison with the optimization results based
on controllability and observability indices. This analysis has shown a compete
agreement of the results. The method suggested in this paper also covers a broad
spectrum of possible problems, which do not have to be necessarily limited only to
piezoelectric actuators and sensors, but can be extended more generally to systems with
integrated actuators and sensors, whose effect may be considered through actuation
forces or moments.

Acknowledgement. The authors gratefully acknowledge the funding by the German
Research Foundation (DFG) within Collaborative Research Center under grant SFB-
837/A2.
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ABSTRACT. An attention in this investigation is focused on developing
efficient optimization method for minimum weight design of thin-walled
structures. Today, it is a common practice to use numerical optimization
methodologies to deal with multidisciplinary industrial design problems. One of
the major tasks in the design of aircraft structures is the sizing of the structural
members to obtain the desired strength, weight, and stiffness characteristics.
Optimization algorithms have been coupled with structural analysis programs for
use in this sizing processThe efficiency of method is based on application of the
two-level approach in optimization structural systems. This approach breaks the
primary problem statement into a system level design problem and set of
uncoupled component level problems. Two-level optimization approach is
applied to structural design problems like: minimum weight of the complex
aircraft composite structure under various strength, buckling and stiffness
constraints. This paper considers a discrete model the buckling sensitivity
analysis of thin multi-layered angle-ply composite structures. Angle-ply design
variables and the thickness of each layer considered as design variables.
Optimization method presented here is based on combining optimality criterion
(OC) and mathematical programming (MP) algorithms. Finite element analysis
(FEA) are used to compute internal forces at the system level. The local stress
and local initial failure load in each independent element are defined as
component constraints. The use of this MP algorithm is essential to two-level
approach and local level, since it can handle the highly nonlinear component
problem, such as local buckling or special initial failure constraints in
mechanical fastened joints. Optimality criterion method significantly reduces
time and cost the optimization process. The two-level optimization approach is
applied to minimum-weight design of aircraft structural components such as
aircraft nose landing gear, wing skins and parashute composite beam subject to
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multiple constraints. Finally, several examples are shown to illustrate
effectiveness of the two-level optimization model.

Key words: Optimization methods, multi-level approach, optimality criterions,
displacement constraints, stress constraints, buckling constraints, finite elements

1 Introduction

The design of complex structures (which require a large finite element model (FE model)
such as aircraft, require the use of optimization methods. The size of the optimization
problem depends on the number of variables and constraints required, especially for the
design of structures with large interactions between their various components. A multi-
level approach is needed to decompose the entire system problem (system-level) into
several sub-problems (element-level) taking into account the various coupling effects. The
multi level approach allows individual system components to be optimized, thus
significantly reducing the time needed for the computation and the design cycle. Various
concepts have been proposed [1-7] to decompose large optimization problems down into
sub-problems. It should be noted that the design parameters of the global structure affect
both the structure and sub-structures (density, Young modulus, etc.), while the design
parameters of the substructures can be local dimensions (e.g. geometric dimensions:
thickness, length, width).The constraints on the structure are global (e.g. structural
displacement), while the constraints on the sub-structures are local (e.g. local stress or
strain). Today, it is a common practice to use numerical optimization methodologies to
deal with multidisciplinary industrial design problems. One of the major tasks in the
design of aircraft wing structures is the sizing of the structural members to obtain the
desired strength, weight, and stiffness characteristics. Optimization algorithms have been
coupled with structural analysis programs for use in this sizing process. Most of the
difficulties associated with large structural design are solution convergence and computer
resources requirements. Structural optimization problems traditionally have been solved by
using either the mathematical programming (MP) or the optimality criteria (OC)
approach. More recently, the works in Refs [1-3,14] have illustrated the uniformity of the
methods. Nevertheless, each approach offers certain advantages and disadvantages. The
MP methods are extremely useful in defining the design problem in proper mathematical
terms. When the design variables are few the these methods can be used quite effectively
for optimization. However, in the presence of a large number of variables these methods
are very slow. The rate of convergence for OC methods is initially very fast, step size
determination is critical closer to the local optimum where the number of active
constraints' increases and the computations of Lagrange multipliers becomes more
complex. Power and weakness of the various MP methods are given in Ref. [8]. Ideally, a
methodology that exploits the strength of both approaches could be employed in a practical
system. The object of the present research effort is to develop such design method that can
efficiently optimize large structures that exploit strengths (power) of the MP and OC
methods. The motivation of this study is to come up with a multilevel optimization method
using optimality criteria and mathematical programming techniques. Multilevel
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optimization permits a large problem to be broken down into a number of smaller ones, at
different levels according to the type of problem being solved. This approach breaks the
primary problem statement into a system level design problem and set of uncoupled
component level problems. Results are obtained by iteration between the system and
component level problems. The decomposition of a complex optimization problem into a
multilevel hierarchy of simpler problems often has computational advantages. It makes the
whole problem more tractable, especially for the large engineering structures, because the
number of design variables and constraints are so great that the optimization becomes both
intractable and costly. The nature of an aircraft structure makes multilevel optimization
highly practical, not only in terms of reducing the computing cost but also because the
individual tasks in the traditional design process are preserved. The suitability of
multilevel optimization in more complex design problem tested on a structure
representative of a wing box in composite material, with buckling limitations in each
panel, and another problem in which reliability requirements are included. Multilevel
approach for optimization of the composite structures subject to stress, displacement,
buckling and local failure constraints is developed.

2. Formulation of optimization problem

Structural optimization techniques have undergone many developments and refinements
over the past few decades. More and more design problems can now be optimized using a
variety of algorithms.

The general structural optimization problem of layered composite structures modeled by
finite elements can be stated as follows:

Find the vector of design variables x such that

W= plx = min (1
i=1
subject to behavigr and side constraints
G,=C,-C, 20  j=l..m @)
where:

W - is the weight of structure

x; - is design variable assigned to element i

I; - is a geometrical parameter such that the product /;x; is the volume of the element i
p; - is the mass density

G;j - is constraint j

C ; - is limiting value of the constraint j

n - is total number of elements

m -is total number of constraints

The constraints imposed on the structure, defined by equation (2), may have the global and
local character. The global constraints will be defined as system constraints. The system
constraints imposed on the structure may include the maximum allowable stress in each
element, the displacement limits at one or more locations, system stability, reactive forces,
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dynamic stiffness, divergence, flutter etc. In addition to these there would be limitations on
the minimum and maximum sizes of the elements.

In addition to system constraints there are local constraints. These include various
buckling loads, various failure types in composite structures, etc.

Inclusion all these constraints in optimization process to large-scale structures are
inefficient with computational aspect. However, to develop an efficient algorithm that
effectively handles all types of constraints would be impractical and generally unnecessary.
In the case of most structures it is likely that one can predict the type of constraint that will
be the most active at the optimum and use the algorithm based on that constraint. The
multilevel optimization approach may be very efficient for optimization large-scale
structural systems because it breaks the primary problem statement into a system level
design problem and a set of uncoupled component level problems. Results are obtained by
iterating between the system and local level problems. The decomposition of a complex
optimization problem into a multilevel hierarchy of simpler problems often has
computational advantages. It makes the whole problem more tractable, especially for the
large aircraft structures. The nature of an aircraft structure makes multilevel optimization
highly practical, not only in terms of reducing the computing cost but also because the
individual tasks in the traditional design process are then preserved.

3. Theory of multilevel optimization
Let D and d represent the sets of system and component design variables, respectively.

Then the problem can be stated as:
Find vectors D and d such that

W(D) = min 3)
subject to

G,(D.d)20 , ge Q @)
and

glj(dj,D)ZO , leL ; jeM 3)

The G4 (D,d) represents constraints that are strongly dependent on the D vector and they
are implicit functions except for the side constraints. The g;(d; ,D) represent constraints
that are primarily dependent on the j component variables d;, and they are either explicit
or implicit functions of d;, depending on the type of constraints and the type of local failure
analysis. The symbols Q and L denote the set of system and component level constraints
respectively, M denotes the number of components and d' = le, dzT,..., dy'1.
The system design variables can be expressed symbolically as explicit functions of the
detailed design variables, that is

D.=¥d,)  j=l..M (©)
For each component the number of detailed design variables are larger than the number of
corresponding system design variables.
Therefore, casting the problem entirely at the system level by expressing D; as functions
of d; and solving it using mathematical programming methods are an impractical task
for large-scale problems. The multilevel approach presented here is decomposed into
two levels of design modification; one with the constraints that are strongly dependent
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on system design D and the other with the constraints that are primarily dependent on
local design variables d;. Then system and local analyses and optimizations are carried
out separately and tied together by an iterative scheme going from one level of design
modification to the other and visa-versa seeking an overall optimum.
The structural optimization problem given by Egs. (3)-(5) is recast as a multilevel
optimization problem following form:

i.) System level:

Find vector D 7
such that W(D) = min ®)
and G, (D,d*)20 ; geQ )

where d* implies that the parameters strongly dependent on the detailed design variables d
(i.e., failure loads and local buckling), do not change during a system level design
modification stage.

ii. ) Component level:

Find vectors  d; (10)
such that my(d;)) = min (11)
and g,(d,,D¥)>0 ; leL (12)

where D* implies that the parameters strongly dependent on the system level design
variables are kept constant during each component design modification stage.

4. The system level optimization

An efficient optimality criterion method is used for the system level optimization of large-
scale complex structures subjected to constrains which are included at the system level.
Optimality criteria approach will be used for the optimization structures with system level
constraints. Optimality criteria methods for structural optimization involve:

1. derivation of set of necessary conditions that must be satisfied at the optimum design,
and

2. the development of an iterative redesign procedure that drives the initial trial design
toward a design which satisfies the previously established set of necessary conditions.

In order to establish the optimality conditions for the problem defined by (7)-(9) we need

the associated Lagrangian which is given by the expression
N Q
w.
L(D,ﬂ):ZF{+ZﬂjG, (13)
=1 1=l
where A;’s are the Lagrange multipliers. The Kuhn-Tucker optimality conditions are now
obtained, in part, by differentiating the Lagrangian and the complete set is given by

D* is possible (14)
4, G, (D¥)=0 A20,qgeQ (15)
VW(D*)+ 2,4, VG, (D*)=0 (16)

q€ Q

If the problem is assumed to be convex then these conditions are necessary and sufficient
for the solution of vector D" A" to represent a global optimizing point otherwise they
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define a local optimum. The optimum structure must satisfy Eqs. (14)-(16). These are
the Kuhn-Tucker conditions or the optimality conditions. Equation (16) is the ratio of
the weighted sum of the gradient of the constraints to the gradient of the objective
function, which must be equal for all elements in an optimum design.

Equations (13) and (14) ensure satisfaction of the constraint equations. The constraints G,
in equation (9) may be displacement limits at the different node points in a structure, the
relative nodal displacements corresponding to maximum allowable stress in each element,
system stability, frequency constraints, flutter requirements, various failure criterions in
layered composite structures such as the Tsai-Wu criterion.

The real optimum structure must satisfy conditions (15)-(16). To develop a computational
algorithm that handles all these constraints efficiently would be difficult and generally
unnecessary. In practical design problem what may be required is a design which is near
minimum weight and not a design that exactly satisfies the mathematical optimality
criteria. This can generally be achieved by designing the structure based on one or two of
the must important constraints, and checking the design for the other constraints.

Problem optimization defined by Eqs (7)-(9) or (1)-(2) involves; large numbers of design
variables, large numbers of inequality constraints and many inequality constraints that are
computationally burdensome implicit functions of the design variables. These obstacles
have been overcome by replacing the basic problem statement (7)-(9) with a sequence of
relatively small, explicit, approximate problems that preserve the essential features of the
original design optimization problem. This has been accomplished through the coordinated
use of approximation concepts. The most important feature of the approximation concepts
approach lies in the construction of simple explicit expressions for the set of constraints
retained during each stage. This is achieved by linearization of these constraints with
respect to linked reciprocal design variables. The linearized behavior constraints (9) are
obtained by using a first order Taylor series expansion as:

Gq(D,d*):l—;C[q D, i=1..0 (17)
where Cq is the partial derivative of g-th constraint for i-th design variable, a Q is the
total number of constraints. Equation (17) represents the current linearized approximations
of the retained behavior constraints. Using (17) the retained behavior constraints system
level optimization problem (7)-(9) can be expressed as: Find vector D such that

Xw,
W(D):ZF‘ = min (18)
i=1 i
subject to constraints
Gq(D)zl—;Ciq D, ;qeQ (19)
and D/ <D, <D/ (20)

The wj are positive fixed constants corresponding to the weight of the set of elements in
the j-th linking group when Dj=1. The set of independent design variables after linking is
denoted by N and equation (19) represent the linear approximations of the behavior
constraints. The D;* and D;" respectively denote lower and upper limits on the independent
design variables.
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In developing optimality conditions standard approach is to form a Lagrangian:

N w. n

L(D,/l):ZD’ —Zﬂq(l—Zciquj @n
i=1 Vi g4e0 i=1

i

where /’iq are the undetermined Lagrangian multipliers. Approximation problem (18) -

(20) is convex problem and therefore Kuhn-Tucker conditions are necessary that solutions

D*,A* represent global minimum. Conventional optimality criteria methods for
structural optimization involve; (i) the derivation of a set of necessary conditions that must
be satisfied as the optimum design and (ii) the development of an iterative redesign
procedure that drives the initial trial design toward a design which satisfies the previously
established set of necessary conditions. Each approximate primal problem of the form
given by equations (18)-(20) can be transformed to correspond an explicit dual problem.
Detail solution methods and optimization algorithms are given in Refs [8,9,19].

4.1 Definition of strength constraints in layered composites

For analysis and optimization fibrous layered composite structures, modeled by laminated
shell type finite elements, various failure criterions can be used. The Tsai-Wu criterion is
used for failure analysis of orthotropic layers in composite shell. This criterion can be
expressed as:

6V (o) (oo T e
(35 e ) @
L[\F) F REFE,) \F,) |

where o4, 0, 112 are the components of stress tensor 6; F; ,F, and Fy, are the stresses of
failure in uniaxial tension, compression and shear, respectively and T is Tsai’s number.
By using eqns (19) and (22) linearized approximations of Tsai-Hill criterion can be written
as:

n

oI,
G,=1- Z D, (23)

where:
Jr Jo Jo oJr
W= =T+ T, =+ T, — > (24)
S oD, 'db, *dD, T’ dD,

with

2

1 20,-o0, 1 i— 20, 9 —I and _1 o Th
Li=-— PR I,= 2
217, (F) T (F,)
In similar manner linearized constraints such as displacement, stability, frequency or other
system constraints can be defined.

4.2 Definition of stability constraints

The linear stability of a structure is defined by eigenvalue problem.
[K - 4Kglg; =0 (25)
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where K and K are respectively system stiffness and geometric matrix of the structure and
q; is the eigenvector associated with the j-th eigenvalue A;. For an efficient optimization of
buckling problems it is essential to know the sensitivity of the buckling load parameter A;.
The sensitivity with respect to changes in the design variable t; (thicknesses of shell layers)
is evaluated by

oA (0K  0Kg

L =g == (26)

or; [ati o1, ]q
The evaluation of sensitivities using equation (26) is not computational efficient. It is
better to obtain the sensitivity of the buckling load parameter A; at the element load level
using (26) in the form

A J(oKe K
9 _ K®_JOKG | e @7)
o ;[q,] [ o o lq :

where E is the number of elements in the structure.

5. Local Level Optimization

Local level optimization process can include various types of failure modes in laminates or
local buckling constrains. This optimization problem is solved by algorithms based on
nonlinear mathematical programming methods. Classical optimization problem in local
level are mechanically fastened joints in composites. Initial failure arises on characteristic
curve, as shown in Fig. 1

fiJﬁif

ot

Fig. 1. Description of the characteristic curve with FE mesh

The characteristic curve with finite element mesh, Fig. 1, is specified by the expression:

ry (<I>)=§+R,+(RC R, )cos ® ;—%s c1>s§ (28)
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where R; and R, are referred to as the characteristic lengths for tension and compression.
In order to determine the load at which a mechanical fastened joint fails and the mode of
failure, the conditions for failure must be established. In this paper the joint is taken to
have failed when certain combined stresses have exceeded a prescribed limit in any of plies
along a chosen the characteristic curve. The combined stress limit is evaluated using the
failure criterion proposed by Yamada- Sun in form [11]

2 2
(ﬁj +(T1—2J <1 (29)
Fl F12

where 6, and T, are the longitudinal and shear stresses in a ply, respectively (1 and 2
being the directions parallel and normal to the fibers in the ply). F), is the rail shear
strength of a symmetric cross ply laminate [0°/90°];. F is either the longitudinal tensile
strength or the longitudinal compressive strength of a single ply.

This criterion is based on the assumption that just prior to failure of the laminate, every ply
has failed due to cracks along the fibers. It is very important to say, that local constraints
such as expressed by Eq. (29) or similar, can be included in optimization process as direct
formulae using Fortran lingue notation in programme OPTIS [12]. Direct manner for
defining very nonlinear constrains by using direct Fortran description is very efficient in
practical optimization of composite or metal aircraft structure. Final dimensions are
obtained at local optimization. Optimization algorithms are based on Nonlinear
Mathematical programming methods such as: SUMT, CONMIN, method inscribed
hypersphers [6], etc.

6. Numerical Examples

To illustrate the application and versatile multilevel approach to the weight structural
optimizations composite structure subjected static loads are considered.

Example 1: Optimal Design of Composite Panel Subject to Buckling Constraints

Here laminated composite panel is optimized with respect buckling constrains. Geometry,
loads, material properties and FE model of CFC composite panel are shown in Figure 2.
The panel is modeled using 4-node layered shell finite elements based on higher order
shear deformation theory (HOST) [16]. The complete optimization results are shown in
Table 1.

Ny a=150mm
Lol b=150mm
] b N, =15daN/mm — g
3 w\ksé bl N, =5daN/mm
Ny:: & ::Ny 3
7 b E,, =14200daN/mm’
= L E,, =850daN/mm’
HHLXHH G,, =590daN /mm?’
b v, =032

Figure 2 Geometry and FE model of laminated composite panel
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Table 1: Optimal design of composite panel subject to buckling constraints

Sequences Wopt Condition| ¢, [mm]| teo[mm]| tss[mm]| tus[mm] to[mm] 5
[45/-45/0/90] | 0.09187| t, =, | 0.59776/ 0.12849| 0.31742 1.006
[45/-45/0], 0.09181] ¢, =t,| 0.73146 0.31514 1.0179
[0/90/45/-45], 0.09462 0.125 0.125 | 0.22735| 0.92449 0.9966
[45/-45/45/-45]| 0.08853 0.28935| 0.80231 0.993

0.125 0.125

[30/-30/0/90]| 0.09453| ¢, =t,| 0.57937 0.13951 0.3408]  1.0126
[0790], 0.10525 0.7796| 0.7796 1.0009

[45/-45/0/90],, A=1.006 [45/-45/45/-45),» 4=0.993

Fig. 3 Buckling modes of optimized panels with stability constraints

The effect of the stacking sequences on minimum weight of the composite panel, W, is
evident.

Example 2: Optimization of Aircraft Parachute Composite Beam

As very illustrative example for multilevel optimization procedure the fibrous composite
parachute beam considered. The structure of parachute beam shown in Fig. 4 idealized
with membrane finite elements. The elements consist of four layers in the 0°,90° and +45°
directions. The 0° fibers are parallel to the length of the beam. The parachute composite
beam was subject to static loading conditions. The aircraft parashute composite beam
shown in Fig. 4 used for system level optimization.

Material of composite beam was graphite/epoxy NCHR 914/34%/132/ T300 with next
mechanical properties:

E;;=126800 MPa F,,'=1362 MPa
E22=9220 MPa F]]C=1333 MPa
E;;=9220 MPa Fyn'= 42 MPa
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G|2=4620 MPa F22C= 172 MPa
G23=G13=720 MPa F12 =100 MPa
V11=V13=Vy3 t layer=0-13 mm

Fig. 4 Parachute CFC-composite beam

There are four mechanical fastened joints (holes) on the end of the parachute beam. The
loads are introduced in these holes. Zone around each hole considered as substructure. This
substructure has characteristic curve, as defined in Fig. 1, is modeled by very refined finite
element mesh. The substructure (rectangular panel with central hole) is treated as
optimization model on the local level. The Yamada-Sun criterion (29) around characteristic
curve (28) used as constraints in local level optimization. For this purpose, in the local level,
SUMT optimization algorithm is used. Optimization results of this substructure are
thicknesses of layers:

t( 0% =2.08 mm

t2(+45°) =0.78 mm

t3 (-45° =0.78 mm

ty ( 90°) =0.26 mm
Failure load that is in this analysis obtained: Fy= 2297 daN. Failure was initiated in layer

0°, with extension type of mechanism of failure 75° <® ;< 90°.

Failure loads that are experimentally obtained: (F; = 2087 daN, F, =2296 daN and F; =
2390 daN).

Good agreement between numerical and experimental results is evident. Detail
comparisons between numerical and experimental results are given in Ref. [13]. Difference
between numerical and experimental results is maximum 5%. In this work optimization
results of one substructure are presented only. These results illustrate multilevel
optimization process.

Example 3: Minimum Weight Design of Nose Landing Gear with Stability Constraints

Here is illustrated minimum weight design of nose landing gear with stability constraints
(See Section 4.2). This part is modeled by shell finite elements based on HOST [16].
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FE model of Nose Landing Gear Part of landing gear modeled by shell finite
elements

Figure 5 FE model of landing gear
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Figure 6 Weight history of part landing gear modeled by shell finite elements

Figure 6 shows weight history design of optimization process. The minimum weight of
structure is obtained after 6 iterations only. Here is used dual algorithm based on OC
approach.

7 Conclusions

The obtained results demonstrate the practicality of multilevel optimization approach in
the design of the complex aircraft structures. In this study two-level optimization
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algorithm is applied; system- and component level. From the various investigated test
problems it becomes clear that the choice of various optimization algorithms at each level
play a major role in the efficiency of the whole optimization process. Presented multilevel
optimization approach uses optimality criteria’s algorithm in conjunction with a
Sequential Unconstrained Minimization Technique (SUMT). Optimality criteria's
algorithms are used for system level optimization i.e. in case of weight minimization
subject to global (system) constraints that can be displacements, system stability,
frequencies, flutter etc. Nonlinear Mathematical Programming optimization algorithms are
used for local (component) level optimization. Combining FEA, approximation concepts
and OC or dual algorithms has led to a very efficient method for minimum weight sizing
of large-scale structural systems. The proposed method is suitable for designing practical
large-scale structures with a large number of design variables. Finally, minimum weight
designs obtained for the aircraft parachute composite beam illustrate the application of the
multilevel approach to a relatively large structural system.
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Abstract. The modelling and calculation of parameters of involute gear pair
dynamics is basic requirement for studying of gears stability and energy
efficiency. In this paper, the dynamic model of involute gear pair is used in
the comparative study of spur and helical involute gears with their stability as
the dominant aspect. The stiffness and load distribution for research of gears
dynamic behaviour have been calculated with the finite element method. The
special attention was paid to define the procedure for time-varying mesh
stiffness calculation. The obtained results shown as phase portraits confirm
that the helical gear pair has more stabile work than the spur gear pair with
same main geometry and load. Described procedure can be used for future
investigation of optimal gears parameters (e.g. tooth profile, nominal load)
with aspect of gear pair stability.

1. Introduction

In order to study gears stability and energy efficiency, in recent years the focus is on
nonlinear dynamics of gears. Many authors have investigated and discussed this
problem from wide range of aspects, [1-4], and point out the importance of studying the
nonlinear oscillations of gears from aspect of competitive limitations of noise level and
vibrations. In this paper, the comparative study of spur and helical involute gears with
their stability as the dominant aspect has been discussed.

The precise solution for involute gears oscillations can be obtained only if non-linear
functions of stiffness and load are known. In the literature, the tooth stiffness and mesh
stiffness are treated in different ways. In the simpler models, the gear mesh stiffness is
assumed to be constant. In last decade, authors overcame this simplification and
presented various methods for teeth deformation, teeth stiffness and load calculation.
Thus, some of them determined the dynamic load between two elastic helical gears with
excitation from new incoming contacts and calculated the total deformation of contact
teeth as sum of numerical calculated (with Finite Element Method) teeth bending
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deformations and analytical calculated Hertz’s teeth contact deformations. But, they
neglected influence of load value on contact deformations. The importance of
determination of variable contact area in simulation of contact problems in gears is
discussed by Ulaga, [5]. They presented a new Finite element technique for more
accurate contact stress predictions, while Pedrero et al. [6] described minimum elastic
potential criterion as method for calculation of load distribution in involute gears mesh.
But they still used Hertz’s formulae for contact in one point and neglected influence of
load value. This is not appropriate calculation methods for teeth total deformations,
because contact deformation depends of the magnitude of load and must be determined
through iterative procedure [7]. In the new series of papers, [3,8,9,10,11] have been
confirmed the Finite Element Method (FEM) as out of competition method for
investigations of deformations and load distribution for involute gears.

The main objective of this paper is to present a method to determine the load in a gear
pair considering the actual positions of the contacts and the actual deformations of the
gear teeth. The determination of positions of the contacts and the actual deformations of
the gear teeth are then used to determine the mesh stiffness and load distribution
between the meshed teeth pairs. These values are used in gear pair dynamic model to
obtain the analysis of involute spur and involute helical gears motion.

2. Theoretical gear pair dynamic model

A pair of gears is simulated with two disks coupled with non-linear mesh stiffness and
mesh damping. Many authors confirmed this simplified dynamic model and focus their
investigation resources on various influence factors [12,13,14,15]. In this model one
disk (driving gear) has radius r, and mass moment of inertia J; and the other (driven
gear) has radius r, and mass moment of inertia J,. The radii r; and r, correspond to the
radii of the base circles of the two gears, respectively (Fig.la). The dynamic
transmission error is the difference between the actual and ideal position of the driven
gear and can be expressed as a linear displacement along the line of action (x). It is very
important to calculate the x(7) function (7 - time) to predict gear noise and increase gears
life. Reduction to the line of action [16,17], transforms the gear model II (model with
two steps of freedom, Fig.1a) to gear model I (model with one step of freedom, Fig.1b).

a) b

Figure 1. Dynamic model of gear pair.
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a) model II - with two steps of freedom, b) model I - with one step of freedom

Nonlinear dynamic analytical model of involute gears motion for model II can be given
with equations:

my¥y +d (1)) — %)+ o)) —x3) = F, (1) (1a)

maky —d ()% — %y) = co(D)(x; = xy) = =F, (1) (1b)

and for model I with equation:

MypgX+d, ()X +co()x=F,(t). 2)

In these equations: m; (i=1,2) are equivalent masses of gears and m,,, is reduced mass of
gears, co(?) is the gear mesh stiffness function, d,(f) is the gear mesh dumping function
and F,(r) is the function of normal load distribution between the gear teeth in mesh,
during gear meshing period. The mathematical models can be used for the analysis of
the gears oscillation parameters, only if all functions are known. In the research
presented in this paper, the stiffness and load distribution are calculated using the true
contact geometry of the involute gears as elastic bodies. The developed finite element
model presented in previous papers [11,18] have been used. Damping value is assumed
to be equal to 1 which excludes its influence on the gears oscillation characteristics,
[17]. The calculation of nonlinear damping in dynamics of gear mesh is subject that
requests widely access and research, [19].

2.1. Teeth stiffness and mesh stiffness

In general, stiffness is the force that causes unit deformation. There are different
variables that describe stiffness for meshed gears. In this paper, the few of them are
used. The tooth stiffness can be defined as ratio of differential of unit normal load in
tooth face plane section d(F}/B) and appropriate elastic deformation:

d(F,/B)

c=L0l2) 3)

du

The tooth stiffness depends of many influence factors (gears geometry, load value,
material characteristics etc.) and varies along length of action, as well as along line of
contact of a teeth pair. Determination of tooth stiffness function is very important point
in involute gears investigations, especially for helical gears. The complex helical gears
geometry and variable length and position of teeth contact lines during mesh period
require complex study of teeth contact and stiffness, [20]. Contact lines are not parallel
to gears axis during meshing period for helical gears. Therefore, teeth pairs coming in
mesh gradually. This leads to continuously changing of contact line length and makes
load distribution calculation very complex. Zone of action (contact zone) for involute
parallel-axis gears with helical teeth is the rectangular area in the plane of action
bounded by the length of action and the effective face width, Fig.2.
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ﬂﬁ'/////

C IR T

Figure 2. Zone of action for involute parallel-axis gears with helical teeth.

The tooth stiffness at each point of line of teeth pair contact is called specific tooth
stiffness and can be obtained as ratio of unit load and tooth deformation for any specific
point:

¢, =qlu. 4

For calculation of unit stiffness for i teeth pair (when m teeth pair are simultaneously in
contact), contact is simulated with serially connected springs, which is in accordance
with contact modelling in mechanics. So, the specific teeth pair stiffness for any contact
point when unit specific tooth stiffness for pinion tooth c, and wheel tooth cg,, are
known has following form:

Csp(i) :—651,1 Cop2 . )
Cspl + CspZ

In many theoretical calculations, the assumption of constant teeth pair stiffness along
line of contact exists. The average teeth pair stiffness along line of contact is used as
constant teeth stiffness and can be calculated for every of m teeth pair in contact as
average value of specific teeth pair stiffness along line of contact:

c'=qlu. (©)

The previous mentioned dynamic models of gears motion [14,15] use simplified stiffness
variable called total mesh stiffness ¢, that is sum of total teeth pair stiffness for all
simultaneously meshed teeth pairs.

For involute spur gears, that means:

co=B-Y.¢;', i=1 for single tooth pair contact period
i =1,2 for period with two teeth pair in contact. @)

where: ¢; is average teeth pair stiffness for /™ teeth pair in contact and B is length of
line of contact, i.j. gear facewidth.
For involute helical gears, that means:

o= Z(Ci "“B;), i=1,2 for two teeth pair in contact
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i =1,2,3 for three teeth pair in contact. (8)

where B; is length of line of contact for i™ teeth pair.
3. Analytical solution of nonlinear load distribution for spur gears

3.1. Load distribution over simultaneously meshed tooth pairs

For cylindrical involute straight-tooth gears (spur gears), the problem of load
distribution in mesh could be solved with separately solved two load distributions: the
load distribution over simultaneously meshed tooth pairs and the load distribution over a
gear facewidth. Paper [21] describes the solution of load distribution over
simultaneously meshed tooth pairs. This solution is used as the starting point in research
described in this paper.

The following equations describe the gear load distribution in an analytical form
[21,22]:

- o By _a'Fy - _ o By _o'Fy
1= PSRRI A - L
c'+tcy' B o c+tcy' B o

3.2. Load distribution over gear facewidth

In real working conditions, the load distribution over gear facewidth is non-uniform and
can be described with function ¢(z), which defines the unite load change along the tooth
pair contact line. The system of integral equation, which consists of the contact equation
and balance equation, represents the starting point for determination of real load
distribution over gear facewidth. This system can be presented in the following form:

€

B
[4(2)- K(z.u)dz = A+ Fy(2); (10)
0

B
fq(z)dz =F, . (1
0

Where: g(z) — is the function of unite load change along the tooth pair contact line;
K(z,u) — is influence function, which defines the relation between u (elastic deformation
at one particular point on the contact pattern) and ¢(z)dz (concentrated load at the same
point); z — is the coordinate of the studied point along contact pattern; A — is total tooth
pair deformation in the direction normal to tooth pair contact pattern; Fp(z) — is mesh
initial misalignment (deviation between pinion tooth facewidth direction and wheel
tooth facewidth direction when the gear pair is nonloaded); F}, — is total normal load
value for gear pair in mesh.

It’s very hard or almost impossible to determine real values for many factors and
variables that have crucial influence on the accurate form of the function ¢(z), as well as

1Y)
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on the value of real tooth pair bearing pattern length B. Also, there is very small
possibility to determine and to take into the calculation the real values for gear body
deformation, gear rim deformation and deformations of all other parts of gear
transmission. Therefore, the determination of function g(z), with very high level of
accuracy, is impossible and a system of integral equations defined with the expressions
(10) and (11) could be solved only by numerical method usage with the same
simplification and assumptions.

The discrete method for solving the problem of load distribution over gear facewidth is
used in this paper. During single meshed tooth pair period, the main principle of this
method defines tooth pair contact pattern like the final number of equal segments.
Generally, a length of these segments is nearly a value of gear pair module m, Fig. 3.
Then, value of load ¢, (z) that acts on the /™ segment (part) of tooth pair contact pattern

substitutes with uniform unite load [7] , 1.e. with concentrated force F, :qu.AZj . Finally,

the discrete method gives the system of integral equations that can be translated to the
equivalent system of algebraic equations. A lot of numerical methods can be use for this
translation.

The matrix form of the mentioned equivalent system of algebraic equations is:

K, K, ... K, A +Fy,
1
K, K, ... K, 7 A, +F;
. . . 3 .
: : o T = : . (12)
Knl KnZ s Knn F An + Fﬁn
IS DR T FE,

where each matrix element K represents the sum of all influence factors for both gears,
i.e. the total coefficient for influences of force that acts on the k™ segment of tooth pair
contact pattern to the deformation of the j segment of the tooth pair contact pattern.

1

I
1B EREEDE

|
[STe[e]e

2
-

ib|=m
kil =L

Figure 3. Partition of tooth pair contact pattern on finale number of equal segments.

In equation (12), F}, j=1,n are unknown forces that act on the center points of segments
and their values define the load distribution over gear facewidth, and A, j=1,n is the
displacements of the center points of contact pattern segments which are increased for
corresponding mesh misalignments due to manufacturing and assembly (Fg;, j=1,n). A;
and Fp; are corresponding values in the direction which is identical to the direction of
normal load. The solution of the system of algebraic equations (12) gives values F; and
this define the real load distribution over facewidth and real length of tooth bearing
pattern during transmission of external load defined with force F,.
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4. Analytical solution of nonlinear load distribution for helical gears

The helical gears nonlinear load distribution in gear mesh could be solved only by
resolving the load distribution between simultaneously meshed teeth pairs and the load
distribution along each of teeth pair contact line, at the same time. For mathematical
definition of load distribution in helical gear mesh, the expanded procedure for load
distribution over gear facewidth for involute spur gear could be used.

For every moment (contact position P) during helical gears meshing period m tooth pairs
are simultaneously in contact. System of integral equations, which consists of the contact
equation and balance equation, can be defined for each i" of m simultaneously meshed
tooth pairs for single contact position. This system can be presented in the following
form:

B;

i

IQi(Z)'Ki(Z’“)dzzAi+F/;’i(z)' (13)
0
B;
[4i(2)dz = Fp; . (14)
0

Where: ¢;(z) — is function of unit load change along the i™ tooth pair contact line, B; — is
length of i™ teeth pair contact line for a contact position P, Ki(z,u) — is influence
function, which defines relation between u (elastic deformation at one particular point
on the contact pattern) and g;(z)dz (concentrated load at the same point), z — is
coordinate of studied point along contact pattern, A; — is total tooth pair deformation in
the direction normal to tooth pair contact pattern, Fj(z) — is mesh initial misalignment
(deviation between pinion tooth facewidth direction and wheel tooth facewidth direction
when the gear pair is unloaded), F},; — is total normal load value for i tooth pair in
mesh.

Systems of equations (3) and (4) for all m simultaneously meshed tooth pairs and
equation of load balance:

an1+an2+“'+anm=an' (15)

give system of (2m+1) equation for load distribution solution. It’s very hard or almost
impossible to determine real values for many factors and variables that have crucial
influence on accurate form of the function ¢;(z), as well as on value of real tooth pair
bearing pattern length B;. Therefore, this system of integral equations can be solved only
by numerical method usage with same simplification and assumptions.

The main difference between discrete method developed for spur gear pair and helical
gear pair is in the number of tooth pairs that are simultaneously in mesh and in variable
tooth pair bearing pattern length. It is consider that the n; is the number of segments on
the /™ tooth pair contact line, so the equation (15) takes the following form:
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m n;

zzqij'Biszbn' (16)
i=1j=1

where g;; — is normal unit load along the /™ segment of i"™ tooth pair contact line; B —is
length of the segment. The numerical Finite Element Method is used for calculation of
these values.

5. Finite Element Analysis for load distribution calculation

This chapter of the paper describes Finite Element Analysis (FEA) of spur and helical
gears. Appropriate analysis is performed in order to select meshed gears model which is
sufficiently economic and in same tame sufficiently geometrically accurate, [18]. The
chosen FEM models each consist of three gear’s teeth. The special algorithm for tooth’s
involute profile drawing is developed and built in present FEM software to assure
drawing of real involute flanks contact geometry. Also, choice of optimal mesh size level
is performed, [18]. Described FEM models are made for one particular gear pair with
high value of transmission ratio, that enable us to perceive all potential problems during
stress and strain calculations. The main characteristics of the gear pair are: number of
teeth 7,=20, z,=96; standard tooth involute profile, addendum modification coefficients
x1=0.3, %,=0.2; face width b=175 mm; module m,=24; pressure angle ¢;,=20°; rotational
wheel speed n,=4.1596 min’'; wheel torque T,=1264.4 KN-m, material: steel with E =
206 000 N/mm?; v =0.3; helix angle =15° and pinion teeth inclination — right, wheel
teeth inclination — left (for the investigated helical gear pair only). For defined geometry
characteristics and torque, the normal nominal load that this gear pair transmits is Fj,,=
1168.0354 KN. The appropriate Finite Element Analysis gives the possibilities for
monitoring of deformation and stress variables during tooth pair meshing period.

5.1. FEA for a spur gear pair

Finite Element Analysis for the spur gear pair with previous defined characteristics is
performed by FEM model shown in Fig.4a,b and in detail described in previous papers,
[11,18]. For solving the stiffness and load distribution for gear pair dynamic model the
specific iterative procedure has been used: In the first iteration, for the period with two
teeth pairs in contact, the uniform distribution of normal load Fp, between

simultaneously meshed teeth pairs is assumed (q_lza). For this load case, the FEA

gave results for total pinion tooth deformation and total wheel tooth deformation (u,
and u,,) — equal to displacements of contact points in the direction of the path of contact.
Sum of these values represents the total deformation for a teeth pair in mesh u’. Then,
equation (6) gives the values of tooth pair stiffness ¢;” for both of simultaneously meshed
teeth pairs, as well as the equation (7) for the total mesh stiffness cy. When the obtained
values are inserted in equations (9) the unit loads g; , i=1,2 result in corrected values.

Then new FEA with same gear models, but with corrected loading, produce results for
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the next iteration of unit load values. Number of iterations depends on the partcular level
of accuracy required.

In the last iteration, the developed methodology and FEM calculations give all the
values necessary for determination of the key parameters: tooth deformations, tooth
stiffness, load distribution, maximum equivalent stress in tooth roots and maximum
equivalent stress on the meshing tooth flanks, Fig.4c.

TN B

[ I}

Figure 4. The spur gear FEM model and equivalent stresses for pinion gear.

5.2. FEA for a helical gear pair

Finite Element Analysis for the helical gear pair with previous defined characteristics is
performed by FEM model shown in Fig.5a,b and in detail described in previous papers,
[10]. For solving the stiffness and load distribution for gear pair dynamic model a
similar iterative procedure has been used: In first step (iteration), total normal load for a
contact position P is divided on simultaneously meshed tooth pairs in proportion of
appropriate bearing pattern lengths, which are scanned from FEM nonlinear contact
solution for the investigated gear pair. Therefore, the normal load on i™ meshed tooth
pair is:

F,=B,-F,,/)B;. (17)
i=l

a) b) c)

Figure 5. The helical gear FEM model and equivalent stresses for pinion gear.

Then, tooth pair stiffness of /" segment on i line of contact is calculated as ratio of unit
normal load and total teeth deformations in the direction of line of contact scanned from
FEA results, Eq.4. For the next iteration normal load is divided on tooth pairs in mesh
in accordance with stiffness values and bearing pattern lengths:
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¢i"Fpy

m
2.(¢;"B;)
i=1

In the last iteration, the developed methodology and FEM calculations give results
needed for dynamic behaviour modelling: tooth deformations, tooth stiffness, load
distribution, maximum equivalent stress in tooth roots and maximum equivalent stress
on the meshing tooth flanks, Fig.5c.

Fbti = 'Bi . (18)

6. Results and discussion

For the investigated spur gear pair the results are obtained by described procedure and
displayed in this chapter for the middle teeth pairs of modelled gear segments.

On Fig.6 obtained distribution of specific tooth stiffness is presented: along path of
contact (Fig.6a) and along gear facewidth for the contact point with maximum stresses,
Fig.6b. On this diagrams the variable y/p,, [-] is ratio of contact point position on line of
contact (measured from start contact point) y and base pitch p,. The appropriate load
distribution obtained from shown stiffness distribution is calculated with Eq.9 and
shown on Fig.6¢c. Total mesh stiffness for a spur teeth pair is shown on Fig.7. The mesh
stiffness variation is presented during two time periods of the gear pair motion.

For the investigated helical gear pair, results for the specific stiffness and normal load
distribution are obtained by described procedure and shown on Fig.8. The results are
displayed for one tooth pair meshing period. On this diagrams the variable y/p;, [-] is
ratio of contact point position on line of contact (measured from start contact point) y
and transverse base pitch py, and the variable z [mm] is distance of contact point form
tooth face surface.
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Figure 6. The results for spur gear stiffness and load distribution.
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Figure 7. Total mesh stiffness during spur gear meshing.

The specific stiffness that is calculated and shown at Fig.8 and the real teeth pair bearing
pattern lengths B; (i=1,2,3) taken from the FEM helical gears model are used for the
calculation of total mesh stiffness ¢y (N/m) by Eq.8. The trend of the total mesh stiffness
change during the periods with two and three simultaneously meshed gear pairs is shown
in Fig.9. Results shown in this diagram correspond to three tooth pair mesh periods. The
diagrams shown in Fig.7 and Fig.9 have the expected form in accordance with results of
other authors, [17].
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Figure 8. Mesh stiffness and normal load distribution for helical gear pair.

60

[ [1

[
(=]

1%
8 8 5

—
(=]

total mesh stiffness, c(,[108 N/m]

(=]

T T T T T
0.00 0.05 0.10 0.15 020 0.25 0.30 0.35
Time [s]

Figure 9. Total mesh stiffness during helical gear meshing.
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Figure 10. Variation of spur gear pair displacement and velocity.

Obtained results for total mesh stiffness and normal load distribution for both of gear
pairs (spur and helical) are then put in nonlinear dynamic analytical model of involute
gears motion described with equation (1a,b) for model II and equations (2) for model .
In that way these analytical models become solvable. The Runge-Kutta numerical
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Figure 11. Variation of helical gear pair displacement.

iterative methods are used for solving the obtained differential equations. The
commercial MATLAB software is used for calculations.

The variation of displacements and velocity for the spur gear pair calculated with model
IT are shown in Fig.10. For the helical gear pair appropriate diagrams are shown in
Fig.11 and Fig.12. The results obtained for dynamic gear models I and II, are shown in
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comparative diagrams with the zooming details. Results in Fig.11 correspond to three
meshing periods and results in Fig.12 correspond to gear pair velocity for the same time
period.
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Figure 12. Variation of helical gear pair velocity.
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7. Conclusions

This paper shows the calculation of total mesh stiffness and nonlinear load
distribution for spur and helical involute gears with a new methodology and Finite
Element Analysis. The presented research successfully put together numerical
methods for stress and strain calculations and numerical iterative methods for
differential equations solving. Excellent qualitative superposition of results with
results of other authors, [2], led to the conclusion that developed models and
procedures are suitable for future research. The obtained results shown as phase
portraits in Fig.13 confirm that the helical gear pair has more stabile work than the
spur gear pair with same main geometry and load.

spur gear pair
helical gear pair
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Figure 13. Comparative phase portraits.

Although this fact has been known in theory of gears, the presented research is
important because the developed procedure gives the accurate assessment of the
differences between spur and helical gear pairs and can be used for future
investigation of optimal gears parameters (e.g. tooth profile, nominal load) with
aspect of gear pair stability. Also, the time-varying meshing damping could be
incorporate in developed model of gears dynamics.
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Abstract. The present paper deals with the problem of improving of dynamic characteristics
some structures. Dynamic modification procedure is given as using distribution of potential
and kinetic energy in every finite element is used for analysis. Also, the paper will discuss the
introducing of a probabilistic treatment of important problem parameters. Most numerical
simulations of physical systems are rife with sources of uncertainty. Uncertainty in
simulations stems from the stochastic nature of geometric and physical parameters,
indeterminate nature of initial/boundary conditions, and inadequacy of physical models
coupled with discretization errors. Structural modifications can cause changes in the matrices
of some elements. Depending on the type of structure, or a desired change, a group of
elements can be modified

Key words: dynamic modification, reanalysis, uncertainty

1 Introduction

Dynamic response of mechanical systems depends on structural parameters. The
objective is to evaluate the structural response for successive modifications in the design
avoiding the difficult solution of the modified equations. The structural modifications
may be caused by external factors or by the designer in order to improve the
characteristic of the response (eigenvalues and eigenvectors). Modification of dynamic
characteristics means change of corresponding design variables to get desired dynamic
behavior of structure. The design variables depend on the type of optimization problem.
In the design of structural components, such as stiffened panels and cylinders, the design
parameters represent the spacing of the stiffeners, the size and shape of the stiffeners,
and the thickness of the skin. The thickness of plates, cross-sectional areas of bars,
areas, moments of inertia, and torsion constants of beams represent sizes of the
elements. Joints and members could be eventually added or deleted during the design
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procedure so that the geometry of the structures may be modified. Reanalysis methods
can include the next activities:

(a) Modification in the geometry with no further change in the number of degrees of
freedom.

(b) Modification of design variables (mass, damping and stiffness).

(c) Increase or reduction of the number of DOFs by changing the supporting manner
and addition or deletion of joints and members.

(d) Alteration of the kind of material on some places if modification is possible. The
main purpose of dynamic reanalysis is to provide numerical procedures to evaluate the
structural response after modifications of design variables.

The development of a new, simple procedure for structural reanalysis of mechanical
system must be capable of modifying its dynamic properties while achieving requested
characteristics with conveniently fast convergence of the whole process. The analytical
method with a clear concept, based on distribution of kinetic and potential energies is
used for modifying the dynamic properties of main vibration (oscillation) forms,
occurring in individual components or in grouped assemblies. The analysis of complex
structures begins with initial rough analysis of a structure that is followed by the analysis
of grouped structural assemblies. The final phase is the precise analysis based on
sensitivities of individual elements. The selection of structural parameters for dynamic
properties improvement through eventual modification according to energy distribution
includes geometry, supporting system and material characteristics. Based on this
approach, the corresponding algorithm is proposed and applied. One of the important
performances of this algorithm is convenience for rational implementation in computer
systems, using appropriate software. In this way, relevant data for structural system
dynamic response during reanalysis can be obtained and considered in the optimization.
The main purpose of dynamic reanalysis is to provide numerical procedures to evaluate
the structural response after modifications of design variables.

1.1 Literature Overview

The basic theory for determining the existence of solution for frame structure
optimization with frequency limits is found in Ref. (Tong at all, 2000). According to this
theory, natural frequencies do not change with uniform frame modification and key
limitation for determination of optimal dynamic solution of frame structure modification
is mostly that of eigenfrequencies. The optimization criteria for space frame structure
with multiple limitations in its natural frequencies are considered in (Wang at all,
2004). Knott coordinates and cross sections of elements, although of different nature,
have been treated simultaneously in unified design specification for a minimum weight
of structure. Optimum first criterion, developed for one limitation based on
differentiation of the Lagrange function, indicates that at optimum all the variables are
of the same efficiency. In order to solve multiple limitations of frequencies global
numbers are introduced, avoiding in this way the calculation of Lagrange’s
multiplicators.

In the final stage, the most efficient variables are identified and modified as priority.
Using the minimal weight increment, optimal solution can be obtained from initial
design solution. The procedure is also effective for repeated values of frequency. In
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paper (Nair at all, 1998) the model for modified dynamic structural system is presented,
based on reduced appreciative concept of improved method for the approximation of
eigenvalues and eigenvectors of first order. The expressions for local approximation
based on Taylor's series are used as base vectors for eigenparameters perturbance
approximation. The reduced system of eigenvalues is generated for each eigenvector
using eigenvectors as a base and Ritz's vector approximation of first order. The
equations for reanalysis are algebraic (Wamg at all, 1986). A new function to limit
eigenvalues approximation in the procedure of structural optimization is introduced in
(Canfield, 1990). Applied Reyli ratio increases the approximation quality for frequency
limitations since it approximates eigenforms energy and kinetic energy instead
eigenvalues, producing faster and stable convergent solutions.

The application of iterative method for sensitivity determination in reanalysis of
structure due to small perturbances of design variables is applied in numerical
procedure, discussed in (Yoon, 1988). In this paper the algorithms for displacements
and stresses are given, as well as for eigenvalues and forms. The scheme of iteration is
modified saving matrix coefficients as constant and using only one decomposition.
Implementation of algorithm is simple, and the convergence fast. The extension of the
method to the sensitivity of eigenfrequencies with repeated values is convenient to avoid
the conditions of matrix coefficients close to bifurcation points, which occurs when non-
linear response of a structure is considered.

It should be noted that dynamic response is given primarily through corresponding
eigenfrequencies and main oscillation forms as characteristic (typical) variables.
Changing them, by changing the design parameters of a structure, it is possible to
achieve the required structural dynamic response.

Sensitivity analysis is an important point within the dynamical modification procedure.
Sensitivity analysis represents a collection of mathematical methods for reanalyzing
structures which is, within dynamical modification, related to sensitivity of eigenvalues
and eigenvectors. Therefore, the application of sensitivity analysis is limited to
construction of segments for which necessary mathematical relations can be determined.
If this is not possible, sensitivity analysis is only partially applicable. Dynamical analysis
of complex structures can easily be conducted via finite elements modeling. Therefore,
while finite element analysis method is highly adequate for modeling complex
structures, one of its major drawbacks lies in the usage of large number of degrees of
freedom in calculating the exact eigenpairs. This number can amount to few tens of
thousands, or even more. To reduce the calculation time it is possible to divide the
complex structure into connected substructures and analyze each one separately. The
dynamical behavior of each substructure is represented only by a reduced set of
eigenpairs of interest, which contributes to significant problem simplification. A more
general problem of structural dynamic analysis has three important aspects. Firstly, the
observed physical structure is represented by initial finite element model. Modeling is
based on numerous idealizing approximations within an exaggerated elaboration of
details, which in essence does not significantly improve the accuracy of output data,
especially having available powerful computers and appropriate software packages.
Optimal alternative is to have the possibility of verifying outputted data that were
measured on a prototype or real structure. Secondly, the dynamic characteristics of
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construction under reanalysis are analyzed. What is basically observed are eigenvalues
and main forms of oscillations as characteristic variables that can invoke inadequate
actual dynamic behavior. Thirdly, on the basis of the analysis of actual dynamic
behavior, modification steps are proposed after which a modified model is obtained.
Having in mind that mechanical structures are most often very complex, the most
convenient modification steps are not easily obtained.

1.2 Uncertainty quantification

Uncertainty quantification in structures is a very important field of investigation, due to
its influence on subjects such as structures reliability and model validation amongst
others. Uncertainty quantification in structures can be used where the uncertainties
introduced by random forces were applied to the structure Lin (1969). Cacciola at all
(2005) did research on the procedure for the dynamic reanalysis of linear systems
subjected to deterministic or stochastic loads. The structural modifications may be
imposed by external factors (e.g. design alterations for operational reasons, or
discrepancies between the predicted and measured properties of the structures) or by the
designer in order to improve the characteristic of the response (e.g. layout optimization).
Joints and members could be eventually added or deleted during the design procedure so
that the topology of the structures may be modified. Reanalysis techniques are
commonly devoted to efficiently determine the structural response produced by the
following events:

1. modification in the geometry with no further change in the number of degrees of
freedom (DOFs);

2. alteration of dynamic characteristics of structural components (mass, damping and
stiffness);

3. variation of the number of DOFs due to addition or deletion of joints and members;

4. alteration of loads due to both modification of the original number and position of
joints and for changing in the intensity of external excitations.

Cacciola at all (2005) stated that most reanalysis methods are not able to deal with the
last two modifications, which are usually named topological modifications as they imply
a change in the dimension of the system due to addition or deletion of DOFs.

Kirsch and Liu (1997) focused a static reanalysis method by researching the
characteristic of a modified initial design for the case of layout modification (no changes
in the number of degrees of freedom).

Lecomte (2013) investigated the response of uncertain vibro-acustic and structural
dynamic systems. In this paper, it is shown the comparison of the exact means,
variances, covariances, as well as the exact stochastic and covariance coefficients, with
their estimates obtained through Monte-Carlo simulations that confirmed the advantages
of the analytical approach.

2. PROBLEM SETUP
Sensitivity examination on real examples still presents a troublesome task so that the

analysis of distribution of specified values is performed instead. The distribution of
optimization elements is an example of reanalysis which is expressed in percentages of
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specified quantities from a chosen group of elements. By posing the task of obtaining the
desired first or other eigenfrequency of a system, construction analysis often requires the
calculation of a great number of construction alternatives. However, through reanalysis,
which is based on balancing the distribution of kinetic and potential energy of all finite
elements in the model, it is possible to efficiently obtain the desired eigenfrequencies of
a system. The main goal of dynamic optimization is to increase natural frequencies and
to increase the difference between them. Some information should be prepared, before
you set up the FE model.

The matrix form of differential equations of motion for a system that is not subjected to
external forces is:

br}-{oo |+ o) -0

Eigenvalue of this differential equation for i-th mode is:

(ke }-4m{e }={o} (2)

=i =i

()

Given that [AK] and [AM] are the corresponding changes in rigidity and mass

matrices respectively, then the formula (2) can be applied to the modified system and so
called modified equation for the case of free oscillations is: [K]'{Q }'z A '[M]'{Q_}"

where we have substituted

[K]1=[K]-[AK], [M]=[M]-[AM], (3)

{Q,} :{Q,’}I_{AQ,’}’ A =4-A%
where A4, and {AQ} are changes of eigenvalues and eigenvectors, respectively.

—71

Assuming that the changes in the construction are small, it can be expected that
the changes of values of vectors of eigenvalues and eigenvectors will also be small.
Therefore, the higher order members in the following equations can be neglected (Ki,
1983). After mathematical transformation it is possible to express the change of i-th
eigenvalue under system modification, which was the final purpose of this procedure:

1 T Ry T :
A% _E{Qz} [AK]{Qi}_Eﬂi {Qz} [AM]{Qi} ) )

Jlefonfe)

The previous formula can be considered as basic expression in construction reanalysis
aimed at improving dynamic characteristics. The expression in the nominator represents
the difference of increases in potential and kinetic energy between modified and
unmodified states. Since the increase in i-th eigenvalue is directly proportional to this
difference, each member of the nominator is of vital importance for analysis, which will
be shown in detail further in the text. Another important question arises from analyzing
the previous formula. The designations “ ' * depict the values which are related to the
modified state. Often, due to large size of a certain problem, it is not possible to easily
obtain those values. If those changes are small, which is a prerequisite for obtaining
accurate solution it is possible, with great degree of reliability, to use the expression with
values that are related to unmodified system:
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The expression in the denominator of equation (5) represents the kinetic energy of a
certain oscillation mode and having in mind equation (2), it also represents the potential
energy, for reasons of energy balance in the main oscillation modes.

where:

oY wmie}. E, =k, =E

=r =r

If the energy distribution over groups of elements is expressed in percentages
for each main oscillation mode, it is possible to obtain rough information that can be
used in modification. The basic goal of dynamic modification is to increase the
eigenvalues and their distances. The formula (5) is important for understanding the
procedure that requires modification of a certain construction. The denominator of
previous formula is not changed in the procedure of modification, so the main point of
analysis is placed on the nominator. The modification of construction assumes the
change in only but few segments that are most responsive to change. This sensitivity is
expressed in the fact that the change of certain construction parameters of these
segments will result in greatest difference in the nominator of previous formula, and
consequently in greatest effect on increasing the observed eigenfrequency of the system.
Since the observed structures are already in exploitation, the essence of improving
dynamic behavior is to achieve maximum change with minimal “intervention”. The
question is how to determine segments or substructures of a construction that are most
sensitive to small changes in their parameters?

The problem of dynamic modification of a construction with the goal of improving
dynamic characteristics has been a worldwide challenge for many researchers in
previous decades (Trisovic (2007), Trisovic at all (2010), Allaboudi at all (2013).

The methods thereby used are widely different, from strictly mathematical do entirely
experimental. Dynamic response of a mechanical structure must be improved by either
(i) load control, or (ii) change in dynamic characteristics of a structure. Loads are often
the result of interaction of the structure and its environment, so they are not easily
controlled. In that case, it is important to know that the dynamic response can be
improved by redesigning (reanalyzing) the dynamical characteristics of the structure.
Having this in mind, the application of the techniques of reanalysis in obtaining the
desired conditions for FE model of mechanical structures has shown a rapid
improvement in previous decades. There are numerous techniques that are applied in
dynamic reanalysis of mechanical structures. One of them has been already mentioned,
sensitivity analysis that is successfully applied in general as well as in specific dynamical
problems. The success of the procedure of dynamical modification depends on many
factors, most important of which are: complexity of a structure including the boundary
conditions, and modification method that a research team will choose to apply.

3.1. Dynamic analysis and diagnostics of a model and its groups
Dynamic analysis and diagnosis of a model implies the analysis and interpretation of
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model behavior and its modification. On the basis of the analysis of energy distributions
in main oscillation modes for all construction elements, the following cases are
observed, on the grounds of which it is possible to derive the algorithm for reanalysis of
similar structures.
I Elements in which the kinetic and potential energies (and the difference in
their increase) are negligible with respect to other elements.
I Elements in which the kinetic energy is dominant compared to potential energy
III Elements in which the potential energy is dominant compared to kinetic energy
IV Elements in which the potential and kinetic energy exist and are not negligible
in comparison with other elements

4. CASE STUDY

Using the example of a cantilever beam, the application of the reanalysis formula has
been demonstrated in determining the zones of the construction that are most sensitive
to changes. Two models are observed: original and arbitrarily modified. The condition is
that the modification be small, otherwise the linearization of modification equations,
presented in the previous section, would not hold. Note that during the reanalysis,
instead of eigencalculations for the changed construction, the corresponding reanalysis
formula can be applied, where it is necessary to calculate the coefficients of modification
o and f3, as well as relative modification ratios y and C. It is thus possible to considerably
save calculation time, and it will be particularly demonstrated that by the line finite
elements the reanalysis formula generates entirely reliable results. The type of
modification is determined by the type of finite elements, type of boundary conditions,
model geometry, and the like.

a. Deterministic input
Consider a cantilever beam of length 1m, rectangular cross-section,
bxh=100mmx50mm , divided into 5 finite elements (Fig. 1). In designations, in the
tables and diagrams, this cantilever beam is referred to as the original cantilever beam.
For the analysis of sensitivity to changes, the original cantilever beam is modified across
the entire length, with small modifications’.

Table 1. Few initial eigenvalues for the original cantilever beam and the modified one, where the
height, as a construction variable, is increased by 10%
Original cantilever beam Height increased by 10%
across the entire length

Modified shape, I, ILIILIV,V
Ah[%], Mat Lab:
8.6, +4, +0.97, -0.98, -2.59

Frequencies, | Eigenvalues, | Frequencies | Eigenvalues, | Frequencies | Eigenvalues,
foi[Hz] Ai foi[Hz] Ai foi[Hz] M
1443.94 82311011.93 1588.33 99596324.43 1472.33 85579889.95

In the literature dealing with dynamic reanalysis it is stressed that modifications should be small, so that the
chosen modification process converges to the desired eigenvalues of the pairs, however it is not easy to determine

what is *small’;
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730.93 21091661.91 804.02 25520910.91 748.59 22122917.88
260.24 2673654.72 286.26 3235122.21 270.70 2893010.45
41.51 68010.88 45.66 82293.17 45.82 82876.53

That cantilever beam is called a modified cantilever beam (Fig. 2). In this case, the
chosen construction variable is the height of the rectangular cross-section #h.
Calculations are performed with the software package MatLab that possesses the
function for calculating eigenvalues and eigenvectors. The lowest frequencies are always
of the utmost interest for analysis. The table below (table 1) shows a few initial
eigenvalues for the original cantilever beam and the modified one, where the height, as a
construction variable, is increased by 10%.

Fig. 3 displays the diagram of potential, £ Iz and kinetic, E, , energy distributions, and

their mutual difference, E »- E, , original cantilever beams for all elements in a row,

for the first oscillation mode, where the first eigenfrequency is fy; = 41.51Hz, and the

first eigenvalue is A,=68010.88 s>.
| I 1. I

S S

Fig. 1 Original cantilever beam
p=7833kg/m’, E=206840000000 N/m’;
b=0.1m, h=0.05m, I=1m

LI | -

Fig. 2 Arbitrarily modified cantilever beam
bi=b, hi=1.1h

| —&

| [ | ] I

Fig. 3 Diagram of potential and kinetic energy
distributions and their mutual difference for
the original cantilever beam [J].

Fig. 6 Modified cantilever beam after
the first iterative step

-
e il
S -_—

Fig. 4 Diagram of potential and kinetic energy Fig. 5 Diagram of potential and kinetic energy

growth rate distributions and their mutual
difference for modified and original cantilever
beam [J].

396

growth rate distributions and their mutual
difference for the modified cantilever beam
after the first iterative step (Fig. 4.5), and the
original cantilever beam [J].



Elements of dynamic modifications and sensitivity considering the efect of structural parameters uncentainty

Fig. 4 shows a digram of potential, AE Iz and kinetic, AE, , energy growth rates and

their difference AE »- AEk for the increased height across the entire beam length, by

10 %, for the first oscillation mode. The first frequency of a modified cantilever beam is
fqy = 45.66Hz, while the first eigenvalue is A’ =82293.17s™. It is noticeable that the
first eigenvalue growth rate is ALk} = +21 %, and the corresponding eigenfrequency
growth rate is Afy; =1f¢;- fo; =+10 %

Fig. 5 displays a diagram of potential, AE T and kinetic, AEk , energy growth rates

and their difference AE p- AE  for the modified cantilever beam after the first iterative

step (Fig. 6) for the first oscillation mode. The aim of modification is to increase the
frequency by 10 %. Note the convergence compared to the previous diagram, which is
evidenced by reduced ’columns’ characterizing the change in potential and kinetic
energy growth rates. Also, a significant conclusion related to the cantilever beam cross-
section modification is that stiffness, i.e. cross-section height, should be increased in the
fixed-point zone, while the beam’s free end should be loosened, i.e. mass should be
decreased in that zone.

Based on distribution of difference AE,-AE, between growth rates E, and E,

individually per element (Fig. 4), the shape of the optimized cantilever beam is obtained
(Fig. 7). It is possible to arrive at desired changes, respectively, per element of a
cantilever beam in the way as follows. First, the values of differences AE, -AE, per

element are arranged in the table below:
3 Ah;

a=(1+y;) -1 Bi=v,. v, :7'/;
After substituting data individually for each finite element, there follows AA; =
15165.96.
When this value and the first eigenvalue of the initial beam are summed, it follows that:
M rean = 15165.96+ 68010.88= 83176.84, a f ean = 45.90 Hz
Comparing these results with those presented in Tab. 1, after eigenvalues were obtained
by applying the MatLab software program (45.82), it can be concluded that there is a
remarkable coincidence.

3.2. UNCERATINITY QUANTIFICATION AND SIMULATION
3.2.1 Stochastic input

Further research included the execution of simulations Ek, Ep, growth rates Ek and Ep,
differences in growth rates, first frequency in a cantilever beam and a modified beam for
1000 values of Young’s modulus of elasticity according to the Gaussian distribution.

On the basis of simulation, the following results were obtained, as presented in the
figures (Fig.7-11). The figures show the diagrams of distribution FEk, Ep, growth rates
Ek and Ep, and differences in growth rates for each element separately.
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The biggest difference in potential and kinetic energy growth rates was registered in the
first finite element (nearest to the fixed point). In other finite elements the differences in
kinetic and potential energy growth rates are decreased respectively, however on the
very free end the values of kinetic energy are dominant, so that the difference in growth
rate is negative. It is noticeable that the first element is the most sensitive to any change
because the growth rate difference declines or rises very fast. The elements located in the
middle of the beam length are almost non-sensitive, which means they are not suitable
for the reanalysis. In order to increase eigenfrequencies, the free-end element is
sensitive, but it is needed to decrease its kinetic energy, which can be achieved by
decreasing its mass (reduction of height).

Fig.7-11. Diagrams of distribution Ek, Ep, growth rates Ek and Ep, and differences in growth
rates per element

Element 1

Element 2

A Tl :-\-:_ o e

S ) e~

Element 3
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Element 4

Element 5

The figure below (Fig. 12) displays distributions of differences in potential and kinetic
energy growth rates on the beam for all five finite elements and for 1000 simulation

results.

20000

growthrates, element 1

15000

10000

|

growth rates, element3

Y

-5000 I

growthrates, element 5

-10000

1 101 201 301 401 501 601 701 801 901

Fig. 12. Difference in potential and kinetic
energy growth rates for five finite elements for
1000 simulation results for the cantilever beam

16000

14000

12000

10000

8000

5000

2000

srowliate, element 2

2000

Fig. 13. Difference in potential and kinetic
energy growth rates for five finite elements, for
1000 simulation results, for the optimized
beam

The figure 13 shows the distributions of differences in potential and kinetic energy
growth rates on the optimized beam (Fig. 13), for all five finite elements and for 1000

simulation results.
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4.2.3 Comparison of frequency sensitivity between original and modified cantilever
beams

Further analysis explored the dependence between the first frequency and Ek and Ep in
each element of the original beam and the modified one.

The largest change in kinetic energy was found with respect to the change in the first
frequency of the fifth element, and the largest change in potential energy was found with
respect to the change in the first frequency of the first element, which is in agreement
with the deterministic theory. Identical regularities were established for both the
original and the modified beam, however with different values.

4.2.4 Uncertainty in cantilever beam redesign calculations and frequency
calculations

Table 2 shows the simulation results for the original beam frequency (frequency) and the
modified beam frequency (frequency 1) for different values of Young’s modulus of
elasticity. Frequency growth rate was calculated as a difference between the modified
beam frequency and the original beam frequency.

Tab. 2 The simulation results for the original beam frequency (frequency) and the modified beam
frequency (frequency 1) for different values of Young’s modulus of elasticity

No Young’s modulus Frequency Frequency 1 Frequency growth | Frequency rounded growth rate
1 216008194057,0
0 43,52331847 47,87565032 4,352331847 44
2 221020777903,0
0 40,47158724 44,51874596 4,047158724 4
3 209951519584,0
0 41,8644712 46,05091832 4,18644712 4.2
4 213280508641,0
0 38,98414442 42,88255887 3,898414442 39
5 204137145899,0
0 39,82625243 43,80887767 3,982625243 4
6 218644848354,0
0 39,47510831 43,42261914 3,947510831 39
100 43,3733518 | 47,7106870
0 3 1 4,337335183 4,3

A set of 1000 results obtained by the normal distribution (program R?) was used for
further analysis where the Laplace criterion was applied to determine the uncertainty.
The Laplace criterion assumes equal probability for certain states to take place, so that
probability represents
1

v(sy)= "
where m is the number of likely states (1000 in this case). Therefore the expected value
is:

2R is a free software programming language and a software environment for statistical computing and graphics. The R language is
widely used among statisticians and data miners for developing statistical software and data analysis. Polls and surveys of data miners
are showing R's popularity has increased substantially in recent years.
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;t:zlpij*v( tj) sz]
j=

In Table 3 a division into the conﬁdence intervals was performed and frequency of the
observed quantities occurrence was calculated. The result for the occurrence of the
oscillation frequency rounded growth rate indicates normal distribution.

Table 3. Confidence intervals

Frequency rounded
crouth rite 32(34(3.5(3.6(3,7(3.8(3.9(4 |4,142]43(44|45|4.6|47

Frequency of 13 |18 |20 |16 |10
occurrence L |1 |2 |5 |18 |49 |80 5 o 6 I3 |a 35119 (2

Fig. 14 shows normal distribution of the probability of the frequency of occurrence of
eigenfrequencies growth rate difference. It is evident from the diagram that the highest
probability of the occurrence of eigenfrequencies growth rate difference is 4.2, with the
occurrence probability of 20.6%.

250

200 I
[ .
150 1 F ¢
requency of OCCUITeNCe  -xyenciua PoAVE
100

—__allllll,,

2 oo 'Frequency growth rate  reencie

5

3S

‘5‘5‘5‘5‘5‘

Fig 14 Normal distribution of occurrence probability of frequencies growth rate difference

By transforming the frequencies of occurrence of eigenvalues growth rate difference
according to the Laplace criterion, we will obtain normal distribution of the occurrence
probability, i.e. the degrees of uncertainty of the occurrence of eigenfrequencies growth
rate difference.

Tab. 4. Occurrence probability (%)

Frequency growth rate 32| 34| 3,5 3,6 3,7| 3.8 39 4 4,1 42 43 441 45| 4,6| 4,7
Occurrence probability (%) 01| 0,1 0,2 0,5| 1,8 49| 80| 13,5| 18,0| 20,6| 16,3| 10,4 3,5| 1,9| 0,2
p ¥ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The above text gives the probability of eigenfrequencies differences distribution in the
original and the modified beam. Given that the normal distribution of eigenfrequencies
growth rate difference was obtained, it is interesting to take a look at the probability
distribution of eigenfrequencies in the original and the modified beam.

5. CONCLUDING REMARKS

Studying the dynamic behavior of a construction can predict its response to change in
shape, changes in size of its elements or change in materials used. Generally, the aim of
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system modification with respect to improvements in dynamic behavior is to increase
eigenfrequencies and widen the distance between two neighboring frequencies. The
specific importance lies in lowest frequencies and those close to the system exciting
frequencies.
Developed procedure for dynamic modification represents the essence of methodology
for improving the dynamic behavior of a construction. Originality of this methodology is
that in analyzing the dynamic behavior of construction it uses the distribution of kinetic
and potential energy in main oscillation modes. On the basis of analyzing the
percentages of distributions for kinetic and potential energy in main oscillation modes, a
rough estimate for adequacy is obtainable across zones and construction subgroups. This
is especially important for complex structures. When groups suitable for reanalysis are
located, a detailed (fine) analysis of a separated subgroup is undertaken. Most often it is
necessary to make a modified model which is used for comparison to the original one,
and on the basis of thus derived reanalysis formula, new guidelines are reached. There
are clear, mathematically expressed, unambiguous guidelines for further conducting the
modification procedure — which is described in the algorithm, and there are segments
where the form of modification is not clearly seen. Then, on the basis of the analysis of
sensitivity to certain changes, a clearer image of further steps is obtained. Based on these
cases an algorithm for reanalysis is derived and its essence is in the following. If it is
necessary to improve the dynamic behavior of a construction, most often to avoid the
resonance with exciting dynamic loads, it is necessary to create the initial finite element
model of a given construction and perform the basic calculation of dynamical properties
in order to obtain the basic frequencies and main oscillation modes. Kinetic and
potential energy of the entire construction can be represented as an algebraic sum of the
energies of all elements, which is also given here. In order to conduct a rough analysis,
the distributions of kinetic and potential energy for construction subgroups in r-th main
oscillation mode can be expressed in the values of percentages. Therefore, on the basis
of analyzing the energy distributions in the main oscillation modes of the main
construction elements, it is possible to depict the following cases, on the basis of which
it is possible to derive the algorithm for reanalysis of similar structures. Following are
the characteristic areas:
I Elements in which the kinetic and potential energies (and the difference in
their increase) are negligible with respect to other elements.

II Elements in which the kinetic energy is dominant compared to potential energy

III Elements in which the potential energy is dominant compared to kinetic energy

IV Elements in which the potential and kinetic energy exist and are not negligible

in comparison with other elements

A great number of examples illustrate the cases mentioned. Also, a great number of
empirical correlations are given for certain changes that may lead to desired
improvement of dynamic behavior of the construction.
The application of developed procedure on real structures illustrated its practical aspects.
The procedure developed in this paper can be classified as iterative and having great
reliability for fast convergence. The convergence of modification procedure assumes
relatively fast achievement of proposed goals. Most often, the proposed goals are:
elevation of eigenfrequencies and increase of distance between two neighboring
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frequencies. Special importance lies in the lowest frequencies and those whose values
are close to excitation frequencies of the system.

Assuming that Young's modulus of elasticity has normal distribution for 1000
simulation results, it is obtained that the frequency of free oscillations also has normal
distribution in both the initial cantilever beam and modified beam and optimized beam.
The results indicate that the behavior of the frequency of oscillations distribution
correlates with the frequency of distribution of Young's modulus of elasticity and that
the dependency exits irrespective of the cantilever beam design and shape respectively.
Comparison of differences in potential and kinetic energy growth rates in the beam and
optimized cantilever beam indicated differences in finite elements sensitivity, whereby
the segments for reanalysis were identified.

Middle-zone elements are unsuitable for reanalysis, while fixed-point and end-zone ones
are suitable. The element in the fixed-point end is the most critical from a number of
viewpoints. Dynamically, it is only by increased stiffness of the element that better
effects are achievable.

The analysis of uncertainty in the original, modified and optimized beams established
for all three cases normal probability distribution in the rate of frequency occurrence.
Difference was found in the interval of frequency normal distribution in the original
cantilever beam compared to the distribution interval in modified and optimized beams.
A broader confidence interval in modified and optimized beams indicates adverse effects
of non-ideal material on the procedure of dynamic modification.

A versatile procedure for conducting reanalysis studies in the presence of uncertainty
has been developed by combining Monte Carlo simulation tools with finite element
modeling modules.
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In this paper, dynamics models of bucket wheel excavator (BWE) superstructure in the

vertical plane, the boom hoisting drive system and bucket wheel drive system describes in a
mathematical model or single program. This model allows to evaluate the effects of
structural changes in one subsystem to its dynamic behavior as well as a dynamic behavior of
the other subsystems on the BWE. Mathematical model solving provides the basic
mechanical characteristics that define the dynamic behavior of a BWE in the process of
digging. The obtained moments, angular velocity, displacement and force time functions are
graphically represented. Results analysis of BWE dynamic calculations indicates that the
appropriate reconstruction must be made to improve such a negative dynamic behavior in the
process of digging.

Keywords: bucket-wheel excavator, dynamic model, mathematical model, digging.

1. Introduction

Dynamic model of BWE is represented by dynamic models of its major subsystems that
are most loaded in the excavation process. Dynamic models of digging [1,2,3,4],
hoisting [5] and superstructure [6] subsystems were examined separately without
considering the impact of one subsystem dynamics behavior to another. These three
subsystems are in the process of digging exposed load that comes from digging
forces[7]. Number of influential parameters whose individual contribution to a very
different and mutually conditioned affects on character of digging force. The main
parametars are: specific resistance to excavation (SFRE) presented in reference [§] ,
cutting conture length (kL) , cutting speed. According to researches[9], value of SFRE
is greatly influenced by cutting speed, too. From the ather side cutting conture depends
on bucket wheel vibration in vertical plane [10,11]. Electric motor torque according to
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[4] is described by an exponential function. Moments of inertia, stiffness and damping
are calculated according to [12].The results obtained using the dynamic model presented
in this paper can be used to identify the optimal retrofit solution [13].

2. Dynamics model of BWE main subsystems

Figure 1 shows the kinematics scheme of the boom hoisting drive system, consisting of:
an asynchronous electric motor (EM), mechanical coupling (S), gearbox (R), brakes (K)
and drum for rope winding (D). For this work interesting is the case where the balance
established between the braking and load torque. Because of the changing nature of the
torque load at the catch is only a few teeth of gears coupled. This leads to very rapid
wear of the gears tooth flanks, and therefore to a relatively small gear life. Oscillatory

system is represented as five rotating mass on a single shaft wedged: J, - the reduced
gearbox moment of inertia on the shaft brake, J5 - the reduced gear number 5 moment
of inertia on the shaft brake, J, - the reduced gear number 6 and drum moment of

inertia on the shaft brake, J, - the reduced boom and bucket wheel moment of inertia
on the shaft brake.
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g N
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Ve 7/ ]
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B L ifting dri 1
a)Boom Lifting drive system b) Bucket wheel drive system

Figure 1. Mechanical model of bucket wheel excavator
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Dominant influence of the oscillations of the system has upper supporting structure.
According to analysis [6], the upper supporting structure accumulates around 85%,
portal sheet 10%, suspension system about 3% while all other substructure (boom, the
drive bucket wheel system and lower supporting structure) accumulated less than 1% of
the system potential energy in its oscillations. Those facts suggests that, in the analysis
of the systems low-frequency oscillations, the deformability of the lower support
structure, boom and bucket wheel drive system can be ignored.

For the mechanical model shown in Figure 1, we write the system of differential
equations for the boom hoisting drive system motion [5]:

Ji @ +Ckr(¢r _¢k)+dkr(¢r _¢k): M,

I, -0, +c5(05—0,)+d 505 - 9,) -, (0, —p)-d,, (9, -9 ) =
s - @5 +56(05 = 05)+ dss (05— 95) = ¢ 5 (05— 90,) = d 5 (95— 9,) =
o~ @5+ F, 1y = cs6(0s — 95) = dss (5 — 95) =0

0
0 (1

Boom oscillations can be described by equation:
Jy @7 —F,1,sinfB=—(;+r1,)F, 2)

Force in the rope (F,) can be determined as the product of stiffness and rope

elongation:
l .

Fu =Cu( u(07 - cilk¢6J (3)
sin S

Where is: @, 9., 95,95, @;,[rad] - absolute angles of rotation reduced on the shaft brake,

M [KNm] - braking torque, ¢; [Nm/ rad](i = k,r,5,6,7) - reduced stiffness on the shaft
brake, d; le/radzki = k,r,5,6,7) - dumping reduced on the shaft brake, ¢,,d, - rope
stiffness and dumping; F,[KN] - Force in the rope reduced on the shaft brake, [, [m] -
boom length, x[m]: I, - @, - vertical movement of bucket wheel, 7, [m] - radius of the
drum, rt[m] - bucket wheel radius, I, [m] - distance from the boom rotation axis and
rope hanging point. F,, =11 Ft[KN } -digging force(tangential force increased by 10%

due to other resistance).
Oscillatory system of bucket wheel drive system [2] is represented as two rotating mass

J; - Electric motor moment of inertia, J, - Bucket wheel and bucket wheel drive

system gearbox moment of inertia.
Differential equations for the bucket wheel drive system motion [5]:

T +Crylo—py)=M,,

Tu-$u=Crulp—ouy)=-M, “)

where is: @;, @, [rad] - absolute angles of rotation reduced on the electric motor shaft,
M, [KNm] - electric motor torque, M, [KNm] - load torque reduced on the electric

motor shaft.
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Electric motor torque according to [4] is described by an exponential function and thair
graphic interpretation is given on figure 2.

9 .

M, =Y C(j)-etrom (5)
Jj=1

where is: C(j) — interpolation coefficient, /1( j) - interpolation coefficient, @, - angular

velocity of the electric motor shaft.

x 104 Input
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Figure 2. Electric motor torque (P=900 KW)

Tangential component of a load force, which presents 90% of total load of bucket wheel
drive system, according [7] is given by the following equation:
Fily)=k; L, f(w) (©6)
Where is:
siny za 0sy<rx/2
fw)={@-yw)(@-7x/2) za 7/2<y <« - Function of tangential component
0 way>a
changes, k; =random[K;]- Randomly selected value from a range of specific

resistance measured, values L,
According to experimentally obtained the values of SFRE [K;] in the Kosovo coal basin
for gray compact clay excavation [14] tangencial component of load force is presented
graphically in figure 3.
Torque load of bucket wheel drive system cab be calculated according to equation:

d
MM) = FM) ._t 7)

5 (

where is: d, - diameter of bucket wheel. Solving systems of differential equations (1),

~ - Length of a bucket cutting contours.

(2), (4) using the Runge-Kutta methods in Matlab software package Simulink Modul
(fig. 4) obtained the results that will be graphically represented.
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i
Falh¥}

BT Rad
Figure 3. Tangencial component of digging Figure 5. Load force at the last pair of toothed
gears (hoisting subsystem)
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Figure 4. Simulink model of BWE dynamics model

Figure 5 graphically presented the load force at the last pair of toothed gears. Dynamic
load on the bucket wheel in excavation process, despite the elasticity of the rope has a
decisive influence on the vibrations of boom hoisting drive system.

Angular velocity oscillations of large amplitude at the last pair of toothed gears, where
are in the process of digging in conjunction only two possibly three gear tooth, resulting
in rapid wear of the teeth. From the figure 6 and figure 7 it can clearly be seen that the
coupled gears 5 and 6, with a stiff shaft motors, much moved. This process leads to wear
on their hips, so they lose their involute shape. In addition, as the latest gears pair is
outside the gearbox housing, weather conditions affect the removal of grease from their
contact surfaces. That enhances their wear. High-frequency oscillations are particular
expressed in gear no.5.

Time function of electric motor (Fig. 9) and bucket wheel angular velocity (Fig. 10)
shows that the coupling elements of the gear have very little influence on the reduction
of vibration caused by the stochastic load on the bucket wheel. A large gear which is
connected with shaft to a bucket wheel has the largest angular velocity oscilations, so it
can be concluded that the impact loads on its tangent is greatest.
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The oscilation of electric motor torque (Fig. 8), after starting period which is not the
subject of this analysis, is consistent with the load torque oscillations (Fig. 3). It speaks
of gear and coupling small absorption capacity.

1

i | | B, |.-....'I. ]
g [ ] )
s o
oo
BE']
a0l -

Hih - z i [ B - 1 o (o0

Figure 6. Angular velocity of gear no.5 Figure 7. Angular velocity of gear no.6

L . glrad/s] . .
Oscillations amplitude 6greatly exceeds the nominal value of the electric motor torque,

which shows that he is constantly overloaded and under the influence of heavy loads.
The difference of electric motor shaft and gearbox input shaft angular speed that reaches
up to 10 [rad /s]shows that the coupling which establishes a connection between gear

units and motors exposed to high torque twisting.

L’ il

kN

8 e

o,

i 8 & b 1 M W A
: Wi it
Figure 8. Electric motor torque Figure 9. Angular velocity of electric motor shaft
(bucket wheel drive system) (bucket wheel drive system)

4. Conclusion

Results analysis of BWE dynamic calculations indicates that the appropriate
reconstruction must be made to improve such a negative dynamic behavior in the
process of digging. As done in the module SIMULINK of software package MATLAB
(Fig. 4) program provides easily changes of some or all program sub-elements and
quickly obtain the results. That is an opportunity to examine the effect of individual
subsystem reconstruction on BWE dynamic behavior in process of digging .
Reconstruction may involve the following intelligent retrofit solutions:

e additional holding brake system independent of the boom hoisting drive system

to reduced vertical movement of bucket wheel,
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coupling and gearbox replacing in digging drive subsystem to reduced the
oscillations amplitude and frequence of bucket wheel drive system, design
changes of bucket wheel construction to reduced displacement under load

1.4
o, [td! s
1.2

—
—

" e

0.6 I

—
—

0.4

0.2

t(s)

0 2 4 6 8 10 12 14 16 18 20

Figure 10. Angular velocity of bucket wheel

5. References

[1] V. Jevti¢, Z. Golubovié., Z. Leki¢. (1996): Mathematical modeling of resistance moment as

(2]

(3]

[4]
(5]
(6]
(7]
(8]

9]

the basic component for the dynamic behavior of the BWE, X1V international conference on
material handling and handling and warehousing, Belgrade.

V. Jevti¢, Z. Golubovié., Z. Leki¢, S. Makragi¢: The analysis of dynamic processes in the
BWE working wheel drive system with a hydrodynamic coupling, 6th Sever symposium on
mechanical gears, Subotica(1997). pp. 179-185

Z. Golubovi¢, V. Jevti¢, Z. Leki¢ (1997): Dynamic behavior of planetary gear in BWE drive
systems , Yugoslav Congress of Theoretical and Applied Mechanics 97 XXII, Vrnjacka
Banja, 2-7 jun.

Z. Golubovi¢ (2009): Contribution of drive system reconstruction feasibility for middle class
BWE, master's thesis, Kosovska Mitrovica.

V. Jevti¢ (1979) Theoretical and experimental studies of flow stresses in hoisting
subsystem structural elements, master's thesis, Nis-Bohum.

Volkov, D.P , Cerkasov V.A. — Dynamics and strength of excavators, translated from the
Russian, Department of Mining Institute for Informatics and Economics , Beograd, 1989.

K. Hitzschke (1984) Experimentelle Analyse der Belastung des Schaufelrades durch den
Grabvorgang, Hebeyeuge u. Fordermittel, H.9

V. Raaz (1999) Assessment of the Digging Force and Optimum Selection of the Mechanical
and Operational Parameters of Bucket Wheel Excavators for Mining of Overburden, Coal
and Partings, Krupp Fordertechnik, Esen.

N. G. Dombrovski, (1972) Multi —bucket excavators: theory, construction, calculation,
(In Russian), Mashinostroenie.

411



412

Z. GOLUBOVIC, Z. LEKIC, S. MAKRAGIC

[10] S. Bosnjak, N. Zrni¢, Z. Petkovi¢, (2006) Bucket wheel excavators and trenchers - Computer
added calculation of loads caused by resistance to excavation. Machine Design, University of
Novi Sad, pp.121-128.

[11]S. Bosnjak, N. Zrni¢, D. Oguamanam, (2006) On the dynamic modeling of bucket wheel
excavators, FME Transactions 34, pp 221-226.

[12] V. Batini¢, (2008) Determination of gear mesh stiffness in planetary gearing, Military
Technical Courier, vol. 56, no. 2, pp. 227-236.

[13] M. Gnilke (2006) Intelligent retrofit solutions for bucket wheel excavators, MAN TAKRAF
Fordertechnik GmbH, Lauchhammer

[14] D. Ljami¢, M Arsi¢, B. Cirkovi¢, (1995) Experimental analysis of BWE SchRs 650/5x24
bucket wheel load, Mining Machinery - scientific Meeting, Beograd

Received October 09, 2012
Mathematical Subject Classification — MSC2010  90B06 70K99 70Q05



UDK 001 SERBIAN SCIENTIFIC SOCIETY YU ISSN 0350-2910

SCIENTIFIC REVIEW (2013)
Series: Scientific and Engineering - Special Issue Nonlinear Dynamics S2 (2013) pp. 413-418

FORCED OSCILLATIONS OF A MEMBRANE ON NONLINEAR
ELASTIC FOUNDATION

Nikola Nesi¢ !

' Mathematical Institute SANU, Department of Mechanics,
11 000-Belgrade, Kneza Mihaila 36/I11, Serbia,

e-mail: nnesic@ gmail.com

Abstract. In this research, forced transversal oscillations of a
rectangular membrane on nonlinear elastic foundation are considered,
and for special case an analytical approximations of the solutions are
given. Based on numerical experiment specific visualizations of the
asymptotic approximation of amplitude-frequency and phase frequency
curves which correspond to the asymptotic approximation of solutions
are conducted, which describes qualitative properties of one frequency
nonlinear oscillation stationary and no stationary regimes.

1. INTRODUCTION

Membranes as a structural elements have application in many fields of industry
and science. Some examples are microfiltration systems in biological, medical, food,
dairy and beverage products industry. Besides that, they also have application in, aero-
space, civil and mechanical engineering [1, 2]. To analyze oscillations of membrane
systems is important from both, theoretical and practical point of view. Raskovi¢ [3]
gave brief study of linear analysis of dynamics of structures. Using the mathematical
analogy complex membrane systems can be studied similar like plats, beams or belts
systems [4]. Nonlinear vibrations as phenomenon that appears in real systems can be
studied analytically using the methods that are different from linear analysis. The
transverse vibration of rectangular and circular plates connected with an elastic and
visco-elastic layer has been studied [4-11] for linear as well for non-linear dynamics. In
the linear analysis of coupled systems multi-frequency regimes of time functions appears
corresponding to one eigen amplitude function of one mode, and also that time functions
of different vibrations modes are uncoupled.

In this research, forced transversal oscillations of a rectangular membrane on
nonlinear elastic foundation are considered, and for special case an analytical
approximations of the solutions are given. To be able to deal with forced oscillation
problem in such a structure, the dynamic behavior of the structure for the free vibrations
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of the system needs to be understood well. Then it is necessary to develop an accurate
structural model that would describe such a system. The obtained structural model
consists of nonlinear partial differential equation. The equation is separated to time and
shape functions by using the classical Bernoulli-Fourier method of separation of
variables [3]. Then, asymptotic method is used to obtain analytical solutions of the
membrane displacements for the forced nonlinear vibrations of the system.

Fig. 1 The physical model of the membrane on the nonlinear elastic foundation loaded
by external distributed excitation

2. SOLUTION OF THE NONLINEAR FORCED VIBRATION
RECTANGULAR MEMBRANE SYSTEM

In this paper, as a model problem, we consider one rectangular membrane
connected with the support via nonlinear elastic layer. The scheme of such a mechanical
model is shown on Fig. 1. We are neglecting the thickness of a membrane and assume

that membrane is thin with mass density p[kg / m?]. The membrane is stretched and
fixed along its entire boundaries in xy plane. The tension of membrane per unit
length ; [N/ m] is same at all points in all directions and does not change during the
motion. We assumed small transverse displacements of the membrane w(x, y,t ) and of
the support w, (x, y,t ) Also, it is assumed that the mass of the layer between membrane
and support is neglected where with z[n/m]| we denote constant stiffness coefficient per

surface unit area of the elastic layer. Using the D’ Alambert principal, the governing
partial differential equation for the forced nonlinear membrane vibration is expressed in
the following form:

2 ) ~
I = it 1) ) o )l ) P+ L0 (1)

where ¢=./c/p [m/s] is velocity of transverse wave propagation of membrane and

A=0/ox* +9?/dy” is Laplacian operator. Where for &8, = 3/ p, we have that £is so
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called small parameter which is always positive and £ is coefficient of the nonlinearity

of the elastic layer.
Assuming that displacement of the foundation and external force are given by

M N
W 30 = 30D W W, (5, Y) COS Q1 @
m=1 n=1
M N
403D SIS W (ey)eos(@,,1+ D) 3
P =l n=1
we can rewrite eq(1) and apply Bernoulli-Fourier method of separation of variables:
w(x, y,0) =W, (x, )T, (1) “)

Then we obtain:

Wi (5. 90 0= AW 5 )= [ 5 3T (0= W W (2 3) 05 Rt s

nm nm

- ; [an 0T, ()= w,,. W, (x,y)cos Q t]3 + hyu W, (X, y) COS(Q,,, 1 + 1)

Displacement functions can be written in the form:

Au/nm (x7 )’) - kfmwlnm ('x’ y) = 0 (6)
We can write eq(6) in the form
AW, (x.y) _ K @)
W, (ey) "
Solution of Eq.(7) can be assumed in the form
W, (x,y)=sin P Gin M ®)
a b

Multiplying (5) with W_(x, y) and integrating over the surface A of the membrane:

ab ab
T, [W,,,(x. W, (x. Ndxdy=cik;, T,,, O] [W,, (x. W, (x. y)dxdy—
00 00
ab
=S[00 0= oy, 008 Q1] [ W, (6, 9IW,, (x, )y ©)
p 00

~ ab
< [Tnm () —W,,,,, COS Qnml]3 J. J. [an (x, y)]3 W, (x, y)dxdy+
p 00

ab

+ By, €08(Q,,, 1+ D) [ [W,,(x, )W, (x, y)dxdy
00

Using orthogonality condition

ab _
[ W, e yW, . y)dxdy{_o—mm;tsr} (10)
00 #0——nm=sr

we can easily calculate this integral in the case when nm=sr, and return this value in (9).

Then we obtain expresion for the time function in the following form:
.. a

ab b ab
- (’)7 = L‘gkrin];xnl(’)T - [Tnm () — W, COS Qnmt]j - (11)

ab
=@ [1,,, (1)) = Wo, 08 @, 1T [ [ W, (x, )] dxdy+ by, cos(R,,1 + ﬂ)"f
00

nm

with

415



NIKOLA NESIC

L-o@ and %:~02F (12)

‘b

Dividing (1 1) by

a

H W,, e ddy =2 (13)

and rearrangmg terms, we obtain
)+ (a)o — k2 )T, (£) = &w,,, cOsQ, t—

nm mn/" nm nm

- wOanm nm (l) 3gnm nm (Z)W()nm cos Qnml + 3gnm nm (Z)W()nm COSZ Q l + (14)
+ gnm W()nm COS3 Qnmt + h()nm COS(Qnmt + 19)
with
” W, (x, I dxdy (15)

™ JJ W, (xo)F dedy

If disturbance of the foundation has small amplitude and introducing analysis of small
parameter, (14) can be simplified to:

7.:'NM (t) + (a)O + CO kl%/M )TNM (t) - &')(?F gNM TI‘?M (t) + hONM Sin(QNMt + 19NM ) (16)

If we consider that excitation is small [12]:

hOnm = 81;0nm and a~)02F = ga:)OzF (18)
where ¢ is small parameter. Then (16) can be written as
Ty (1) + (@) + 3kiing Tag (6) = €0 1 8 o Ty (1) + EEUNM sin 6 (19)

Solution of this equation (19) is assumed in the form

Ty (1) =ay, (z)cos[§€+ ;oj (20)
In case of main resonant state in first approximation p = g = 1.
Tont () =y (£)c0s(Onas + Pang )+ €t (g - Oas - g )+ € a2 (@ »Oar - P s )+ 2n
where iy, (cyys»Onp P rps ) do not contain first vibration mode with

Py =Ovm +Onum (22)

Omr = (Qast + By ) (23)

We are linearizing nonlinear differential equation by assumption that the frequency of
the excitation force is in frequency domain of the main frequency of the coresponding
linear system:
de

dZZM =Quy = Oy =+ (a)o +¢ k]%’M) (24)
Amplitudes and phases of harmonics, ¢

(r) and ® M (r) we are determining from the

NM
following system of differential equations:
‘mlcviiﬂz(’)zmql (@.0)+ %Ay (a.0) + ... @5)
d%c]li?(t):wow ~Quy +B,(a.0)+€°By(a,0) + .. (26)
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where we are neglacting terms of the higher order, since they are close to zero.
The first asymptotic approximation is:

Tons () =y ()08 (O + Pone ) 27
The first corrected asymptotic approximation is:
T (1) =a yp; (1)c0s(Ons + Pras )+ Enrt (@nar »Oar - s ) (28)
with
da,, (t)
ZZ = A (a,9) (29)
d t
¢}\(]1ﬁ/zl ( ) = Oy =Ly +EB(a,9) (30)
The second asymptotic approximation is:
Toons () =y (1)008(Orng + Pons )+ Etars (Aag» Opny P g ) €Y

The second corrected asymptotic approximation is:

Typ (1) =a yy (t)cos(Buus + Prnr )+ Bt (@nng - Oxng - e )+ 52“NM2 (@ - O - Py ) (32)
with

daZiAﬁ(t) = A, (a,0) + £A,(a,0) .
d¢zcvl/\t4( 1) =Wy — Ly +EB,(a,0) + B, (a,9) oY

If we find time derivatives of the (31) :

TNM (D) =—ayy (t)a)oNM sin® y,, +

(35)
+&|A(a,9)cos®,,~B,(a,f)a,,, (t)sin® ,, + -t duy Quy L0 Q,, t+e
(4, v~ bila,9)ayy, NM 30, aq)NM ~~~~~~
T'NM (D) =—ayy, (t)‘%zNM cosP ,,+
0A (a,
6{<[w0NM —Qu ] ](Z) P —2a,, (t)wova B, (a,¢)> cos®,,, — (36)
0B, .
_<[w0NM NM ]aNM ) (Z) -9 =205y A (a,¢)> sin®,,, +
9’ 92
39:3:]4 QL+ BQLZ:M Dy} + E
Finnaly, we obtain:
dayy, (t) _ [y cosy, () (37)
dt Oy — L
Ay (1) _ 3 Byr&um 2 hownm (38)
a Oy + 8 @y lan ()] + P P, _QNM]COS¢NM( )

3. CONCLUSIONS

In the present paper the nonlinear forced vibration of a membrane system connected
nonlinearly with nonlinear elastic layer were analyzed analytically. From the obtained
solutions of amplitude and phase time derivatives one can notice the effect of
nonlinearity of the elastic layer on behavior of system. With differential equation (14) is
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which is rheononlinear, we open a new research task for next investigation of different
types of vibration regimes.
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Abstract. In this paper the problem of path tracking is considered. Through
the history of robotic mechanisms, path tracking was considered one of the
hardest tasks, due to many different problems. One of the biggest problems is
elasticity, for an example of the joint or link and therefore the elasticity of
robotic mechanism. An example of simplified robotic mechanism is examined
in this paper. This robotic mechanism has one motor that controls the
movement. It has one gear and one link on top of it and rigidity and elasticity
of these two parts represents the biggest problem. When model of robotic
mechanism is idealized, which means that everything is rigid, the trajectory
tracking is easy, but if elasticity is included this problem gets complicated
and predefined trajectory is not very well followed. In this paper a new way of
trajectory tracking is shown. Method is sufficiently easy and it can be used on
more complex mechanism which is a subject for future work.

1. Introduction

The modeling of a modern robot system as a rigid mechanical system is an unrealistic
simplification. Many applications, such as spray painting, plasma cutting and assembly,
require good path tracking. Modeling and control of robotic mechanism is very popular
and important part of today’s Robotics, therefore, there are many papers and books
related to this topic. First one who introduced this problem was Spong [1]-[3].There are
two sources of vibration in robot manipulators: 1) joint elasticity, due to the elasticity of
motion transmission elements such as harmonic drives, gear-boxes, belts or long shafts
[9], and 2) link elasticity, introduced by a long and slender/lightweight construction of
the arm, [4]-[8].

Elasticity of robotic mechanism represents one of the biggest problems in path tracking.
There are many papers dealing with modeling of robotic mechanism and its elasticity
problems. In [11]-[15] authors present a new way of motor modeling and therefore



LJUBINKO KEVAC, MIRJANA FILIPOVIC

control of the robotic mechanism. Depending on a robotic mechanism, it is controlled by
one or more motors. Robotic mechanism shown on Fig. 1. is idealized (everything is
rigid) and path tracking is not an issue. More realistic model of a robotic mechanism is
shown on Fig. 2. This mechanism does not track the motors movement very well,
because of the robots elasticity. In this paper this problem is considered and robotic
mechanism on Fig. 2. is controlled to follow the motor, and therefore manage the
desired path. Used method is a new approach and, although, this is a simplified
mechanism, this method can be used on a complicated robotic mechanism.

2. Robotic mechanism

It is common to make a robotic mechanism to follow predefined trajectory. Usually, this
trajectory is defined by another robotic mechanism and this trajectory is called referent
trajectory. The purpose of this paper is to make a robotic pair consisting of elastic gear
and rigid link (hereinafter referred to as the elastic robotic mechanism) to follow a
trajectory generated by a robotic pair consisting of rigid gear and rigid link (hereinafter
referred to as the rigid robotic mechanism).

2.1. Modeling of the rigid robotic mechanism

As a first step, modeling of the rigid robotic mechanism is conducted. The rigid robotic
mechanism is shown on Fig. 1. Model is sufficiently easy, because everything is
idealized and therefore only kinetic energy is spent. From Fig. 1. it is chosen that & is
used as generalized coordinate. & represents the angle originated by the movement of
the motor and because everything is rigid, link is rotating with the same angle. Also, it
is important to know that the link is long & = 0.3 m, and mass in link tip is m = 2kg.
Mass in link base is my = 1kg.

e G

o =)
u
- 0
v »> v
X
Figure 1. The rigid robotic mechanism. Figure 2. The elastic robotic mechanism.

From Fig. 1. the Equation for kinetic energy is derived
1 o 1 o, 1 o,

E =—ma’@*+—J_ 0*+—J, 6 (1)

2 2 - 2

From (1) the first Equation of the model is conducted
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0 JE, =ma’ 0+ ,+J_) 0 =(ma*+J,+J_ )0 =0 @

ot aé

Where [, = U.UUEi(.cgm:}— inertia moment of mass m, J,,= 0.0013(kgm')- inertia

moment of mass ;. Equation (2) represents the essential part of the rigid robotic
mechanism model. For the complete model, Equation of the motor is needed. Firstly new
constants are defined

R
G):JrRr,LyerBC,Syz " (3)
' Cm ' Cm ' Cm
Where R, = 0.272 ()- rotor circuit resistance, J, =4.52(kem ) - inertia moments of the
rotor and reducer, i, =A.1{Nm;jA}- proportionality constants of the moment,
B, = O(Nm /(rad js}) - coefficient of viscous friction. Now, Equation of motor is written
Cm,=G,0 +L, 6 +S [(ma’>+J,+J_)0 ] “

Where ¢m; — electromotive force of motor [V]. With (2) and (4), model of the rigid
robotic mechanism is complete. For better representation of the results, Cartesian
coordinates are needed. Fig. 1. shows that only x and y coordinates are important and
change during the rotation of the robotic mechanism, while z coordinate is 0. Therefore,
relation between generalized and Cartesian coordinates is, as on Fig. 1.

x=a-cos@ . (5

xX=a-sinf. (6)
During the rotation of the link, knowledge of the velocity is important, so from (5) and
(6) Cartesian coordinates of velocity are

).c:—a-siné’-é’ 7
;:a-cosﬁ-é (8)

2.2. Modeling of the elastic robotic mechanism

In 2.1 model of the rigid robotic mechanism is concluded with Equations (2) i (4).
Created model represents referent model (referent trajectory) and next step is modeling
of the elastic robotic mechanism. The elastic robotic mechanism is shown on Fig. 2.
Creating model of the elastic robotic mechanism is slightly harder, because this
mechanism has elastic gear and as a result, with kinetic energy, potential and dissipative
energy are spent. It is important to notice that characteristic variables and constants are
the same as in the rigid robotic mechanism.

For easier understanding of the problem, the view from above is shown on Fig. 3.
Because of the elastic gear, link of this robotic mechanism does not follow the motor, as
the mechanism with rigid gear. As Fig. 3. shows, the link rotates with angle ¢ and is
ahead of the motor. ¢ is greater than & for £ and it is because of the joints elasticity

g=0+¢&. ©)
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Figure 3. The view from above Figure 4. f.and .

For purpose of modeling the elastic mechanism ¢ and & are used as generalized
coordinates. Firstly, using Fig. 2. and Fig. 3., kinetic energy is derived

1 . 1 ) ... 1 ) .,
Ek=§mazq2+§JZZ q2+§sz q°. (10)
Potential and dissipative energy as a result of elasticity are, respectively
P
E,= 5 C$ (11)
|
¢.=—B 55 . (12)

2
Where c, —18143%10' eR'(Nm/rad)-Characteristics ~ of  stiffness of the gear,
B, =3e R'(Nm/(rad I s)) - characteristics of damping of the gear. All Equations must be
represented with generalized coordinates. From (9) it is shown that
E=q-0. (13

When (13) is substituted in (11) and (12) potential and dissipative energy are,
respectively

1
E, =5C§(q—9)2 (14)

1
9; =EB§(q—9)2 (15)

After defining the energies, next step is determination of the model. From (10) it can be
written

EBE.,( =ma’q’+(J,+J_) q =(ma’+J ,+J_)q =0 (16)
o 06 & - ) -
Now, from (14) and (15), four Equations are derived
L _¢ (q-6) (17)
dq -
oE
pé
=—C -6 (18)
Y :(g—6)
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39; ..
— —B.(g—-6 19
9 :(g—0) )
9, . .

e — 20)
20 B:(q—-0) (

Using (16), (17) and (19) the first Equation of model of the elastic robotic mechanism is
derived

(ma® +J,+J_)q +C;q—Co0+B, q—B;0=0 @1
From (18) and (20) it is obvious that the Equation of the motor is
Cm, =G, 60 +L 0 —S‘,[Cg(q—ﬂ)—kBg(q—@)] (22)
Using (21) and (22) matrix form can be derived
{O}:{Hn 0 } .q. _*{Cu C12:| q 4{311 B12} ? 23)
u 0 H, o G, Cy 9 B, B, o

Where,
H,= ma® + Jo+J Hy=G,,C, = C§’C12 = _Cg’cm = _S\rcg-czz = S\,C{;
B, = B;,B, =—B,,B, =-S,B;

and B,, =S B et L, . It is important to have information about the second derivative

of generalized coordinates

q :{Hn 0:| 0 _{Cn C12:| q _{Bn B12:| q 24)
5 0 Hy u G, Cy 0 B, By 4.9

The relation between generalized coordinates and Cartesian coordinates is needed. As
Fig. 2. shows, only x and y coordinates are important
X=a-cosq. (25)

y=a-sinf. (26)

During the rotation of the link, knowledge of the velocity is important, so from (25) and
(26) Cartesian coordinates of velocity are

x=—a-sing-q 27

X=a-cosq-q (28)

3. Simulation results

In second section models of two robotic mechanisms are derived. It is indicated that
trajectory tracking is needed. The rigid robotic mechanism rotates around z axis and
generalized coordinate for tracking of that rotation is angle #. The elastic robotic
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mechanism, also rotates around z axis, but it is in front of the motor by £, because of an
elastic joint. It is desired that the elastic robotic mechanism rotates like the rigid robotic

mechanism.

3.1. Initial results

Using MATLAB a referent model is created and therefore referent (rigid) trajectory of
angle is generated (hereinafter referred to as &,). Afterwards, model of elastic
mechanism is created and used referent trajectory is &.. Using classic PD regulator,
whose gains are adjusted with Pole placement method [10], robotic mechanism with
elastic gear is controlled to follow &, . After this simulation, the results are gathered and

shown on Fig.4. (these results have index / (first))

0
/- 00 F
| /
/ — 8,
1
/1 :
1 o
Ul am
{
! / an
:/ L 003
" 05 1 15 2 28 3 8 4 os 1 15 2 25 1 35 ¢
time[s] time[s]

Figure 4. &.and g..

Fig. 4. shows that g;has slightly big error, and this is because of the £. These results are
proved by showing Cartesian coordinates of referent and the first model, Fig. 5. and Fig.

6.
xil
03y / 1 1
02f X [ °
/ X X
01 \ I.' . q
\ f
0 / 2
\ /
\ I.'
ot \ /X 3
\ f
\ /
02| \ 4
\ /
\
03 -/ 5
{4 4
o 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 15
time(s] timels]

Figure 5. X coordinate of rigid and the initial model
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3.2. Final results

Usually, £ is in practice estimated using the known parameters and its estimation is
often 99 % correct as the real value. In this paper, Equation (9) will be used for
estimation of £,

§ =q,-6, (29)
03
/‘\
02 \‘
\
01 \
7
a1 l\.\
\y
EH \
At \—’/
N
0o 1 15 2 2 1 15 4 o 1 18 2 28 3 M 4
timefs] tmefs]

Figure 6. Y coordinate of rigid and the initial model

Now, from (29) new referent trajectory is derived. As Fig. 3. shows g is in front of & by
i, so as a new referent trajectory & — £, is used. It means that when new nominal
trajectory is used, because of the F,., output result will be near &.. These results are
shown on Fig. 7. (it is indexed as 2(second))

Figure 7. £.and g.-
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As Fig. 7. shows the error between output result and &, is very small, so with this

nominal trajectory robotic mechanism with elastic gear follows mechanism with rigid
one very good. Comparative results of Cartesian coordinates are shown on Fig. 8. and

Fig. 9.

iy | (l
A ' | KXy
.\_F,"f\\' | _— _..,I |h"'“
|
[ |
\/
trmly] I ! ...‘; m
Figure 8. X coordinate of rigid and final(second) model
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Figure 9. Y coordinate of rigid and final(second) model

Fig. 8. and Fig. 9. show that Cartesian coordinates of final(second) model are very
similar to Cartesian coordinates of the rigid model (&, ), therefore the final model tracks
trajectory generated by the rigid robotic mechanism very well, while the initial model
has larger error. It is shown that the influence of elasticity is removed, the only error is
due to controllers imperfection and with usage of another regulator, this error might be

smaller.
4. Conclusion

In this paper a new approach for path tracking of a robotic mechanism is presented. Path
tracking is one of the major issues in Robotics, due to the elasticity and other
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imperfections. The main advantage of the method used in this paper is its simplicity and
expandability on more complex robotic mechanisms.

Firstly, the model without elasticity is determined and therefore a desired trajectory.
Desired trajectory is used as a referent trajectory with model that has elastic gear.
Obtained results have quite a deviation from the referent trajectory. Deviations are
present due to the elasticity of the robotic mechanism. This elasticity is usually
determined by using know parameters of mechanical object (robotic mechanism ), but in
this paper it is calculated by subtracting resulted and desired trajectory, which represents
one of theoretical ways of calculating mentioned error. With this error, new referent
trajectory is determined and it represents previous referent trajectory reduced by the
calculated deviation.

With this approach, error due the elasticity is used in good purpose and after applying
new referent trajectory, the result is very similar to desired trajectory. The new error is
present only due the imperfection of PD regulator. Obtained results are shown on Fig. 4.
— Fig. 9. and they show that used method of path tracking is very precise and simple
which is important in these applications, because of the possible use in more
complicated systems.
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One of the intelligent retrofit solutions for bucket wheel excavator (BWE) is installation of
an additional holding brake system independently of the drives. The main function of the
brake in boom hoisting subsystem of BWE, during the process of horizontal cut digging, is to
achieve sufficient breaking torque which will hold boom and working wheel. Within
classical solutions of hoisting subsystem, positioned to the input shaft of the gear box, gives
a certain freedom of gear movement during excavating. When the brake is activated, only
two or three gear teeth are loaded. This process leads to wear on their hips, so they lose their
involutes shape. In addition, as the latest gears pair is outside the gearbox housing, weather
conditions affect the removal of grease from their contact surfaces. That enhances their wear.
Disc brake installation onto the rope drum will primarily eliminated gears moving and
completely will unload the last couple of gears. As installation of additional brake system to
boom hoisting subsystem affect the dynamic behavior of BWE in the excavation process will
be presented in this document.

Keywords: disc brake, bucket wheel excavator, dynamic behavior, gears.

1. Introdaction

Proper and reliable functioning of the hoisting gear is vital for the safety of an BWE.
Intelligent retrofit solutions represented in [5] proposes to implement an additional
holding brake system independent of the drives. Caliper disc brakes [6,16] applying the
brake forces to a disc directly mounted onto the rope drum. As positive side-
effect of this arrangement the winch drives are relieved of load during excavating.
Influence of disc brake installation onto the rope drum on dynamic behavior of BWE
superstructure[8,15] and digging subsystem [2,3,4] will be examine on dinamic model
presented in [11]. Hoisting drive system is modeling according to [7]. Method of
determining the BWE digging force considering the characteristics of excavated soil,
bucket cutting contour, cutting speed and vertical vibration of the bucket wheel is
described in [1,9,10,12,15] Moments of inertia, stiffness and damping are calculated
according to [12].
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2. CALIPER BRAKE ON ROOP DRUM

Hoisting subsystem with independent dick brake system is show on figure 1. Holding
brake on gearbox input shaft is replaced by disk brake on the roop drum. The caliper
brakes in the SHI series (figure 2) consist of two independent halves with facing spring
loaders and hydraulic cylinders. The brake lining support is held by guide bolts which
absorb brake energy. The lining support is hydraulically retracted during operation of
the brakes. The brakes can be used horizontally or vertically, predominantly as an
emergency brake. Any lining wear can quickly be manually compensated. The friction
lining is glued and riveted onto the lining support. Special linings are available for
particular requirements.

Figurel. Emergency back-up brake on rope drums
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Applications: emergency stop brakes for
heavy duty operation and coasting. Ideal
for hoists on container cranes and casting
cranes, for large belt conveyor systems,
cable cars, etc.

Design Advantages:

® fast response time for maximum safety
® suitable for different disc thicknesses 100002

® no tangential forces onto pistons and /
seals during dynamic braking
® Jow spare parts and maintenance s

requirement due to using only one
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. . o
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Figure 2. Caliper disc brake SHI series

3. Dynamic model of BWE hoisting subsystem

Dynamic model of BWE main subsystems is the same as the one represented in [11].
Only changes are in kinematics of boom hoisting drive system. Figure 3 shows the
kinematics scheme of the boom hoisting drive system, consisting of: an asynchronous
electric motor (EM), mechanical coupling (S), gearbox (R), holding brakes (K)on input
shaft (figure 3.a) or caliper brake (C) (figure3.h) and drum for rope winding (D). For
this work interesting is the case where the balance established between the braking and
load torque, so the (EM) will not be included in dinamics models.
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I

T bk

I

a) Hoisting drive system with holding
brake on input shaft

b) Hoisting drive system with caliper
brake on roop drum

Figure 3. Kinematics scheme of the boom hoisting drive system

Oscillatory system is represented in Figure 4 as five (fig. 4.a) or four (fig. 4.b) rotating
mass on a single shaft wedged: J : - the reduced gearbox moment of inertia on the shaft

brake, J ; - the reduced gear number 5 moment of inertia on the shaft brake, J ; - the

reduced gear number 6 and drum moment of inertia on the shaft brake, J ; - the reduced
boom and bucket wheel moment of inertia on the shaft brake. M - braking torque, F,

- Force in the rope reduced on the shaft break,

[T
« U L

a) holding brake on input shaft b) caliper brake on roop drum

lFu

Figure 4. Dinamic model of hoisting drive system

Solving systems of differential equations presented in [11] using the Runge-Kutta
method in Simulink Module of Mathlab software package will obtain graphically
presented results.

Results in case of hoisting drive system with holding brake on input shaft (blue curve)
and system with caliper brake on rope drum (red curve) are given on the same charts,
for easy comparison.
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Vibrations amplitude of bucket wheel in a vertical plane (figure 5), in case of installed
disc brakes on roop drum, are reduced to only 1 [cm] with more than 27 [cm] for system
with holding brake on input shaft.

A 19
R

LAy

¥

Figure 5. Vertical movement of bucket wheel Figure 6. Total length of the cutting contours

In addition, gears of hoisting drive system are relieved of load during excavation
process.

Total length of the cutting contours (figure 6), for buckets that dig simultaneously , in
case of hoisting system with disc brakes has a jagged shape ranges between 3 to 4 meters
(red curve). That length for old system with holding brake on input shaft has maximum
values of 6,2 meters, which is almost double.

Figure 7. Digging force Figure 8. Force in the roop

The increasing of the cutting length or deeper buckets invasion into excavation terrace
produced additional load for digging subsystem already stochastically loaded due to the
in homogeneity of excavation materials. This leads to uneven filling of excavator
buckets and finally causes additional load for belt conveyor.

Digging force (figure 7) directly dependents on the total length of buckets cutting
contours. For drive system without disc brakes digging force reaches a maximum value
greater than 30% compared to system with disc brakes.

Time function of rope load (figure 8) is very similar to the digging force time function,
but the values are much higher due to the weight of the boom and working wheel. Lower
values of rope load when hoisting drive system have disc brakes on roop drum ensure
their longer exploitation and better safety of an BWE.
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4. Conclusion

Disc brake installation onto the rope drum will primarily eliminated hoisting drive
system gears moving and completely will unload the last couple of gears. Installation
affects of additional brake system to boom hoisting subsystem are: vibration amplitudes
of bucket wheel in a vertical plane are reduced, uncontrolled increase of cutting contours
length is prevented, 30% less load of rope and digging drive system. The dynamic
behavior of BWE in the excavation process clearly suggests installation of disc brake on
the rope drum.
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Abstract. In this paper, we demonstrate that the earthquake magnitude frequency per month,
recorded between 1970 and 2011 in Serbia, evolved as a chaotic process, by conducting the
nonlinear time series analysis of 760 recorded seismic events, according to Northern
California Earthquake Data Center. The main idea was to reconstruct the phase space of the
system under study, solely by analysing the time course of one of its variables. In that way,
some characteristic quantities, like maximal Lyapunov exponent or determinism factor,
could be extracted, defining the dynamics of the observed process. The applied algorithm
consisted of several steps. Primarily, the optimal value of embedding delay (t=3) was
determined using the mutual information method. In the second step, false nearest neighbor
method, for calculating the optimal embedding dimension, gave rather high value of minimal
false nearest neighbor (0.88), due to the small inital data set. This was the reason why
optimal value of embedding dimension was chosen to be equal to the number of degrees of
freedom of the observed process (m=3). The determinism test, as the next step in our
analysis, showed relatively low value of determinism factor (k=0.71), due to the small
number of earthquakes recorded in the period 1970-1980, which is confirmed through the
deterministic analysis of the seismic events in 1980-2011 (x=0.949). In the following stage
of our analysis, we conducted stationarity test in order to show that the parameters of the
system do not change during the measurement (i.e. the system has the same dynamics during
the observed period). Relatively low percent of cross prediction error (12,41%) indicates that
the system under study is stationary, even though the sampling of data was insufficient. As
the final step, the assumed chaotic dynamics was confirmed by positive maximal Lyapunov
exponent (Amx=0.001257). Also, broadband noise in the Fourrier power spectrum once more
corroborates the deterministically chaotic dynamics of the recorded seismic events. This type
of dynamical behavior could be associated with the crustal *’heterogeneity’’, in which fault
zones might have fluctuations in strength due to pore pressure variation.

1. Introduction

Earthquakes represent complex feature of the deformation of the earth’s brittle crust.
Their complexity reveals itself in power-law (fractal) scaling [1,2], with fractal spatial
distribution of epicentres and fractal-like structure of faults [3,4]. Fractal property of
earthquakes is also reflected through power-law distribution of magnitudes, which is
commonly given by Gutenberg-Richter and Omori-Utsu law [5]. In the same time,
earthquakes show complex temporal behavior, in the way that recorded seismic time
series exhibits chaotic dynamics. Regarding this, Beltrami and Mareschal [6] tried to
reconstruct the strange attractor for the earthquake time series recorded in the Parkfield
seismic region between 1969 and 1987. They came to ambiguous results — either this
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series cannot be distinguished from a random one, or it has a strange attractor with
dimension higher than 12. Tiwari et al. [7] applied a nonlinear forecasting approach in a
reconstructed phase space of the earthquake frequency in the Central Himalayan Region,
and found a low positive correlation between predicted and observed data suggesting
that the earthquake dynamics in the studied area is characterised by a mix of stochastic
and chaotic behaviour. Applying the same nonlinear time series analysis technique, used
in this paper, Mohammadi and Noorzad [8] calculated the value of maximal Lyapunov
exponent from the earthquake time series in Tabriz seismic region in Iran, between 1949
and 2007. The positive value of maximal Lyapunov exponent indicated the presence of a
strange attractor. De Santis et al. [9] showed that the seismic sequence of foreshocks
culminating with the M,,= 6.3 main shock on April 6, 2009 in L'Aquila (Central Italy)
evolved as a chaotic process, by using the method based on the Accelerated Strain
Release analysis in time and on the nonlinear approach in a reconstructed phase space.

In this paper we apply commonly used technique for studying the possible chaotic
nature of experimentally observed irregular behavior, which is given by nonlinear time
series analysis theory [10,11,12]. This technique enables extraction of characteristic
quantities, such as the maximal Lyapunov exponent, of a particular system solely by
analyzing the time course of one of its variables. It was already successfully applied for
confirming the chaotic behavior of a simple periodically driven resistor-inductor diode
[13], human electrocardiographic recording and human locomotory apparatus [14,15].
Also, this kind of analysis, in an idealized phase space after a time delay reconstruction,
was already applied in some other fields of geophysics, like geomagnetism [16,17]. Here
we apply this nonlinear time series analysis technique, in order to reconstruct the phase
space from an earthquake time series in Serbia, between 1970 and 2011from the
Advanced National Seismic System composite earthquake catalog (ANSS), hosted by
Northern California Earthquake Data Center [18]. The original data consisted of 760
recorded earthquakes, which is a relatively small data set. For the numerical calculation,
we used the open-source program package, developed in [13]. The applied algorithm
consisted of several steps: firstly, the mutual information method, initially suggested by
Fraser and Swinney [19], was used to determine the appropriate value of embedding
delay. Secondly, we applied the ’’false nearest neighbor technique’’ of Kennel et al. [20]
to determine the proper value of embedding dimension. After that, we applied
determinism test, developed by Kantz and Schreiber [11], in order to show that the
observed system originates from a deterministic, not a stochastic process. Subsequently,
we conducted the stationarity test, suggested by Schreiber [21], so as to ensure that the
recorded data originate from system whose parameters are constant during the
measurements. In the last part, we calculated the maximal Lyapunov exponent, applying
the method proposed by Wolf et al. [22]. Furthermore, deterministicallz chaotic
distribution of the recorded earthquakes was confirmed by broadband noise in Fourrier
power spectrum.

The scheme of this paper is as follows. In section 2, we describe the applied
technique, step by step, from mutual information method through false nearest neighbor
method, determinism and stationarity test to calculation of maximal Lyapunov exponent
and Fourrier power spectrum. This is followed by the analysis of the obtained results,
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regarding the dynamics of the examined time series. In the third section we give brief
discussion on the applied method and techniques, with suggestions for further research.

2. Nonlinear analysis of earthquake time series in Serbia

The recordings of seismic events in Serbia represent the source of data of various
levels of reliability [23]. During the period 1900-1970, the macrosesmic location of
epicentres was performed (stronger earthquakes: Rudnik, Lazarevac, Juhor, Krupanj,
Svetozarevo, Vranje, Vitina, were determined as I=8-9). From 1970 until the present, the
instrumental recording and evaluation of earthquake magnitude has been performed.
During this period, only four moderate-magnitude earthquakes with M=5.2-5.6
(Kopaonik, Mionic, Trstenik and Kraljevo) have occurred. In other words, quantitative
data about the earthquakes with epicenters in Serbia exist after 1970, which is the reason
why we investigated the sequence of 760 recorded seismic events between 1970 and
2011, from [18]. We are aware of the fact that studying of this relatively small data set
could lead to ambiguous results. Another important issue is the analysis of the short
period of seismicity, which is not a standard approach in research on seismicity in one
area. Usually, the reccurrence time of great earthquakes is taken as an optimal period (100
years in Serbia). However, regarding the research on chaotic dynamics of the recorded
earthquakes, the short time series analysis is not an exception. De Santis et al. [9] also
considered limited number of data (782 earthquakes) and demonstrated that it had evolved
as a chaotic process. Our decision to focus the attention only to the recorded earthquakes
in the period 1964-2011 is motivated by the fact that this period could be considered to
have reliable data about the recorded earthquakes. Instrumental seismology started
significantly to develop in Serbia during the 1950’s, so the data before that period should
be taken with great caution. Also, analogous time period was considered in [8].

Figure 1. Time series of recorded earthquakes in Serbia for the period 1970-2011.
The original data consisted of 760 recorded earthquakes, with the maximum

magnitude of 5.8, and the minimum magnitude of 1.2. 526 earthquakes occurred with the
magnitudes between 2.3 and 3.5. We performed a nonlinear time series analysis,
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considering the recorded earthquake magnitudes for every month, since 1970. For the
months without any registration, we assumed zero value of magnitude, which was already
proposed by Mohammadi and Noorzad [8]. If there was more than one registration during
a month, then the largest recorded magnitude was assigned. In that way, we obtained a
series of 504 data (Figure 1).

2.1. Determining embedding delay

According to Takens’ delay embedding theorem, phase portraits are constructed by
expanding a scalar time series s(z), i.e. seismic time series in this case, into a vector time
series X(t) using time delays 7: X(1) = {xo(t), x;(1), ..., X,(1),...}, where x,(t) = s(t+nz). For
an infinite amount of data, the time delay 7 can in principle be chosen almost arbitrarily.
However, when we deal with real limited data, contaminated with a certain amount of
noise, an appropriate value of T must be chosen [19]. A suitable embedding delay t has
to fulfil two criteria. First, T has to be large enough so that the information got from
measuring the values of variable (magnitude in this case) at time t+t is relevant and
significantly different from the information we already have by knowing the value of the
measured variable at time t. Second, t should not be larger that the typical time in which
the system looses memory of its initial state. If t© would be chosen larger, the
reconstructed phase space would look more or less random since it would consist of
uncorrelated points. The latter condition is particularly important for chaotic systems
which are intrinsically unpredictable and, hence, loose memory of the initial state as
time progresses.

(k]

Figure 2. Determination of the proper Figure 3. Fraction of false nearest

embedding delay - the mutual neighbor versus the optimal
information has the first minimum embedding dimension.
at7=3.

There are two ways of choosing an appropriate embedding delay. The first approach
is based on calculating the autocorrelation function of data, where the delay 7 represents
the time when this function takes a zero value, e.g. when xy and x; are completely
decorrelated. However, autocorrelation function measures only the linear dependence of
two variables, so it would be more efficient if we use a technique which measures the
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general dependence of two variables, like mutual information method. According to
[19], the value of 7 that produces the first local minimum of mutual information should
be used for phase portraits.

As apparent form figure 2, the first minimum of the mutual information appears at
t=3, which is taken as the optimal value of embedding delay.

Regarding the dynamics of the time series being reconstructed, finite value of
Shannon entropy (2.326) suggests that the time series is non-random in nature. Indeed,
lower entropy values represent an orderly/chaotic behavior of system dynamics, which
is, in general, the case for the earthquake time series under study [7].

2.2. Determining embedding dimension

The next step in our analysis, after calculating the optimal value of embedding delay,
is to determine the minimal required embedding dimension m in order to fully resolve
the complex structure of the attractor. We use the procedure that identifies the number of
’false nearest neighbors’’, points that appear to be nearest neighbors because the
embedding space is too small. This method relies on the assumption that an attractor of
a deterministic system folds and unfolds smothly with no sudden irregularities in its
structure. In other words, two points that are close in the reconstructed embedding space
have to stay sufficiently close also during forward iteration. If this criterion is met, then
under some sufficiently short forward iteration, originally proposed to equal the
embedding delay, the distance between two points of the reconstructed attractor, which
are initially close, will sty approximately the same. However, if some point has a close
neighbor that doe not fulfil this criterion, then this point is marked as having a false
nearest neighbor. Our aim is to minimize the fraction of points having a false nearest
neighbor by choosing a sufficiently large m. In this case, the results indicate that the
lowest value of FNN is 0.88, obtained for embedding dimension m = 1 (Figure 3).

This could not be considered as an appropriate value of embedding dimension,
because the criterion of FNN =~ 0 is not fulfilled. Also, it is observed that a FNN
increases with the embedding dimension, which could indicate the high level of
stochasticity in the system under study, or it could be a consequence of a relatively small
realistic data set, already reported in [20]. Concerning this, we assume that the
minimum embedding dimension is equal to the number of degrees of freedom of the
observed system, since the embedding dimension tells us how many autonomous first-
order ordinary differential equations are necessary to model the behavior of the system
[13]. In our case the earthquake nucleation mechanism is modeled with three first-order
ordinary differential equations (velocity, distance and state variable), so the embedding
dimension, used in further calculation, equals 3, which confirms the fact that a chaotic
process is often characterized by having a small embedding dimension [24]. This
assumption corresponds well to the suggestion of Sitharama et al. [25] that the false
nearest neighbor method cannot be applied in small sample data sets. Apparently, all
developed methods for finding a proper embedding dimension are inconvenient to apply
on these types of time series.

Having calculated the optimal embedding delay and embedding dimension, we are
able to successfully reconstruct the attractor (Figure 4).
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Figure 4. Reconstructed phase space obtained with the optimal embedding parameters: z = 3 and
m=3.

If we compare the return map for the system under study with the return map obtained
by Tiwari et al. [7] for the earthquake data northeastern India regions, we would gain
qualitatively the same graph (Figure 5). This fact indicates the possibility that temporal
distribution of recorded earthquakes exhibits chaotic behavior, considering the fact that
Tiwari et al [7] confirmed the earthquake processes in the northeastern india region
evolve on a non-random high-dimensional chaotic system.

Xin+1)

Xin+1)

Xin)

Figure 5. Comparison of the return map obtained for the earthquake data in Serbia (a) and
earthquake data in Northeastern India (b).

2.3. Determinism test.

After calculating the embedding delay and embedding dimension, it is possible to
apply a determinism test, in order to show that a time series originates from a
deterministic process, since, according to [26], the time series must originate from a
determinstic process in order to justify the calculation of the maximal Lyapunov
exponent. The method developed by Kaplan and Glass [26] assumes that a time series
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more or less complex first-order ordinary differential equations. The relevant
consequence of this fact is that if a system is described by a set of ordinary differential
equations, its vector field can be drawn easily. The length as well as the rotation of each
vector in every point of the phase space is uniquely determined with the differential
equations. In order to construct the vector field of the system directly from the time series,
the phase space has to be coarse-grained into equally sized boxes with the same
dimension as the embedding space. To each box that is occupied by the trajectory, a
vector is assigned, which will finally be our approximation for the vector field. The vector
pertaining to a particular box is obtained as follows. Each pass of the trajectory through
the box generates a unit vector, whose direction is determined by the phase space point
where the trajectory first enetrs the box and the phase space point where the trajectory
leaves the box, determining the average direction of the trajectory through the box during
a particular pass. The approximation for the vector field in one box of the phase space is
now simply the average vector of all passes. If the time series originated from a
deterministic system, and the coarse grained partitioning is fine enough, the obtained
vector field should consist solely of vectors that have unit length. If solutions in the phase
space are to be unique, then the unit vectors inside each box may not cross, since that
would violate the uniqueness condition at each crossing. In other words, if the system is
deterministic, the average length of all directional vectors x will be 1, while for a
completely random system x = 0.

Considering the fact that we investigate the limited number of data, that are not evenly
distributed, we coarse grained our three-dimensional embedding space into the largest
41x41x41 grid. For this calculation the three-dimensional embedding space was coarse
grained into 68921 boxes. The pertaining determinism factor of the approximated vector
field presented in figure 6 is x = 0.71. The total amount of 298 vectors was obtained for
this embedding space. We are aware of the fact that a number of vectors is significantly
smaller than the total number of boxes, which could cause the average vector length to be
different from 1.

The results of the determinism test could be ascribed to three possible reasons: chaos
is present but i) magnitude errors in the seismic catalogue may slightly affect the results;
ii) a stochastic contribution to the dynamics is present as well; or iii) chaos in not present.
To exclude or accept one of the possible three cases, and to further discriminate and
quantify the possible chaos in the seismic data, we conducted additional analysis,
excluding the first several spikes, until 1980. The additional analysis was done because
small number of earthquakes was recorded in the period 1970-1980, which could be one
of the possible reasons of relatively low determinism factor. The results of the
determinism test for this data set are shown in Figure 7. For this analysis, the determinism
factor is x = 0.949, which is closer to the value of 1 and confirms the deterministic nature
of the system under study.
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Figure 6. Determinism test. The approximated vector field for the embedding space reconstructed
with 7 = 3 and m = 3. The pertaining determinism factor is ¥ = 0.71.
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Figure 7. Determinism test, for data in the period 1980-2011. The approximated vector field for the
embedding space reconstructed with ¢ = 3 and m = 3. The pertaining determinism factor is x =
0.949.

2.4. Stationarity test.

In order to determine whether the studied time series originated from a stationary
process, we apply a stationarity test, originally proposed by Kantz and Schreiber [11],
based on the cross-prediction error statistics. According to Perc [14,27] the maximal
Lyapunov exponent cannot be considered as an indicator for chaos, if the studied time
series does not result from a stationary process, which represents a system whose
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prediction of unknown data value, using similar events happened in the past, which are
considered as neighboring points. For each point of the equally sized non-overlapping
segment i at time #, predictions of the value of an unknown data are performed in the
segment j at the time 7+4¢. The accuracy of obtained predictions is evaluated then, by
calculating the average prediction error J;;, which is repeated for all combinations of i
and j. The resulting high prediction error J; is a clear indicator that the stationarity
requirements in the examined time series are not fulfilled [27].

The colour of each map segment indicates the cross-prediction error of using
segment i as the neighbour source for making predictions in segment j. We divided the
original data set into short series each occupying 10 points, because of the small number
of data and the limited value of cross-prediction error. In this way, we obtained a total of
58 segments and exactly 58 possible combinations to evaluate the statistics.

The average cross-prediction errors for all possible combinations of i and j are
presented in Figure 8. The average value of all J;; is 1.885, while the minimum and
maximum values are 0 and 2.4783 respectively.
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Figure 8. Stationarity test. The whole time series was partitioned into 58 non-overlapping
segments each occupying 10 data points. The colour map displays average cross-prediction errors
d;j in dependence on different segment combinations.

As it can be seen, the minimal cross prediction error is when i = j on the diagonal,
since x, and the neighbours pertain the same data segment, so the possibility of an
altered dynamics is small [27]. Also, it can be observed that J;; remains basically around
the average value (green) and lower (blue and gray), approximately 87.59%, except for
some isolated cases of high prediction error (yellow and red), without any evident
pattern. Moreover, since all cross-prediction errors differ maximally by a factor of 2, we
can clearly refute non-stationarity in the studied time series.
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2.5. Largest Lyapunov exponent.

Lyapunov exponents are determined according to the algorithm developed by Wolf
et al. [22], which is based on the evaluation of the distance evolution between two
nearest points (L), for a fixed evolution time (#,,,.). If the final distance is larger than
the starting one (L,,.i. > L), the attractor is chaotic. However, if 7., is too large, it is
possible that the two trajectories defining L, pass through a folding region of the
attractor (L,,,;, < Lo), leading to underestimation of the largest Lyapunov exponent.
Hence, according to Perc [27], after each t.,,, a replacement step is attempted in which
we look for a new point in the embedding space whose distance to the evolved initial
point is as small as possible, until the initial point reaches the end of the time series.
Finally, /. is calculated according to the equation (1):

M
A = (1 Miewn )Y In( 1), [ 1)) (1)
i=0

where M is the total number of replacement steps.

The largest Lyapunov exponent converges well to A;,,=0.001257, confirming the
deterministically chaotic behavior. Also, the largest positive Lyapunov exponent is very
important because it gives an idea of the length of time over which a chaotic system is
predictable [16].

At the end, broadband noise in Fourier power spectrum once more approves the
chaotic temporal distribution of the recorded seismic events (Figure 9).
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Figure 9. Broadband noise in the Fourier power spectrum indicates chaotic behavior.

3. Conclusion.
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In this paper, we demonstrate that the distribution of the earthquake magnitudes in
the period 1970-2011 evolved as a chaotic process. The obtained embedding delay (r =
3) and embedding dimension (m = 3), verified through the determinism and stationarity
test, led to the positive value of maximal Lyapunov number, for various values of
evolution times. The main challenge in this analysis was the limited number of data.
This was especially the case with determining embedding dimension, where we assigned
the value of 3 to optimum embedding dimension, since the earthquake nucleation
process is a system with three degrees of freedom. Also, an increase of FNN parameter
with increased embedding dimension could indicate a high level of stochasticity in the
system. This was the main reason why the deterministic test was deployed. However,
determinism test did not completely confirm the uniqueness of solutions in the phase
space, concerning the fact that the calculated pertaining determinism factor was 0.71.
Hence, the additional analysis was done only for the recorded earthquakes in the period
1980-2011, showing that the determinism factor, in this case, is 0.949, which is near the
value for purely deterministic system. In other words, denser data set should be analyzed
in order to evaluate the deterministic nature of the original system.

However, the results obtained by applying the nonlinear time series analysis to an
earthquake time series must be interpreted with great caution: the measurement error
and stochastic component could largely influence the original data, which could make
the analysis more difficult.

Next step in our research will be the application of this technique to the seismic
sequence before and after Kraljevo M = 5,4 earthquake on November 3, 2010 in order to
show that the seismic sequence during the great event also evolves as a chaotic process.
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Abstract. In this paper we introduce the time delay 7 in friction term in the Madariaga model
of stick-slip motion coupled with Dieterich-Ruina’s rate and state dependent friction law.
Madariaga’s system of equation describes the motion of the Burridge-Knopoff model, which
is today recognized as a common model for earthquake nucleation mechanism. It consists of
one block of a certain rock type, connected through harmonic spring to a moving plate and
driven along the rough surface, which causes the whole system to move in a stick-slip
fashion. The introduction of time delay in friction term is motivated by the fact that the
observed spring-block model exhibits memory effect that commonly appears during the stick-
slip motion of the block along the rough surface. Standard local bifurcation analysis of delay-
differential equations is performed, indicating the dynamical change of the system state from
stable equilibrium through periodic (first Hopf bifurcation) and quasiperiodic motion (second
Hopf bifurcation) and eventually to deterministic chaos. The results are confirmed by using
the software package DDE-BIFTOOL. The corresponding Hopf bifurcations are locally of
the direct or inverse type which depends on the sign of the derivatives along the bifurcation
curves. These dynamical changes are confirmed by the calculation of Fourier power spectra.
We believe that this new approach, concerning the involvement of time-delay in the friction
term in the Burridge-Knopotf model reveal some aspects of underlying physics of earthquake
nucleation.

1. Introduction

Understanding the development and initial stages of an earthquake rupture is a major
goal of earthquake science. Some researchers suggest that the nucleation process,
specifically the size of the nucleation zone, is related to the ultimate size of the resulting
earthquake [1-3], while others support the view that the size of the nucleation zone is
unrelated to the final magnitude of an earthquake [4-6]. However, the influence of the
nucleation mechanism on the final impact of earthquake certainly exists, so the
modeling of this phenomenon could lead to new insights on the nature of earthquakes. A
common approach in the description of seismic sources is their approximation by a
model of equivalent forces that correspond to the linear wave equations, neglecting
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nonlinear effects in the source area [7-11]. Equivalent forces are defined as producing
displacements at a given point that are identical to those from the real forces acting at
the source. However, this body-force equivalent is a formal concept and it is necessary to
relate its characteristics to some physical concepts of the real earthquake source. One
such concept is the elastic rebound theory, formulated by Reid [12], suggesting that
earthquakes are the result of fracture of the Earth's material caused by tectonic stresses.
Today, it is commonly accepted that vast majority of shallow tectonic earthquakes arise
from faulting instabilities. In other words, dynamic faulting is widely accepted as the
origin of the majority of seismic events [13]. However, the earthquake origin is not
accessible to direct observation, so research in this area is conducted by studying the
recorded time series, propagation of seismic waves through Earth's interior or by
simulating the earthquakes in laboratory conditions. In this paper, we follow the
suggestion of Brace and Byerlee [14], that stick-slip occurring in laboratory
experiments may be analogous to the mechanism of crustal earthquakes. This stick-slip
motion is well simulated by Burridge-Knopoff model [15], which is today recognized as
a common model for earthquake nucleation mechanism. Originally, it consisted of
several blocks interconnected by harmonic springs and attached to a moving plate,
which drives the system along the rough surface, causing it to move in a stick-slip
fashion. In this paper, we observed only one block, attached through harmonic spring to
a driving plate, which causes the block to miove along the rough surface of the lower
plate (Figure 1).

DRIVER PLATE

ROUGH SURFACE

Figure 1. The Burridge-Knopoff block and spring model, represented by a slider coupled through
a spring to a loader plate.

The main nonlinearity of this system comes from the friction between the block and
the rough surface of the lower plate, which also causes many aspects of earthquake
phenomena. Concerning this, some specific constitutive laws for rock friction has been
developed based on laboratory studies. These laws have been successfully used to explain
various aspects of stable and unstable sliding between elastic solids as observed in the
laboratory [16-18]. In this paper we use Dieterich-Ruina rate-and state dependent
friction law [19,20], based on experimental observations. One formulation of the
Dieterich-Ruina friction law was proposed by Ruina [16] and is known as the ,,slip law”’
[21]:
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Simple model of earthquake nucleation with time-delay

where the friction stress 7 is a function of the normal stress o, u, is a constant coefficient
of friction, D, is the critical slip distance in order for friction to change from static to
dynamic values [22]. V is the slip rate, V, is a constant introduced for dimensional
consistency [16]. A and B are positive frictional parameters corresponding to the
response to a step change in the imposed velocity of a single block configuration [23]
and 6 is the state variable (Fig. 2).

The Dieterich-Ruina friction law (1) includes a state variable 6, which, in effect,
represents the delayed reaction of the friction to instantaneous changes in velocity. It is
this parameter that describes the memory effect in the model, or the so-called
’aging’’[23,24]. In our paper we model this effect by including the time-lag in the
friction term, which was not explicitly considered in previous papers.

The basis of our model is represented by the system of equations proposed by R.
Madariaga, already used in [25], where we introduce the time-lag in the friction term.
The results are obtained through standard local bifurcation analysis and confirmed by
using the software package DDE-BIFTOOL, which represents a collection of Matlab
routines for numerical bifurcation analysis of systems of delay differential equations
with several constant and state-dependent delays [26,27].
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Figure 2. Schematic diagram, illustrating the response to a step change in the imposed velocity,
V, of a single block. The imposed velocity, initially maintained constant at Vp, is suddenly
incremented by AV and subsequently held constant at Vy+4V. The friction stress 7, initially
constant at 7o, suddenly increases to A when the velocity is incremented by AV and then decreases
exponentially to a new value B. The length scale D., characterizes the distance.

The scheme of this paper is as follows. In section 2, we present the original model
suggested by Madariaga [25], including the modification with introduced time delay. In
section 3, we examine the one-block model, coupled with Dieterich-Ruina friction law,
including the time delay term, by applying the standard local bifurcation analysis. The
results are validated using the sofware package DDE-BIFTOOL. Moreover, we confirm
the existence of chaotic motion through the calculation of the Fourrier power spectrum
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and maximal Lyapunov exponent. In section 4 we give the possible correlation of the
obtained results with the earthquakes. Concluding remarks are given in section 5,
together with the suggestions for further research.

2. The earthquake model

Our numerical simulations of a spring-block model are based on the system of
equations proposed by Madariaga [25]. These equations of motion coupled with
Dieterich- Ruina rate and state dependent friction law are originally given in the
following way:

0 :—v(9(1+£)log (v))
2

u=v-1

v=—y? |:u + (I/f)(9+log (v))]
where the parameter M is the mass of the spring block, u represents displacement of the
block and v is the block’s velocity. Parameter e=(B—A)/A measures the sensitivity of the
velocity relaxation, ¢ =(kD.)/A is the nondimensional spring constant, and y =
(k/M)"*(D/vy) is the nondimensional frequency [25]. Parameter k represents spring
constant, connecting the block, while A, B and D, are the same as in equation (1).

The system has only one stationary solution, (6,u,v)=(0,0,1), which corresponds to
steady sliding. In this paper, we introduce time delay 7z concerning the retardation time
between the movement of the upper plate and the block, due to complex friction force
between the block and the rough lower plate. In this way, we obtain the following system
of delay differential equations:

92—v(¢9(1+€)log (v—z'))
u=v—1I 3

v=—7[u+(1/£)(6+log(v))]
We shall proceed in the standard way to determine and analyze the characteristic
equation of (4) around a stationary solution (0,0,1).

3. Local stability and bifurcations of the stationary solution

Linearization of the system of equations (3) and substitution 6=Ae", u=Be", v=Ce"
and v(t-1)=Ce’ results in a system of algebraic equations for the constants A, B and C.
This system has a nontrivial solution if the following is satisfied:

—/13—/12[7;”]—/172(2”]—72 +/l(1+s)§e’“:0 (C))

The equation (4) is the characteristic equation of the system (3). Further, we substitute
A=iw in equation (4) to obtain:
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iw*+w2[72+1]—iwy2 [ﬂ]—;ﬂ
g g
iw(1+e)i
g
The resulting two equations for the real and imaginary part of equation (5) after
squaring and adding give an equation for each of the parameters, ¢ and £ in terms of the
other parameters, w and y, and after division for 7 in terms of the parameters w, y and ¢&.
In this way, one obtains parametric representations of the relations between 7 and the
other parameters, which correspond to the bifurcation values A=iw. The general form of

such relations is illustrated by the following formulas: for ¢ as a function of w:

e=-1+C (6)

2 2
ool ffo}
[ wy? [ : + : +1|-y o
2
%)
On the other hand, for & as a function of w:

[0)72 sin(an')+ a)2y2 cos(an‘)}

=—(coswr—isinwr) ®)

where:

C=

&= )
(0)3 —a)yz)sin(an')+(72 —a)z)cos(an')
For 7 as a function of w:
-o? [7;+1]
T:Tc:é arctg +2kx ©)

]

where k is any nonnegative integer such that ;> 0.

The previous parametric equations for ¢, ¢ and 7 give the Hopf bifurcation curves that
are illustrated in Fig.3, for the fixed values of the parameters ¢ (0,5) and y(0.8). We
adopted the value of y=0,8, because for commonly used values of y = 10°-10"
according to Madariaga [25] the system under study becomes very stiff in numerical
sense. Another reason for taking the constant value of y is that, in this case, the
trajectory for a Hopf bifurcation depends only on ¢, £ and 7. In that way, we can observe
a transition to chaos by simply increasing the value of those parameters.

As apparent from Fig.3, the fixed point undergoes a supercritical Hopf bifurcation,
i.e. by enchancing the time delay 1, stable fixed point turns into an unstable one, and a
limit cycle is born. Moreover, as we change the value of time delay, periodic motion
turns into quasiperiodic and finally to deterministically chaotic behavior. The critical
value of the time delay 7., when the bifurcation from stable into unstable fixed point
occurs, is given by the relation in equation (9). In other words, our system exhibits
quasiperiodic (Ruelle-Takens-Newhouse) route to chaos [28,29]. However, the
derivatives of the solutions of the characteristic equation (5) with respect toz at the
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.
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Figure 3. Hopf bifurcation curves z(¢), for the fixed values of parameters &= 0.5, and y = 0.8. The
signs +/- represent the supercritical or subcritical Hopf bifurcation, respectively. Appropriate time
series and phase plots for points 1, 2, 3 and 4 are shown in figures 4 and 5.
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Figure 4. Temporal evolution of variable v and appropriate phase portrait for a. 1=0, € =0.2 , & =
0.5 and y = 0.8 — point 1 form Fig.3 (equilibrium state); b. =10, € = 0.3, £ = 0.5 and y = 0.8 —
point 2 from Fig. 3 (periodic motion).

bifurcation values in the Fig. 3 are not always positive, so that for 7 € (7., 7..;), by
crossing the bifurcation curve, two already existing unstable directions could be lost in a
sufficiently small neighbourhood of (0,0,1), causing the dynamic state of the system to
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change from oscillatory behavior to stable equilibrium state, which is known as time-
delay induced amplitude death [30,31].

Fig. 4 and 5 represent temporal evolution of variable v for the fixed values of €, &, y

and t (corresponding time series and phase portraits for points 1, 2, 3 and 4 from Figure

3).
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Figure 5. a. Temporal evolution of variable v and appropriate phase portrait for a. =13, £ =0.5,
= 0.5 and y = 0.8 — point 3 from Fig. 3 (quasiperiodic motion); b. 1=20, ¢ = 0.5, £ = 0.5 and y =
0.8 — point 4 from Fig.3 (deterministic chaos).
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Figure 6.a. Single peak in power indicates the oscillatory behavior of the model. b. Two peaks in
power indicate the appearance of torus (second Hopf bifurcation).
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The presence of chaos was confirmed by calculation of the Fourier power spectrum
for oscillations, torus and chaotic orbits, shown in fig. 4 and 5. The single peak in power
in fig.6a indicates the oscillatory behavior of the system under study, while the second
peak in fig.6b indicates a presence of torus. The broadband noise in fig. 7 indicates that
the attractor is strange.

IR Y

Amplitude

nl4
|

11,43 i - o W ; -
0 M M0 &0 B 000 1200

Frequency
Figure 7. The broadband noise in the Fourier power spectrum indicate the chaotic behavior of the
system.

Moreover, the deterministically chaotic behavior was further validated by calculating the
maximal Lyapunov exponent for the v(#) time series. As apparebt form Fig. 8, the value
of maximal Lyapunov exponent converges well to A,,=0.095.

[T
e

i Il'i:llii} ."'ﬁl'.ﬂ'ﬂ WK A{HHK]

# of time steps
Figure 8. Calculation of the maximal Lyapunov exponent for v(z) time series. The parameter
value corresponds to the plot shown in figure 5.a. maximal Lyapunov exponents converge well to
4=0.095.

4. Seismological interpretation

Although parameter values used in this paper are exclusively of theoretical character,
without looking for the relation with the observed data for laboratory and natural fault
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zones, it is possible to give a qualitative interpretation of the obtained results. In the
context of seismology, the spring-block model illustrated in Fig. 1 can be understood as
a representation for one-dimensional earthquake motion, where the spring stiffness k
corresponds to the linear elastic properties of the rock mass surrounding the fault [23].
According to [32], the parameter D, corresponds to the critical sliding distance
necessary to replace the population of asperity contacts. The parameters A and B are
empirical constants, which depend on material properties, directly included in parameter
¢ defined by the ratio of parameters B-A and A. These parameters also change during the
slip, as it is shown in Fig. 2. As apparent from this figure, parameter A reflects the rise
of the friction coefficient, when the block is subjected to sudden velocity increase. For
every succeeding slip phase, this parameter gain a new value, concerning a different
nature of the contact between the block and the rough surface. This parameter is also
reflected through parameter £, defined as the nondimensional spring constant.

On the other hand, the results of the bifurcation analysis imply that the transition
from periodic motion to equilibrium state, known as *’amplitude death’’ (inverse Hopf
bifurcation) is observed only by increasing the value of 7 (Fig. 3). This time-dependence
of the studied system could be related to ’’self-healing process’’ along the fault zone,
and it corresponds well to previously obtained laboratory observations [33] as well as the
seismic estimates of fault healing [34,35], which show that frictional healing proceeds
linearly with log time during quasistationary contact.

In the end, the analogy with earthquake motion suggests that the friction law can be
a potential source for the observation of aperiodicity in earthquake dynamics. If we
assume that the friction law is the main physical process regulating the frequency of
earthquakes, then the presence of a strange attractor suggests that earthquakes are
typically aperiodic. Thus aperiodic orbits on the strange attractor may exhibit dynamics
analogous to the dynamics during an earthquake. Furthermore, it is important to note
that aperiodic behavior observed in the system under study may be partially responsible
for irregular ground motion during the earthquakes.

5. Concluding remarks

We analyzed the properties of a system of equations, describing the Burridge-
Knopoff model coupled with Dieterich-Ruina friction law, with the time-delay
introduced in the state friction term. In order to examine the possibility of
deterministically chaotic behavior we performed the standard local bifurcation analysis
and obtained exact parametric representation of the Hopf bifurcation curves in the
general case of the introduced time-lag. The derivatives along the obtained Hopf
bifurcation curves indicate the transition from equlibrium state through periodic and
quasiperiodic motion and finally to deterministic chaos. The corresponding Hopf
bifurcations are of direct or inverse type. Supercritical or subcritical Hopf bifurcation
could not be diversed, since we conducted only the local analysis (near the fixed point).

On the other hand, even though we examined the model with only one block, our
results reveal some characteristics of the general physics that is behind the generation of
the earthquakes in terms of a chaotic process. Also, they confirm the fact that the
memory effect included in this model represents the important feature of the real
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earthquakes, since the chaotic motion is already observed for the recorded eartquakes.
Moreover, the strategy applied here can be replicated for other models, e.g. with greater
number of blocks, in order to better understand the chaotic behavior of earthquakes in
general.

Concerning this, we will expand our future studies, including two or three blocks,
interconnected by harmonic springs, and coupled with different friction laws, in order to
compare the obtained results and observe how the dynamics of the system under study
changes under different conditions.
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In this presentation, a classification of discontinuity in discontinuous dynamical
systems will be discussed first. To discuss the singularity to the boundary, the grazing and
inflexional singular sets on the boundary will be presented, and the real and imaginary
singular sets will be also discussed. With permanent flow barriers, the forbidden boundary
and the boundary channel will be presented. The forbidden boundary will not allow any
flows passing through the boundary, and the boundary channel will not allow any boundary
flows getting into the corresponding domains. Further, the domain and boundary
classification will be addressed. Sink and source domains will be discussed. Similarly, the

sink and source boundary will be also presented. Because of C°-discontinuity, the flow
barriers, the isolated domains and the boundary channels, the transport laws are needed to
continue the flow in discontinuous dynamical systems. Multi-valued vector fields in a
single domain will be introduced. With the simplest transport law (i.e., the switching rule),
the bouncing flow on the boundary will be presented, and the extendable flows will be
discussed as well. A controlled piecewise linear system will be presented as an application,
and the vector fields on both sides of the boundary will be switched at the boundary. The
bouncing flows will be illustrated in such a controlled piecewise linear system.
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In this presentation, positive utilizations of nonlinear phenomena are considered for
establishing high performance mechanical systems [1]. Because nonlinear phenomena are
generally very complex and not predictable of their occurrences, many control methods to
avoid the occurrences have been proposed. On the other hand, most mechanical systems
have inherently nonlinear characteristics in their inertia or restoring forces. In this
presentation, we do not suppress the nonlinear phenomena due to the nonlinearity, but try to
positively utilize nonlinear phenomena produced due their nonlinearity. First, we deal with
an under actuated manipulator of which fist joint has actuator and sensor but second joint
does not have actuator nor sensor. In most researches on under actuated manipulators, the
assumption that the second
joint does not have actuator but has sensor is given, i.e., the feedback with respect to the
angle of the free link connected to the second joint is possible, are given. On the other hand,
we consider the case when the angle of the free link is not measurable, i.e. the feedback
control with respect to the angle of the free link cannot be applied [2]. By high-frequency
excitation of the first link to the second joint, the supercritical and subcritical, and their
perturbed pitchfork bifurcations can be produced and many kinds of stable steady states can
appear. We analytically show the motion control strategy by using the amplitude equation
and confirm the validity through experiments. The second topic is related to the realization
of a high performance atomic force microscope (AFM) [3]. For measuring soft materials as
biological samples, we have to keep small amplitude in the self-excited micro-cantilever
probe not to give the damage to the sample due to the contact between the cantilever and
the samples. To this end, we utilize the nonlinear dynamics of van der Pol oscillator which
has a limit cycle depending on the magnitude of the nonlinearity. We apply the nonlinear
feedback proportional to the velocity and the deflection squared to realize the dynamics of
van der Pol oscillator in the micro-cantilever probe in AFM. The validity is experimentally
confirmed from the practical sample images.
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A new complete bifrcarion theowy of nowlinear dvirantical systems (CBT NDSE and s application,
intended for direet global bifurcation analysis of dynamical periodic systems is presented. The
bifurcation theory is established for essential nonlinear dynamical penodic systems, descnibed by
models of ODE equations or by map-based models of discrete-time equations, Qur approach is
based on ideas of Poincaré, Andronov and other scientists’ results conceming global dynamics,
structural stability and bifurcations and chaotic responses of dynamical nonlinear systems and their
topological properties,

The main idea of the new CBT is a fact that the NDS in a given parameters and state spaces has
finite number (uswally not so many) of independent bifurcation groups S{p) with their own complex
topology and bifurcations, chaotic behavior, and, in many cases, with rare regular and chaotic
attractors (RA). For each peint of parameter space it is possible to find all essential fixed points of
the periodic orbits (stable and unstable). This periodic skeleton allows o mark out the bifurcation
groups and o stan global analysis in state and parameter spaces

The main concepts of the new CBT are; complete bifurcation group (BG); unstable periodic
infinitium subgroups (UPI), responsible for chaos, complex prowberances, and periodic skeletons
for a svstem with parameter p. For illustration of the advantages of the new bifurcation theory we
use in this presentation several typical nonlinear models: Duffing driven double-well oscillator, a
pendulum driven and parametrical excited oscillator (see Figs 1, 2). Besides we consider using the
method of complete bifurcation groups for several different models of driven 2DOF systems: a fla
system with one mass suspended by nonlinear springs in a plane, two masses chain system with
non-unique equilibrium positions, and a simple rotor system with asymmetrnic suspension

The last 2DOF systems were investigated for comparing two approaches: traditional analytical
approximate methods (harmonic balance methods, average and many scale methods, the nonlinear
normal mode’s method) and the method of complete bifurcation groups and approaches of the
hifurcation theory. In all considered examples we have found that the complere bifurcation theory’s
methods allow finding important unknown regular or chaotic attractors and/or new bifurcation
groaps with rare attractors RA, Additional illustration of the bifurcation theory, it is possible to find
in the author’s and hiss colleague’s papers where there is rather complete bibliography on the
bifurcation theory and rare antractors (see references),
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ABSTRACT. Any reaction system starting from some arbitrary initial conditions tends to
final steady or equilibrium state that plays the role of an attractor, passing through distinct
regions of the phase space while its different chemical species simultaneously transform
through the reaction network. Since, almost all complex many variable dynamical systems
are characterized by multiple-time-scales, various forms of attractors and transitions
between different dynamical states were studied in such systems. Typical example is an
oscillatory reaction, known as the Bray-Liebhafsky (BL) one, that consists of a complex
homogeneous catalytic oscillatory process involving numerous iodine intermediates such as
L, I', HIO, HIO; and L,O, that all oscillates [1]-[4]. The concentrations of mentioned species
in the considered process differ for several orders of magnitudes among themselves. Thus,
typical concentration of hydrogen peroxide during oscillatory state of the system is between
1072 and 107! mol dm™, the concentration of iodine is between 10~ and 10™ mol dm,
whereas the concentrations of other species are much lower, between 10~ and 10™° mol
dm™. Consequently, their simultaneous time variations are different, resulting in dissimilar
behaviors characteristic for multiple-time-scale systems with, at least, slow (large-
concentration) and fast (low-concentration) species. In systems, where concentrations of
crucial species differ significantly, the relaxation oscillations are common. Furthermore, in
multiple-time-scale systems with more than one slow variable, mixed-mode oscillations
may appear in the region with simple sustained oscillations. [5] They generally consist of
two types of oscillations with distinct amplitudes: large-amplitude oscillations (LAO-s) and
small-amplitude oscillations (SAO-s). Depending on numbers of small (S) and large (L)
oscillations in a period, different periodic dynamical states can be identified and assigned
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by state enumeration LS. Between every two successive periodic states with different
dynamical assignation, the chaotic states appear. [6] Here we analyze emerging of chaotic
atractor in the model [7] of BL reaction with multiple-time-scale dynamics. With aim to
explain the mixed-mode oscillations obtained by numerical simulations of the various
dynamical states of a model for the Bray-Liebhafsky reaction under CSTR conditions, the
folded singularity points on the critical manifold of the full system and Andronov-Hopf
bifurcation of the fast subsystem are calculated. The interaction between those singularities
causes occurrence of tourbillion structure and canard solutions.

Keywords: Bray-Liebhafsky oscillatory reaction, mixed mode oscillations, critical
manifold, multiple time scale dynamics
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ABSTRACT. Composite materials consist of at least two constituents one of which is
matrix and another fibre usually lay up through layers mutually bonded to make
multilayered composite in the forms of laminates. Fibres carry loads giving strength and
matrix bonds fibres together play important role in load transfer to fibres and forms outer
shape of composite.

Prediction of dynamic behavior of laminated composites is rapidly assuming considerable
importance to industry. Thus, here we deal with such composites, and analysis relates to
fibre reinforced materials in which continuous strong and stiff fibres, such as carbon, boron
etc., are embedded in a relatively soft matrix, such as resin.

If material is reinforced with one family of fibres it has one privileged direction making
material locally transversally isotropic in relation to that direction. Fibre direction may be
defined as unit vector field @ which may vary from point to point. Trajectories of unit
vectors @ are defined as fibres in relation to which material is locally transversally
isotropic. Since fibre direction depends on position, here we consider coordinate free
formulation of constitutive equations [1].

The non-linear dynamic theory of finite elasticity is quite difficult and still today relatively
few analytical solutions have been obtained for the full governing equations. These are
based on early work of Hadamard and there have been examined cases simple enough to
involve only a very limited material response. In the search of more complex motions only
partial results seem to be possible [2].

In recent times, researchers interested in continuum mechanics have usually restricted their
attention to special classes of response functions such as neo-Hookean or Moony-Rivlin
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materials. On the other hand, researchers interested in acoustics have concentrated their
interest towards the theory of small, but finite amplitude, waves. Possibility to obtain exact
solutions of nonlinear dynamic elasticity is important in many fields of applications. These
solutions often give opportunity to investigate more complex theories of material behavior
where dissipative and dispersive phenomena are taken into account. Here we are going to
provide partial survey of some results and methods of approximations made to search
governing equations.

Here it is going to be made sort of parallel between nonlinear and linear elasticity, and to
derive in a rigorous and general way the nonlinear equations, which describe fibre
reinforced composites and laminates. Constitutive relations of finite elasticity are given for
models of materials reinforced by one or two families of fibres. Linearization leads to
constitutive relations same as those developed by introduction of strain energy function,
which make relatively easy search through wave phenomena.

For given deformation strain energy function depends on both strain € and fibre direction
a . Here is given list of matrix products whose traces make proper orthogonal group basis
leading to set of invariants which may be used to form general quadratic form of strain
energy function. This may be used to form stress strain relations leading to elasticity tensor
for material reinforced by one or two families of fibres.

Dynamic behavior of anisotropic media may be seen the best through its behavior during
bulk wave propagation. Bulk waves exist in infinite homogeneous bodies and propagate
unbounded without disturbances caused by either boundaries or inter-layers. Such waves
may be decomposed into finite plane waves propagating along arbitrary direction m in
solid.

Properties of these waves are determined by dependence between propagation direction and
constitutive properties of media. Three types of such waves may be distinguished in
connection to three displacement vectors, which determine acoustic polarization. Three
polarization vectors are mutually orthogonal, but in most cases they are neither
perpendicular nor parallel to propagation direction.

The most of dynamical systems are naturally nonlinear and, since it is not easy to find
closed solutions of such systems, here we are going to write Reimann-Christoffel equation,
leading to three non-homogeneous linear equations which determine displacement
amplitudes. This equation represents propagation condition of bulk waves as set of three
homogeneous linear equations. Proper values of Reimann-Christoffel equation give phase
speed of propagation of plane waves, and proper vectors represent polarization vector. This
equation is the most important equation of entire theory of elastic wave propagation in
crystals. Since acoustic tensor is symmetric tensor of second order, proper values are real
and proper vectors are mutually orthogonal. Reimann-Christoffel equation may be solved
analytically only for the simplest cases of material symmetry [3].

For successful display of three dimensional wave surfaces numerical analysis, which
contain all propagation directions, phase velocities and polarization vectors, has been
performed. The most appropriate approach in this consideration is fibre reinforced material
for which proper axes coincide with global coordinate system. That is always used when
crystallographic axes are known in advance. Materials used in present analysis are fibre
reinforced with one or two families of continuous fibres. Since fibres are much stronger
than matrix anisotropic properties are very strong.
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After examination of bulk waves we are going to restrict our attention to stress free infinite
plate, developing dispersion relations. We are going to use developed dispersion relations
to examine laminate structures, and then to consider dynamic behavior of such structures.

Keywords: Waves, Composites, Strongly Anisotropic, Slowness surfaces, Acoustic tensor,
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A system consisting of an outer rigid body (a shell) and an inner body (a material
point) which moves according to a given law along a curve rigidly attached to the shell
is considered. The system moves in a uniform gravity field over a fixed absolutely
smooth horizontal plane. During its motion, the shell may collide with the plane. The
coefficient of restitution at impact is supposed to be arbitrary.

If the shell executes free flight over the plane, the system mass center moves in a
parabola or along a vertical straight line.

The paper presents differential equations governing the motion of the shell relative
to its center of mass; they describe both stages of free flight over the plane and
instances of collisions of the shell with the plane [1].

The shell is found can execute translational motion, if the material point moves
according to the special law. The second Lyapunov method was used to investigate
stability of this shell motion.

A general solution of the equations governing the rotational motion of the shell was
obtained for the case where the shell is dynamically symmetric and the point moves
along its symmetry axis according to an arbitrary law.

Two special cases of the system motion are also considered. In the first case the
relative motion of the material point is assumed to be fast and the point mass small in
comparison with the shell mass, and in the second one the point executes fast motion in
a small neighborhood of a given point of the shell.

Using the classical perturbation theory methods approximate systems of
differential equations governing the shell rotation are obtained for these cases.
Difference between solutions of these systems and the corresponding exact systems of
equations is estimated. First integrals of the approximate systems are found, their
integrability is proved, and some special solutions are considered.
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The paper also presents the results obtained in the problem of existence and
stability of periodic motions of a dynamically symmetric shell colliding with a plane

[2].

Keywords: rigid body, collisions, stability, rotational motion, fast motions,
perturbation theory
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ABSTRACT. In this paper we analyze the asymptotic solutions of the acceleration
equation

il drG

ap
+ S
il 3 (” o )

related to the Friedman cosmological equation

which describes the expansion scale factor a(¢) of the universe. Here, p= p(?) is the
energy pressure in the universe, p= p(¢) is the density of matter in the universe, & is
the space curvature, G is the gravitational constant and c is the speed of light. The
variable ¢ represents the cosmic time. We are particularly interested in the solutions
satisfying the generalized power law a(¢) = “L(r), where L(¢) is a regularly varying
function in the sense of J. Karamata, see [3]. For this reason we introduced a new
parameter (f) = q(t)(H(z‘)t)2 where ¢(?) is the deceleration parameter and H(?) is
the Hubble parameter. We prove that the acceleration equation has an asymptotical
solutions that satisfy the generalized power law if and only if the integral limit

. = ult)
v = lim .-:'[ K it
=g f 1=

exists and y < 1/4. Thus, the values of the constant y determine the asymptotical
behavior at the infinity of the solutions of the acceleration equation, i.e. of the
expansion scale factor a(f) of the Universe. Our approach presented in the paper
covers all results on cosmological parameters for Standard model of the universe,
as presented in [1] or in [2]. Our analysis is based on the theory of regularly
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varying solutions of the linear second order differential equation developed by V.
Mari¢, see [4].

Keywords: Friedmann equations, regular variation, cosmology, power law.
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The recently published state-of-the-art article [1] devoted to the analysis of new
trends and recent results in the field of fractional calculus application to dynamic
problems of structural mechanics has shown that during the last decade fractional
calculus entered the mainstream of engineering analysis and has been widely
applied to structural dynamics problems both in discrete and continuous equations.
Among many engineering problems considered in [1], the problems of dynamic
contact interaction play the important role.

In the present paper, different approaches are reviewed for solving the problems
dealing with the shock interaction of thin viscoelastic bodies, such as beams, plates
and shell, with bodies of finite dimensions [2]. It is emphasized that fractional
derivative viscoelastic models of the shock interaction possess some advantages,
since they allow one to obtain the solution in the analytical form. Two approaches
are discussed for studying the impact response of fractionally damped systems.

The first one is based on the assumption that viscoelastic properties of the target
manifest themselves only in the contact domain, while the other part of the target
remains elastic one and its behavior is described by the equations of motion which
take rotary inertia and shear deformations into account. It is assumed that transient
waves generate in the target at the moment of impact, the influence of which on the
contact domain is considered using the theory of discontinuities. To determine the
desired values behind the transverse shear wave front, one-term ray expansions are
used, as well as the equations of motion of the falling mass and the contact region.
This approach results in defining the contact force and the local penetration of
target by an impactor from the set of linear fractional differential equations.

The second approach is the immediate generalization of the Timoshenko approach,
wherein the internal viscoelastic properties of the whole target and Hertz's contact
law are taken into account using Volterra correspondence principle. This approach
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results in the nonlinear functional equation for determining the contact force or the
impactor's relative displacement.

The examples of implementing these two approaches are presented, in so doing
several procedures are suggested for the analysis of the impact response of
fractionally damped systems depending on the different combinations of
magnitudes of its mechanical and viscous features.
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ABSTRACT. It is known that Hamilton differential equations of cosmic dynamics under
certain conditions, imposed on geometrical and dynamic parameters of model, have the
homographic solutions in Wintner sense [1,2,3,4,5].

The constructive theory of such solutions (that is ~ finding of the exact conditions
guaranteeing their existence) have been implemented by us and our colleagues on the basis
of application of system of computer algebra Mathematica[5].

In particular we have proved the existence of new classes homographic solutions for
models with various number n gravitating bodies (n=4,5,6,7,8,9,10, ets.). We have
developed a method of search of equilibrium points for such models and on the basis of the
KAM-theory [6,7] have received sufficient conditions of their stability in Lyapunov's sense.

Keywords: dynamic systems, differential equations, stationary solutions, stability,
computer algebra.
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ABSTRACT. On the basis of this phenomenological mapping and mathematical analogy, we present
that analysis for one type of the system nonlinear dynamics is possible to applied for qualitative
analysis of nonlinear phenomena appeared in dynamics of other disparate model or nature system
nonlinear dynamics. The linearizations as well as nonlinear approximations of nonlinear differential
equations around stationary points correspond to equilibrium positions or relative equilibrium
positions of mechanical system dynamics with trigger of coupled singularities are obtained. First
approximations of a nonlinear differential equation obtained by different methods and around
different known analytical solutions were compared and corresponding conclusions are presented. As
special examples are used nonlinear differential equations describing nonlinear dynamics of the
mechanical system with coupled rotations in damping field

Keywords: Nonlinear dynamics, nonlinear phenomenon, trigger of coupled singularities,
phenomenological mapping, approximation.
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dx
Figure 1. Three characteristic models (a*,b*,c*) of nonlinear dynamical systems abstractions
of real nonlinear dynamical systems and three visualiyation of nonlinear dynamics in phase
plane(d*,e*, f*).

Some characteristic nonlinear differential equations and approximations around
stationary points: Nonlinear differential equations describing nonlinear dynamics of a heavy mass
particle or a heavy disk rolling along rotating circle about axis inclined to the vertical direction with
constant angular velocity are in the forms (see Figure 1. a*, b* and c*, and also References [1-8]):

a* @, + 2§¢+Qz(ﬂcos By —cosp, )sin ®, —Qz%cos @, = Q*Acos @, sin BsinQr» A= szz 0]
2 2 foX
b* ¢+Q—<ﬂ—cos @) sin (p—gQ— cosp=0,for £=0, p+="(1-cosp)sinp=0 (2)
K K K
2 2 2
c*¢+g—<ﬂcosza—cos¢J>sin(p—9—(6+£sinZaJcos(p:Q—ﬂcos(a+(p)sinafcosQt &)
K K 2 2K

e ii ! ip ) 8 JP rel _ .2 .2 2 i2
E=7T—— K= ol == - =1 =1 +r°s ¢ = e 1 (R=
(R-7) r? r (R-r)Q> M fret e red 2 (R~r)

Previous differential equations, also, represent the analogous differential equations of the
self rotation heavy rigid body, skew and eccentrically positioned to the axis of self rotation, with
coupled rotations about two no intersecting orthogonal axes.

Taking into account possible approximation of nonlinear differential equations (1)-(2)-(3)
around stationary points (see trigger of coupled singularities and homoclinic orbit in the form of
number “eight” in phase planes in Fig. 1. c¢*, e( and f*), we obtain series of the approximations and
for this these examples, we separate the three following types of linearized approximations as results
of linear mapping around stationary states (see Refs. [7]):

P+ Q2 (A-1)p=QAetgacos Q1 §+25p+ 51,0 = 10"+ 50" 41

Py + 200+ @, [ A+ ysing,, cos Qi |+ f = h, cos Qt
It is possible to obtain corresponding nonlinear approximations of of nonlinear differential equations
(1)-(2)~(3) around stationary points. Then by using known analytical solutions of linearized nonlinear
differential equations around stationary point, as the starting solutions, by application Krilov-
Bogolyubov-Mitropolyski asymptotic methods and method of variation constants and averaging,
different expressions, it is possible to obtain the first approximations of nonlinear differential equation

solutions. For nonlinear differential equation: ¥,(¢)+ 28, (t)+ a’x, (t) = F@f,x (t) . 4
By use two methods starting by known analytical

solutions x,(¢) = R, (t)e™®" cos(p,t+8(t)). p, =y af -87 and  x(1) =alr) cos|myr +¢(c)}, and we

obtained the first approximations of the solution in the different forms (see Refs. [9]):

e fl)wu}f"”ﬂ #0.6#0.0t >80 p=\oi-57

3
x,(f) = Ry;e™%" cos| pt F
1(D) =Ry, {Pl 168, p,
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x,(1) = a”e"z ! cos{w,t ¥

3 a)j%“af(eiw'lfl)+®”} for 51 #0 , EF 0 . a{z > 512 (6)

168 @

For the case that damping coefficient tends to zero, from both first approximations (5) and (6), we
obtain same analytical approximation of the solution for conservative nonlinear system dynamics. For
the case that coefficient of the cubic nonlinearity tends to zero, from first approximation (5), we
obtain known analytical solution of the linear no conservative system dynamics, but the second
obtained approximation (6) give not correct solution. Then we can conclude that, starting different
known analytical solutions, for obtaining first approximations are acceptable, but limited by
corresponding conditions.
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ABSTRACT. The aim of this paper is to present the efforts in the area of digitization and
digital preservation of scientific and cultural heritage of a group of Serbian scientists. They
are from the Faculty of Mathematics of the University of Belgrade, the Mathematical
Institute and since recently the Faculty of Natural
Sciences of the University in PriStina, now situated in
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information, the protection of scientific and cultural
values is also one of the most important elements.

Some digitization projects started in Serbia already in
the middle of the nineties of the previous century. The
aim of these early projects was the digitization of
national cultural heritage and retro-digitization of
mathematical books of old Serbian scientists. The
principal participating institutions were Faculty of
Mathematics, Belgrade, and Mathematical Institute of
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the Serbian Academy of Science and Arts, but the other institutions were involved too
(Archaeological Institute, Institute of musicology, Institute for monument protection of
Serbia, National library, National museum, etc.). The projects were financed by the
Ministry of Science of Serbia and Faculty of mathematics. The project Computer archiving
and multimedia presentation of cultural values and national heritage, see [1], was the most
important and comprehensive project in our country in the area of digitization until now.
The project consisted of two parts:

- Infrastructure, standards and methodology of design and the architecture of data.
- Design and building of archive databases and program implementation.

In this presentation we describe Virtual Library, one of these sub-projects. It concerns
digitization of mathematics-related books, theses, manuscripts, and mathematical journals
somehow related to Serbia or our region of South Eastern Europe. The project’s goal is to
form digital archives, databases and presentations of digitized scientific editions in
mathematical sciences (mathematics, mechanics, astronomy) and offer easier on-line access
both to old and recent mathematical works. The

Virtual Library. The overall objective ofthe Virtual Library of the Faculty of
Mathematics, University of Belgrade, http://elibrary.matf.bg.ac.rs, is to implement an as
much as possible complete collection of retro-digitized books and other digital documents
from the past, see [2]. The main part of this project relates to an electronic archive which
contains first of all old manuscripts electronic form and their presentation to the general
public.

The project was initially inclined towards mathematics, but since 2009 the books from
other areas are also deposited in the Library. The preference is given to the Serbian authors
and works that are related to the scientific and cultural region of Southeast Europe. Some of
the books in the Library are rare and it is known that only a few copies of them are left in
the printed form. Practically they are inaccessible to the general public. We felt it was
important to preserve their existence in some way. Not only as a cultural and scientific
heritage important for Serbia, but also as part of the World Heritage. We decided to
contribute to the preservation of these books and present them to the general public in
electronic, digitized form.

The Library has strong support from the Faculty of Mathematics, University of Belgrade,
Mathematical Institute of Serbian Academy of Sciences and Arts (SASA), the National
Center for Digitization and the Ministry of Science of Serbia.

Virtual Library of the Faculty of Mathematics is the largest Internet oriented database in
Serbia of digitized texts with free access. At the time of this writing, the library
contains almost 2,000 books. In the Library there are several important collections. For
example, the Library contains an important collection consisting of 400 doctoral
dissertations in mathematical sciences (most of them are defended at the Faculty of
Mathematics). Another important collection consists of rare books from the 18th and
19th century. There are also small collections of digitized books from every republic of
former Yugoslavia.
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The important part of the Library make the collected works of some leading Serbian
scientists from the past: Atanasije Stojkovi¢, Bogdan Gavrilovi¢, Milutin Milankovi¢,
DPuro Kurepa, Porde Stanojevi¢ and several others.

Works related to the archive in the Virtual Library are published in the journal NCD
Review (SEEDI Communication), issued by the Faculty of Mathematics in Belgrade.

Keywords: digitization, old mathematical books, scientific heritage
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APPENDIX II

The 50th Anniversary Conference of the

ICNO1
ICNOII
ICNO III
ICNO IV
ICNO V
ICNO VI
ICNO VII
ICNO VIII
ICNO IX
ICNOX
ICNO XI
ICNO XII

ENOCI
ENOC II
ENOC 111
ENOC IV
ENOC V
ENOC VI

ENOC VII
ENOC VIII

ICNO-ENOC in Rome 2011.

September 1961 Kiev (USSR) Chair: Mitropolsky
September 1962 Warsaw (Poland) Chair: Ziemba
May 1964 Berlin (GDR) Chair: ReiBlig

September 1967 Prague (Czechoslovakia) Chair: Djadkov
August 1969 Kiev (USSR) Chair: Mitropolsky
September 1972 Poznan (Poland) Chair: Ziemba
September 1975 Berlin (GDR) Chair: Schmidt
September 1978 Prague (Czechoslovakia) Chair: Pust
September 1981 Kiev (USSR) Chair: Mitropolsky
September 1984 Varna (Bulgaria) Chair: Brankov
August 1987 Budapest (Hungary) Chair: Farkas
September 1990 Cracow (Poland) Chair: Gutowski

Hamburg, August 16 - 20, 1993, Chairman Professor Edwin
Kreuzer

Prague, September 9 - 13, 1996, Chairman Professor Ladislav Pust,

Secretary Professor Frantisek Peterka

Copenhagen, August 8 - 12, 1999, Chairman Professor Hans True

Moscow, August 19 - 23, 2002, Chairman Professor Klimov
Eindhoven, August 7 - 12, 2005, Chairman Professor Dick van
Campen

St. Petersburg, June 30 - July 4, 2008, Chairman Professor
Alexander Fradkov

Rome, July 24 - 29, 2011, Chairman Professor Giuseppe Rega
Wien 2014.
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APPENDIX III

SYMPOSIUMS ON
NONLINEAR MECHANICS IN SERBIA

Symposium NONLINEAR DYNAMICS — Milutin Milankovi¢, Belgrade October
2012 - HEJIMHEAPHA JUHAMWUKA 2012 organized by the Department of natural-
mathematical sciences of Serbian Scientific Society is the eighth in Serbia in area of
donlinear dynamics.

First symposium in area of Nonlinear mechanics was held in Arandelovac in 1984
and was organized by Serbian society of mechanics. A leading scientist in the area of
Nonlinear mechanics, academician RAS and NANU Yu.A. Mitropolskiy was an invited
participant with a Plenary Lecture.

Symposium, entitled Sixth International Symposium on Nonlinear Mechanics
Nonlinear Sciences and Applications Nis 2003 (The 6" ISNM NSA NIS2003), as was
the case with the previous one, entitled ‘Nonlinear Sciences at the Threshold of the Third
Millenium’, is organized with the wish to unite in a single symposium, on the basis of the
Mathematical Phenomenology of Mihajlo Petrovic Alas, quite disparate sciences with the
aim of integrating the knowledge of the participants of our symposium. This is a serious
and long-term task of science.

How did it all start? Tt started here, at the Faculty of Mechanical Engineering,
University of Nis.

Prof. dr Danilo P. Raskovi¢ (Ph.D. in mechanical engineering and BS in
mathematics), the first head of the Chair for Mechanics and Automatics, while teaching
mechanics at the Department for Mechanical Engineering at the newly founded Faculty of
Technical sciences, directed his youngest and most talented students towards studying
nonlinear oscillations and nonlinear mechanics. Thereafter, he initiated a cooperation with
the academician Jury Aleksejevitch Mitropolsky and a leading school of nonlinear
mechanics, asymptotic methods and nonlinear oscillations at the Institute for Mathematics
in Kiev, Ukraine. That is how a centre for nonlinear mechanics was established at the Chair
for Mechanics, Faculty of Mechanical Engineering in Nis. They were supported by the
Institute for Mathematics — SANU from Belgrade and by the scientist from all the
Universities in Yugoslavia, especially Universities in Belgrade and Novi Sad. The
organization of symposiums on nonlinear sciences followed.

The first symposium on nonlinear mechanics - Nonlinear Dynamics, organized by
YUSM and Serbian Society for Mechanics, was held in Arandjelovac. Prof. Jury
Aleksejevitch Mitropolskiy gave the invited plenary lecture. All the members of the Chair
for Mechanics and the Chair for Hydraulic Engineering of the Faculty of Mechanical
Engineering University of Ni§ took part in this and other symposiums; they were co-
organizers as well.
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The Second Yugoslav Symposium on Nonlinear Mechanics entitled: “The First
Yugoslav Conference on Nonlinear Deterministic and Stochastic Processes in
Dynamical Systems with Applications YCNP Ni§'91”, organized by the Faculty of
Mechanical Engineering was held in Ni§. The Chairman of the Scientific Committee was
Prof. dr V. Vujici¢, while the Chairman of the Organizing Committee was Prof. Katica
(Stevanovi¢) Hedrih. Proceedings of Abstracts was printed; the papers and invited lectures
which were approved were printed in the first and the following issues of the University
Journal — Facta Universitatis, new Series — Mechanics, Automatic Control and Robotics
with Editor-in-Cief Katica (Stevanovi¢) Hedrih. This Series was the third Series, which
was being published, besides the Series Mathematics, Informatics and Electronics, and
Energetics. William Nash, Kazuyuki Yagasaki ..., gave the invited lectures, at this
international symposium.

The invited plenary lectures were given by the following Yugoslav scientists:
Veljko A. Vujici¢, Vladan Djordjevic, Liubomir Gruji¢, BoZidar Vujanovic, and other..

Prof. dr Slobododan Lakovié, the Dean of the Faculty of Mechanical Engineering
University of Ni$ and a member of the Organizing Committee, has significantly contributed
to the success of this symposium.

The Third Yugoslav Symposium on Nonlinear Mechanics was held in the form
of a Minisymposium, as a part of the XXII Yugoslav Conference on Mechanics in Ni§ in
1995. The Faculty of Mechanical Engineering in Ni§, with co-organization by the Faculty
of Civil Engineering organized this Congress as well.

The Chairman of the Organizing Committee was Prof. Katica (Stevanovic)
Hedrih. The Dean of the Faculty of Mechanical Engineering, was very hospitable.
Academician Vladan Djordjevié, the President of YUSM has contributed to the successful
organization of this Congress and the Minisymposium. Professors Yu. A. Mitropolskiy, V.V.
Rumyantsev, Felix Chernousko, Anatoliy Martinyuk, Valentina Filchakova, Dan Stamatiu,
... were guest at this symposium.

The Fourth Symposium on Nonlinear Mechanics was held in 1997, again in the
form of a Minisymposium, as a part of the XIII Yugoslav Congress on Theoretical and
Applied Mechanics. This Congress, held in the Congress Center — Zvezda in Vrnjacka
Banja, was organized by the Yugoslav Society for Mechanics. The organization of this
Symposium was helped by the Institute for Mathematics — SANU and the Faculty of
Mechanical Engineering in Ni$ and in Belgrade.

The Chairman of the Scientific Committee was the academician Nikola Hajdin,
and the Chairman of the Organizing Committee was Prof. Katica Hedrih. Professors
Anthony Kounadis, Guiseppe Rega, Anton Baltov, Ilya Blekhman .. ... were guest at this
symposium.

The Fifth Symposium on Nonlinear Mechanics- Nonlinear Sciences at the
Threshold of the Third Millenium was organized with the wish for it to become a tradition
and to gather the connoisseurs of nonlinear phenomenology from disparate sciences and
dynamic systems and for it to become renown all over the world.

The Chairmen of the Scientific Committee were academicians Jury A.
Mitropolsky, V. M. Matrosov and V. Vuji¢ié, and the Chairmen of the Organizing
Committee was Prof. Katica Hedrih. Academicians N. Hajdin, V.V. Rumyantsev and M.
Prvanovi¢ and Professors D.S. Sophianopoulos, G.T.Michaltos, Ji Huan He, 1. Finogenko,
P.S. Krasil’nikov ..... were guests at this symposium.

The year of the Fifth Symposium was the year of the 10 ™ Jubilante issue of the
University Journal — Facta Universitatis, new Series — Mechanics, Automatic Control and
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Robotics. These symposiums and the Journal Facta Universitatis are a permanent
characteristic of the University of Ni§, Faculty of Mechanical Engineering in Ni§ and
scientific achievements of Yugoslav and Serbian scientists in international relations.

Two last Mini-symposia on Non-linear Dynamics were at Third Serbian (28th Yu)
Congress on Theoretical and Applied Mechanics, Vlasina lake, Serbia, 5-8 July 2011 and
Forth Serbian (29th Yu) Congress on Theoretical and Applied Mechanics, Vrnacka Banja ,
Serbia, 4-7 Juny 2013. Between invited lecturers were Professor Subhash C. Sinha,
Director, Nonlinear Systems Research Laboratory at Auburn University and Founding
Editor, ASME Journal of Computational and Nonlinear Dynamics and Professor John T.
Katsikadelis, President of Hellenic Society of Mechanics and Professor Pavel Krasilnikov,
head of department of differential equation at Moscow Aviation Institute and ,e,be rod
Scientific Council for evaluation Doctoral Dissertation in Russian Federation, in Russia.

Katica (Stevanovi¢) Hedrih

Serbian Symposium on Nonlinear Mechanics, Aradjelovac, 1984,

Invited Lecturer Academician RAN and NANU Yu. A. Mitropolskiy (KIEV) in Nis with Serbian Scientists
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Invited Lecturer: Professor Willam Nash from MTI Massachusetts,
Founder of Journal Non-Linear Mechanics at
Yugoslav Conference on Deterministic and Stochstic Processes in Dynamical Systems
with Applications Nis 1991
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THE FIFTH YUGOSLAV SYMPOSIUM ON NONLINEAR MECHANICS -NONLINEAR
SCIENCES AT THE THRESHOLD OF THE THIRD MILLENNIUM (YUSNM NIS '2000)

held in Ni$, Yugoslavia at October 2-5, 2000. at Faculty of Mechanical Engineering, and it dedicated to the 40th
Anniversary of the Faculty of Mechanical Engineering and
Faculty of Civil Engineering and Architecture, as well as to the 35th Anniversary of the
University of Nis. The Symposium is organized under the patronage of the Departmentof Technical Sciences,
Serbian Academy of Sciences and Arts.

Academician RAS V. Rumyantsev (Moscow, Russia) in Ni§
(YUSNM NIS 2000-October 2-5, 2000.) at Faculty of Mechanical Engineering.

Participants of
The Fifth Yugoslav Symposium on Nonlinear Mechanics -NONLINEAR SCIENCES AT THE
THRESHOLD OF THE THIRD MILLENNIUM (YUSNMNIS' '2000)

from Russia, Greece, China, Bulgaria, Rumania, Ukraine and Yugoslavia. mr D. Jovanovi¢ (Nis, YU), Professor

P. Krasil'nikov (Moscow, Russia), Professor Ji Huan He mr D. Jovanovi¢ (Nis,YU), , Academician UHEAS K.
Hedrih (Nis, YU), Academician SASA M. Prvanovié (Belgrade, YU), Professor G. Michaltsos (Athens, Greece), Z.
Vosika (Belgrade YU), Professor D. Sophianopoulos (Athens, Greece), Academician SASA N. Hajdin (Belgrade,
YU), Ass. Professor P. Rajkovi ¢ (Nis, YU), Professor G. T. Konstantakopoulos (Athens, Greece), Academician
RAS V. Rumyantsev (Moscow, Russia), Professor D. Miki ¢i ¢ (Belgrade, YU), Academician ANS V.A. Vujicié,....
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|
Participants of the 6™ International Symposium on Nonlinear Mechanics
Nonlinear Sciences and Applications 6" INM NSA NIS 2003.

(in middle professor A. Vatsala —USA, V. Lakshmikanthan-prsident of IFNA, Professor Leela-USA, Professor T.
Kawaguchi-presinet of Tensor Society-Japan, Professor L. Bareteu- Romania, Professor F. Peterka-Prague, J.
Warminski —Lublin, Professor U. Gabbert-Magdeburg and T. Nestorovic-now Professor in Bochum,... and Serbian

participants )

Participants of the 6™ International Symposium on Nonlinear Mechanics
Nonlinear Sciences and Applications 6™ INM NSA NIS 2003.

491



D. Jovanovi¢. K. (Stevanovi¢) Hedrih (NiS), J. Warminski (Lublin),
F. Peterka (Prague) and G. Rega (Roma)

-’ - VN - -
6™ International Symposium on Nonlinear Mechanics
Nonlinear Sciences and Applications 6™ INM NSA NIS 2003.
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Last Mini-symposia Non-linear Dynamics at Third Serbian (28th Yu) Congress on
Theoretical and Applied Mechanics, Vlasina lake, Serbia, 5-8 July 2011. Between invited
lecturers were Professor Subhash C. Sinha, Director, Nonlinear Systems Research
Laboratory at Auburn University and Founding Editor, ASME Journal of Computational
and Nonlinear Dynamics and Professor John T. Katsikadelis, President of Hellenic Society
of Mechanics.
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Invited Lectured Professor Pavel Krasilnikov, head of department of differential
equation at Moscow Aviation Institute and ,e,be rod Scientific Council for evaluation
Doctoral Dissertation in Russian Federation, in Russia.

Same of Participants of Minisymposium Nonlinear Dynamics — Milutin Milankovic at
Forth Serbian (29th Yu) Congress on Theoretical and Applied Mechanics,
Vrnacka Banja , Serbia, 4-7 Juny 2013.
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A number of Participants of Symposium |

Symposium Nonlinear Dynamics - Milutin Milankovié

Multidisciplinary and Interdisciplinary Applications
(SNDMTIA 2012), Belgrade, October 1-5, 2012.
(Eight Serbian Symposium in area of Non-linear Sciences)

Plenary and Invited Lecturers: Alber Luo,Katica (Srevanovi¢) Hedrih, Ivana Kovaci¢ and
Hiroshi Yabuno
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Sgrbian Scientific Setiety

Symposiim

Nonlinear Dynamics Milutin Milankovie

—
Plenary and Invited Lecturers: Hiroshi Yabuno, Alber Lu,Marina Shitikovam Katica
(Srevanovi¢) Hedrih, Marinko Ugrcicm Atevan Maksimovic¢ and young researcher Marija
Stamenkovic¢
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A number of Participants of Symposium

Symposium Nonlinear Dynamics - Milutin Milankovié
Multidisciplinary and Interdisciplinary Applications
(SNDMIA 2012), Belgrade, October 1-5, 2012.

(Eight Serbian Symposium in area of Non-linear Sciences)

Plenary Lecturer Professor Pavel Krasilnikov

497



: v
Professor Slobodan Ani¢ and Professor Zarko Mijajlovic
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A number of Porhcupanfs of Symposium

Symposium Nonlinear Dynamics - Milutin Milankovié

Multidisciplinary and Interdisciplinary Applications
(SNDMIA 2012), Belgrade, October 1-5, 2012.
(Eight Serbian Symposium in area of Non-linear Sciences)

Plenary Lecturer: Tamara Nestorovié
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Plenary Lecturer and Chaurman: Mihail Zekrzhevski and Dragomir Zekovi¢
£
|~

&)
i

4l — e
Chaurman and Inviter Lecturer: Dragan Milosavljevi¢ and Dragomir Zekovi¢
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A number of Participants of Symposium

Symposium Nonlinear Dynamics - Milutin Milankovié

Multidisciplinary and Interdisciplinary Applications
(SNDMTIA 2012), Belgrade, October 1-5, 2012.
(Eight Serbian Symposium in area of Non-linear Sciences)
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A number of Participants of Symposium
Symposium Nonlinear Dynamics - Milutin Milankovié
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A number of young researchers - participants of Symposium
Symposium Nonlinear Dynamics - Milutin Milankovié

Inviter Lecturer: Ilya Simonovsky Plenary Lecturer: Boris Malomed
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APPENDIX IV

Chair of YNechanics
Faculty of YNechanical
Engineering (NViS
(1963-2005)

dr Ing. Dipl. Math. Danilo P. Raskovi¢

(1910-1985)
The First Head of Chair of Mechanics and Automatic
at Faculty of Mechanical Engineering in Nis
(1963-1974)

Prof., Dr., Eng., B.Sc. Mathematician,
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DANILO P. RASKOVIC

full-professor at the Faculties of Mechanical Engineering in Belgrade,
Nis, Kragujevac and Mostar, and the Faculties of Science in Belgrade and
Novi Sad

Danilo Raskovi¢, a doctor of technical sciences and mathematician with a university degree,

was the founder of the first scientifically based courses of mechanics at the Faculty of Mechanical
Engineering in Belgrade. He also introduced courses on the subject of resistance of material, elasticity
theory, and oscillation theory all of which he taught, too. He was the author of many high-circulation
textbooks of high scientific level and good mathematical foundation. He introduced vector, matrix
and tensor calculus in the studies of mechanics at the Faculty of Mechanical Engineering in Belgrade
and, later on, did the same at the mechanical engineering faculties in Ni§, Kragujevac and Mostar. He
enabled the Faculty in Belgrade, and similar schools elsewhere, to produce highly qualified and
educated engineers which was one his greatest contributions. He wrote the first university textbook in
Serbia on oscillation theory containing his original accomplishments in the field. He achieved
considerable scientific results in the fields of elasticity theory and oscillation theory. With a good
human resource base at Ni§ Faculty, which he had set up, he started research work into the field of
nonlinear mechanics. His scientific work is important because in all of his projects he succeeded in
connecting theories of elasticity and oscillation, and engineering practice. He wrote 25 university
textbooks which covered the entire field of mechanics and related areas. Almost all of them had been
reprinted several times, with some of them having 20 reprints. His excellent textbooks were in use on
the territory of the entire former Yugoslavia, which was in tatters under the powerful influence of
fascism during the Second World War.
Thanks to Professor Danilo Raskovi¢, the faculties of mechanical engineering of Serbia, Bosnia and
Herzegovina, and all the other republics of the once unified Yugoslavia, which are now separate
states, produced excellent mechanical engineers. Raskovi¢ was a patriot and an honourable man. He
was the recipient of the October award of the city of Ni$ for his contributions to the development of
science at the city’s university.

This distinguished scientific figure of exquisite creative energy and inspired enthusiasm, a
scholar deeply attached to the Yugoslav and Serbian scientific and cultural heritage, and an exquisite
pedagogue of high moral principles is in the living memory of many generations of students whom he
taught how to learn and love mechanics, as a basic scientific branch of mechanical engineering either
directly, through his lectures, or through his various and numerous textbooks and compilation of
problems. His disciples and colleagues are glad that he had the ability to pass onto them his great
enthusiasm permeated with his sincere devotion for mechanics and his exquisite scientific eagerness.

Professor Danilo P. Raskovi¢ was born in 1910, in UZice. Upon completing elementary
school and six grades of high school, he graduated from the Military Academy in 1930. As an
engineering military officer he enrolled in the department of mechanical and electrical engineering at
the Faculty of Engineering in Belgrade, in 1933. Having graduated in 1938, he enrolled in the
department of theoretical mathematics at the Faculty of Philosophy and graduated from it in 1941. As
a graduate mechanical engineer he was appointed assistant section head of the Military Technical
Institute in Cagak. He remained in that position during 1941. In 1942 he was appointed assistant at the
Faculty of Engineering in Belgrade where he earned hid doctorate’s degree in the same year, upon
presenting his thesis entitled Tangential Strains of Normally Profiled Beams.

Professor Raskovi¢ lectured mechanics, strains of materials and oscillation theory at the
faculties of mechanical engineering in Belgrade, Ni§, Kragujevac, Novi Sad and Mostar, as well as at
the Faculty of Science in Belgrade, Faculty of Philosophy in Novi Sad, Faculty of Electronics in Nis§,
and at the Military Technical College in Belgrade. More details on the research work of Professor
Raskovi¢ can be found in the Belgrade University Bulletin no.75 of 1957, issued on the occasion of
his appointment as a full professor at the Faculty of Mechanical Engineering in Belgrade. During his
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university career, he was twice elected Vice-Dean of the Faculty of Mechanical Engineering of
Belgrade University. In the mechanical engineering department at the Faculty of Engineering in Nis,
he lectured statistics, kinetics, kinematics, dynamics, oscillation theory, resistance of material, theory
of elasticity, as well as analytical mechanics, theory of nonlinear oscillations and continuum
mechanics at the postgraduate level. He was the first head of the department of mechanics and
automatics at the Faculty of Mechanical Engineering in NiS. He was an extremely inspired professor,
scientist and practitioner much favoured among his students and respected by his colleagues both as a
professor and an engineer, because he knew how to relate engineering theory to practice.

Professor Raskovi¢ was a very fertile writer. While still in the military service he wrote five
professional papers. In the period before 1957, when he was appointed full professor, he published 26
scholarly papers. As a full professor he wrote 37 pieces of scientific work that were published in
scientific journals of the Serbian Academy of Sciences and Arts, Polish Academy of Science, German
Society of Mechanics ZAMM and some other foreign journals. He took part in a number of scientific
meetings in the country and abroad. He reviewed papers for four leading referral journals in the
world: Applied Mechanics Review (USA), Mathematical Review (USA), Zentralblatt fiir Mathematik
(Germany) and Referativnii Zurnal (Moscow). Professor RaSkovi¢c was a member of several
professional and scientific societies/association in the country and abroad, the GAMM being one of
them. He initiated the foundation of the Yugoslav Society of Mechanics during 1952.

He wrote a considerable number of university textbooks which ran through numerous
editions. Some of them still hold records as for the number of editions and copies printed within the
group they belong to. In addition, he wrote a series of textbooks on the subject of mechanics for
secondary technical schools, as well as a number of chapters in professional technical handbooks,
mimeographed course materials and textbooks for post-secondary schools of mechanical engineering.
He also wrote several textbooks for postgraduate studies.

Among the publications for postgraduate studies the following should be mentioned:
Analytical Mechanics, Theory of Elasticity and Tensor Calculus.

Most of his university textbooks and publications were at the time of their first edition the
only professional literature on the subject, in the Serbian language. So, his publications played an
important part in spreading of the knowledge in the field of technical mechanics among students, and
mechanical and other kinds of engineers in Serbia and Yugoslavia. It is particularly worth mentioning
that he has interpreted all the material by the most modern mathematical apparatus and has illustrated
it by numerous examples from the engineering practice. Many of the cited university publications are
being reprinted even nowadays and are still used by both students of engineering and engineers
themselves.

Although it has been ten years since he left us, Professor Raskovi¢ is still present among
new generations of students, and engineers, through his renowned textbooks that bear the memory of
his merits and which have also left an indelible imprint on the development of mechanical
engineering science and practice, and on the formation of many a generation of university professors.
His life and work have set an example to future generations of students educated at the University of
Ni§ and provided them with a creative impulse. He is an everlasting paradigm and a proof of how
one’s deeds can outlive one’s physical existence by far.

In 1962 Professor Raskovi¢, as the head of mechanics department at the Institute of
Mathematics of the Serbian Academy of Sciences and Arts, organized research work in four
different study groups, each one dealing with a particular subject, which were: Stability of motion -
supervised by Dr Veljko Vuji¢i¢, Boundary layer theory - supervised by Dr Victor Saljnikov,
Problems of anisotropic incompatible materials with finite strain - supervised by Dr Rastko
Stojanovi¢ and Optimal problems of mechanics -supervised by Prof. Dr. Danilo Raskovi¢.

According to records from the mechanical engineering faculties in Belgrade and Nis, as
well as those from the Zentralblatt’s data base, he traveled abroad on several occasions in order to
participate in international scientific gatherings or to expend his knowledge. In 1957 he went to Berlin
to do his specialization studies with a piece of work which was published in the Proceedings of the
20th International Congress of Applied Mechanics. In September 1956, in Brussels, he participated in
the working of the said congress. He took part in international congresses of applied mathematics and
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mechanics of the German society GAMM a few times: 1957 - in Hamburg and 1958 - in Saarbriicken.
Also, in 1959, 1961 and 1962 he was delegate of the Yugoslav Society of Mechanics. In 1963, in
Karlsruhe, he represented Mathematical Institute of the Serbian Academy of Sciences. In 1966, in
Darmstadt, he “produced a scientific statement in the field of oscillation theory” and in 1968 in
Prague, Czechoslovakia, he had a paper entitled Second order acceleration (jerk) for the relative
motion of a body expressed by a matrix method.

He also participated, several times, in the working of the International Conference of
Nonlinear Oscillation (ICNO): 1962 in Warsaw, as a delegate of the Council of Science of the
People’s Republic of Serbia; 1969 in Kiev; 1972 in Krakow, at the *72 ICNO.

Between the 1963/64 and 1973/74 academic years he was Head of the mechanics section of
the mechanical engineering department at the Technical Faculty in Ni§, while giving lectures on all
subjects from the mechanics group. Simultaneously, he taught mechanics at technical faculties in
Kragujevac and Mostar and, for a while, also the subject of applied mathematics at Novi Sad Faculty
of Mathematics. He accepted the position in Ni§ after being acquitted of the duty as a lecturer at the
Faculty of Mechanical Engineering in Belgrade. The said acquittal was brought in by the Faculty in
Belgrade, and was registered under the no. 67/8, in January 1964. Comments on the controversial
decision are left to the others. For further reference readers should look into the book (*).

In 1974/75 he was arrested in Mostar, Bosnia-Herzegovina, and unjustly sentenced.
Following the experience, he worked on new editions of his high-circulation textbooks, out of which
the 10th edition of Mechanics I for university studies deserves a special mention as does the 15th
edition of his handbook containing tables from the strength of materials. Last months of his life he
spent preparing his textbook Elasticity Theory for publishing. It came out in 1985 but he did not live
to see it.

He died, unexpectedly, on January 29, 1985 in Belgrade.
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