
1

Control Flow Regeneration for Software Pipelined Loops
with Conditions

Dragan Milicev and Zoran Jovanovic, University of Belgrade

Abstract: We propose a new intermediate representation for software pipelined loops with
conditions. The representation allows separation of operations from different paths and their
conditional, as well as speculative scheduling, including speculative IFs. We also define an
algorithm that transforms the representation into the executable code. The algorithm uses the
notion of finite automata to represent the execution of separate paths as threads of control that are
canceled or approved by executed IF operations. The approach may be used in conjunction with
modulo scheduling or other techniques to reconstruct the control flow graph from the final
(modulo) schedule directly. It inherently solves the problems of overlapped predicate lifetimes and
speculation. The approach provides also a novel formal model for loop execution.

Keywords: instruction level parallelism, software pipelining, loops with conditions, code
generation, control flow, finite automata, predicated software pipelining, reverse if-conversion

1 Introduction

Software pipelining is an approach that produces parallel code for loops by issuing a new

iteration before the preceding one has been completed. Loops with conditional branches (IF

structures) are more difficult to schedule than those without, because the outcomes of branches

cannot be predicted at compilation time. There is a lot of techniques that define various heuristics

to deal with the complexity of the problem. With respect of how they represent the loop code,

perform scheduling upon that representation, and produce the executable code, these techniques

can be categorized as single-phased or three-phased. Single-phased techniques use the control

flow graph as the loop body representation and move operations across the edges of the graph.

Since this representation corresponds directly to the executable program form, these techniques do

not need a special code generation phase that would transform an intermediate representation into

the executable code. However, these techniques suffer from some weaknesses that will be

discussed later. On the other side, three-phased techniques use other intermediate representations

that are more appropriate for scheduling. Therefore, they can produce more efficient code in

presence of resource constraints. Consequently, they need a special pre- and post-scheduling

phases to transform the initial control flow graph into the intermediate representation, and to

regenerate the control flow graph in order to produce the executable code from the intermediate

2

representation. The techniques for control flow regeneration published so far pose some

unnecessary boundaries to the scheduling phase, thus reducing its efficiency. Namely, they cannot

deal with some scheduling issues (such as speculative execution, especially of IF operations) that

can enlarge the amount of parallelism and that single-phased techniques exploit. This paper

proposes an intermediate representation and a code generation algorithm that can be used in three-

phased techniques to eliminate the recognized weaknesses of the existing approaches.

The paper is organized as follows. In Section 2, we discuss further our motivation for the

research and the related work. In Section 3, we state the problem precisely. Section 4 presents the

proposed solution in an intuitive manner, following a simple demonstrative example. Several

interesting special cases that the proposed algorithm can cope with, but other approaches cannot,

are shown in Section 5. Some implementational implications and preliminary experimental results

are discussed in Section 6. The paper ends with conclusions.

2 Motivation and Overview of the Related Work

Single-phased techniques [4, 9, 10] use the control flow graph to represent the loop. Loop

transformations are defined as operation moves across the edges of the graph along with the

topological transformations of the graph due to the moves of IFs. The advantage of these

techniques is that they keep the control flow graph up to date after each transformation, so they

do not need a special post-scheduling code generation phase. These techniques allow speculative

code motion—even speculative IFs are allowed. However, this representation is the main

constraining factor of the techniques. It does not explicitly support data dependency and resource

conflict analyses, which should be the main driving forces of the scheduling. This drawback has

been recognized for long, and other representations have been proposed, based on the program

dependence graph [5, 19]. They tend to represent data flow dependencies more directly, while

implicitly encoding control flow in a manner that allows its regeneration [19].

Warter et al. [19] provide another point of view to the benefits of using other intermediate

representations than the control flow graph: global scheduling techniques, which are also widely

used for loops, consist of two phases—inter-block code motion and local (basic block) scheduling;

3

the engineering problem of global scheduling is to determine how to properly order these two

phases to generate the best schedule. Therefore, an intermediate representation that could

implicitly encode control flow would simplify the task of global scheduling to one that looks like

local scheduling, by eliminating the need for an explicit code motion phase during scheduling.

A number of three-phased techniques are based on modulo scheduling [11, 15, 16, 17, 18,

20]. Modulo scheduling uses a special scheduling table called modulo reservation table with II

rows, where II (initiation interval) is the interval at which iterations are started. II is determined

according to the data dependencies and resource usage of operations. Modulo scheduling places

operations into the reservation table according to the data dependencies and resource constraints.

It has been proved experimentally that modulo scheduling achieves good performance in presence

of resource constraints [11, 14, 15], particularly when resource usage patterns are complex.

In order to benefit from these properties, the techniques for scheduling loops with

conditions usually transform control dependencies into data dependencies by if-conversion [3, 19].

In this approach, a predicate is assigned to each operation; the operation is to be executed if and

only if its predicate is computed to be true. Conditional operations (IFs) are considered to

compute predicates. Thus, control dependent operations become data dependent on the

conditional operations that compute their predicates. Predicated execution may be supported by

hardware [12]. Otherwise, reverse if-conversion [19] or kernel-recognition [2, 15] strategies are

used to regenerate the control flow graph from the modulo schedule. However, the promotion of

control dependencies into data dependencies introduces constraints that do not exist in the original

code, thus blocking speculative code motion. This can limit parallelism considerably. Furthermore,

both approaches need explicit unrolling in order to resolve overlapped predicate lifetimes.

Recently, a technique called split-path enhanced pipeline scheduling (SP-EPS) [14] has

been proposed. It tries to benefit from both approaches. It moves the operations across the edges

of the control flow graph and transforms it iteratively, but it also uses modulo schedule of separate

iteration paths to drive the moves. However, we still need an algorithm that would be able to

transform modulo scheduled code directly into the control flow graph in order to decrease the

4

overhead of updating the control flow graph at each operation move. Such an algorithm may allow

better understanding of properties of loops with conditions and a deeper study of the effects of

various scheduling aspects to the generated code size and efficiency. In particular, our future work

will use the representation described here to explain how SP-EPS achieves the final schedule and

how it can be improved. The weakness of SP-EPS is that it uses modulo scheduling directly for

intra-path kernels only, but indirectly for the operations from the transition paths. We will try to

show how our representation can be used to modulo schedule all the operations, i.e., to mix intra-

and inter-path operations into the same modulo schedule, and to produce the code directly from it.

This might lead to a better resource usage of inter-path operations and to a smaller II.

3 Problem Statement

As a result, an intermediate representation of loops with conditions and an algorithm that

will reconstruct the executable code in the form of the control flow graph from this representation

are needed. The representation and the algorithm should be able to:

(R1) implicitly encode control flow to support modulo scheduling and other approaches

that are primarily based on data dependency and resource constraint analyses;

(R2) support software pipelining of operations, i.e., placement of operations into other

iterations than the initial ones; this placement may be conditional (to be explained later);

(R3) support data dependency and resource conflict analyses during scheduling;

(R4) enable speculative code motion, including speculative IFs;

(R5) allow schedules with variable initiation interval (II).

In order to make further explanations more clear, we will use a simple example throughout

the paper. We underline that the accent here is not on the scheduling and parallelization, but on the

code generation phase. That is why we assume that the schedule has been already obtained

without considering how. The example has been chosen to be simple and descriptive for the given

purposes, and not aimed to show the benefits of software pipelining. It will not consider data

dependencies and resource constraints, either. Moreover, the discussion on the preloop and

postloop code generation, as well as the loop exit branches will be given later in the paper.

5

The control flow graph of the initial sample loop is shown in Figure 1a. The assumed final

schedule for a considered current iteration is informally presented in Figure 1b. This schedule is

the input for the code generation algorithm. Indices in parentheses represent the original iterations

of the operations: 0 denotes the current, -1 the previous iteration. We assume that the IF

operation, along with the control dependent operations op2, op3, and op4, has been moved from

the current iteration into the next iteration conditionally: they are to be executed in the current

iteration only if the outcome of the IF from the previous iteration were False; otherwise, they are

to be executed in the next iteration. This conditional movement of operations has been stated in

the requirement R2. As a result, an iteration of the initial loop will be executed in one or two

stages, depending on the outcome of the IF from the previous iteration. The final executable loop

code that should be obtained by the code generation algorithm is shown in Figure 1c. The loop

consists of three transformed kernels A, B, and C, connected by the loop-back edges.

op1

IF
F T

op2 op4

op3
op5

Exit

op5(0)

op1(0)
IF(-1)=F

IF(0)

IF(-1)=F
IF(0)=F IF(-1)=F

IF(0)=T

op2(0)

op3(0)
op4(0)

IF(-1)
IF(-2)=T

op2(-1)

op3(-1)

IF(-2)=T
IF(-1)=F

op4(-1)

IF(-2)=T
IF(-1)=T

op1(0)

IF(0)
F T

op2(0) op4(0)

op3(0)

op5(0)

op5(0)

A
C

A

AP
CPExit

Exit

op5(0)

C
op1(0)

B BP

Exit

op1(0)

IF(-1)

F T

op2(-1) op4(-1)

B

op3(-1)

IF(0)
F T

op2(0) op4(0)

op3(0)

op5(0)

op5(0)

A
C

AP
CPExit

Exit

op5(0)

BBP

Exit

op5(0)

Loop entry

op1(0)

B BP

Exit

IF(-1)
F T

op2(-1) op4(-1)

op3(-1)

BPCPAP

Loop exit

Preloop

Loop
body

Postloop

{BDFH}

{BDFH} {BDFH}

{AE}

{A} {E}

{A} {A}

{E} {E}

{CG}

{CG} {CG}

{BDFH}

{BF} {DH}

{B} {F}
{DH}{DH}

{B} {B}

{F} {F}

{AE} {CG} {BDFH}

{BF} {DH}

(a) (b) (c)

Figure 1: Sample loop. (a) The control flow graph of the initial loop. (b) The assumed final schedule,
informally represented (the input for the code generation algorithm). (c) The generated control flow
graph (the output from the code generation algorithm).

6

4 The Proposed Solution

The proposed solution is based on an intermediate representation that uses predicate

matrices instead of single predicates. The concept of the predicate matrix has been proposed in [6]

to introduce an execution model of software pipelined loops with conditions, and has been used

later in a scheduling technique called predicated software pipelining (PSP) [7]. To make this

paper self-contained, we will briefly present the PSP intermediate representation (PSP IR). When a

software pipelined loop is represented with the PSP IR, its execution can be modeled by

transitions of a nondeterministic finite automaton (NFA) [1]. The transformation of the NFA into

the equivalent deterministic one (DFA) is actually the control flow regeneration algorithm. The

proposed approach does not assume any special hardware facilities. A formal proof of correctness

of the algorithm may be found in [8].

The PSP Intermediate Representation

PSP defines a predicate instance as a virtual Boolean variable that represents possible

outcomes of one IF operation in one iteration. The model separates the notions of a predicate and

an IF operation, as if-conversion does: a predicate controls scheduling, while an IF operation

computes its value. However, unlike other techniques that consider only paths of a single iteration,

PSP uses the term path for an execution trace of the whole loop. Because the number of iterations

that a loop may execute is taken to be finite but unlimited [13], PSP uses a notion of a predicate

matrix as a limited mathematical concept that can represent an unlimited set of paths.

Each IF construct and its IF operation in the compiled code is assigned a row in the

predicate matrix. PSP observes a loop execution relative to the current (referential) iteration. The

current iteration is denoted with 0, the next one with 1, the previous one with -1, etc. A set of

paths is represented by a predicate matrix with m rows, where m is the number of IFs in the initial

loop, and n columns, where n is an arbitrary number that limits the scope of predicates. The

columns are indexed, with the column i referring to the i-th iteration relative to the current. The

elements of the column 0 refer to the current iteration and will be underlined in our notation. The

element in row i and column j represents the instance of the predicate (IF operation) i in the j-th

7

iteration relative to the current. An element may be 0 (for False), 1 (for True), and b (for both

outcomes of the predicate instance). A value x∈{0, 1} of an element (i, j) means that the matrix

represents the set that includes only those paths that pass through the outcome x of the predicate

instance (i, j) (see Figure 2 for an example).

Since a predicate matrix is of a limited width, but should represent an unlimited set of

paths, it is assumed that all other columns of its virtual unlimited extension are filled with bs.

Therefore, the limited width of a matrix bounds only the scope of elements that are not equal to b.

This kind of limitation is quite natural, because each (finite) software pipelined schedule must be

limited in the level of pipelining, which corresponds to the scope of predicate instances.

Because a predicate matrix represents a set of paths, all usual set operations and

relationships may be defined for predicate matrices. For example, the subset relationship may be

defined as follows: pm1⊆pm2 iff for each i, j: pm1(i,j)⊆pm2(i,j); the "inclusion" relationship for

elements is defined as: 0⊆b, 1⊆b, v⊆v, v∈{0, 1, b}. Similarly, the intersection operation of two

predicate matrices pm1 and pm2 may result in an empty set (∅) if pm1 and pm2 have opposite

elements at one position (opposite are 0 and 1), or a predicate matrix pm=pm1∩pm2 where the

element (i, j) of pm is that one of pm1(i, j) and pm2(i, j) which is included into the other.

However, some path sets may not be represented by a single predicate matrix; for example, the

Iteration (-1)

IF1

IF2

IF1

IF2

Iteration (0)









bbb

bb

1

00

(a) (b)

Figure 2: Formal representation of a set of paths that span
over unlimited number of iterations by a predicate matrix.
(a) A control flow graph of two adjacent iterations and an
unlimited set of paths that pass through the bolded
branches. The left branch of each IF is the False (0)
branch. (b) The predicate matrix that represents the set.

op1(0)[b]
IF(0) [b]
op2(0)[0]; op4(0)[1]
op3(0)[0]
op5(0)[b]

Figure 3: The initial PSP IR of
the sample loop. Each operation is
assigned a predicate matrix with a
single column 0, and the index 0
(in parentheses).

8

result of the union of two predicate matrices [1 b]∪[0 1]. This is not a problem in our approach

because neither initial representation of the loop body code, nor any of the scheduling

transformations may produce a path set that cannot be represented by a single matrix. Predicate

matrix operations and relationships thus constitute a set calculus over the power set of the entire

(unlimited) set of all possible paths, referred to as the B-set (represented by a matrix with all bs).

A single-iteration path of the initial loop body code can be represented with a predicate

matrix with a single zero-column. Nested IFs are treated as follows. If an IF-THEN-ELSE

construct IF2 is nested inside e.g. True path of the IF1 construct, it is also assigned a row of the

predicate matrix. Then, all the paths that pass through the False branch of IF1 have b elements in

the row of IF2. Consequently, each operation of the initial loop body can be assigned an initial

predicate matrix with a single zero-column that represents the paths on which the operation is

executed in the initial loop. Loop exit branches are not considered; they are called BREAK

operations and will be discussed later. The initial PSP IR for our sample loop is in Figure 3.

In order to distinguish different instances of a same operation that originate from different

iterations of the initial loop, an integer index is also assigned to each operation. The index is

initially equal to 0. When an operation is moved (scheduled) into another iteration, its index is

changed. Index i of an operation instance denotes that this instance belongs to the iteration i

(relative to the current) of the initial loop. An operation instance is thus defined as a triple

<operation, index, predicate matrix>. The PSP IR consists of operation instances scheduled

according to dependency rules and available resources. The initial representation is obtained as

described and transformed by the scheduler.

Scheduling Issues

This subsection lists the transformations that should be applied on operation instances

during scheduling in order to keep the PSP IR consistent. The split transformation makes two

operation instances out from one. The resulting instances have the same operation and index, but

their predicate matrices have the opposite values at one position that was equal to b in the initial

instance's matrix (Figure 4a). Its purpose is to differentiate two instances of the same operation

9

and to allow their separate scheduling depending on the outcome of an IF, i.e., the conditional

placement of operations (the requirement R2 of the problem statement). This may be useful if an

operation is constrained by different data dependencies across two branches of an IF. For example,

APP [15] and SP-EPS [14] schedule separate paths in separate modulo tables, which is equivalent

to splitting operation instances on certain predicate instances. The unify transformation is dual and

may be used to merge two unnecessarily split operation instances in the final schedule [7].

Software pipelining is supported by the movedown and moveup transformations. The

movedown transformation moves an operation instance into the next iteration. In order to preserve

the relative reference to the original iteration and to the predicate instances that control the moved

operation instance, its index is decremented then, and its predicate matrix is shifted one place left

(Figure 4b). The moveup transformation is completely dual.

The final schedule for the sample loop after the movedown transformations of the chosen

operation instances is shown in Figure 4b, as the PSP IR of the schedule in Figure 1b. The

ordering of operation instances is controlled by the dependency and resource conflict analyses of

the scheduler and is not relevant to the code generation algorithm.

Data and control-dependency analyses take into consideration the paths on which two

operation instances should be executed. Two operation instances may be dependent only if there is

a path on which both instances are to be executed, i.e., only if the intersection of their predicate

matrices is not empty. An IF operation instance with row i and index j is said to compute the

predicate instance (i, j). An operation instance opi is control dependent on an IF operation

instance opif iff opi and opif do not have disjoint matrices and opif computes the predicate (i, j)

op1(0)[b] op1(0)[b]
IF (0)[0b]; IF (0)[1b] IF (-1)[1bb]; IF (0)[0b]
op2(0)[00]; op2(0)[10] op2(-1)[10b]; op2(0)[00]
op4(0)[01]; op4(0)[11] op4(-1)[11b]; op4(0)[01]
op3(0)[00]; op3(0)[10] op3(-1)[10b]; op3(0)[00]
op5(0)[b] op5(0)[b]

(a) (b)

Figure 4: Transformations applied to the initial schedule of the sample loop. (a) The schedule after
splitting operations IF, op2, op3, and op4 at (1,-1). (b) The schedule after moving down the
bolded operations from (a) into the next iteration. The operation ordering is irrelevant.

10

which has a non-b value in the opi's matrix. If an operation instance opi is control dependent on an

IF instance opif and is scheduled before it, it is speculative.

Other issues, such as resource conflict analysis and renaming due to non-true data

dependence elimination and speculation, also need special consideration in the context of the PSP

IR, but are out of scope of this paper, because they do not have any impact on the code generation

algorithm. Besides, their treatment might heavily depend on the very scheduling technique. For

example, SP-EPS [14] avoids resource conflicts between operations from different paths (modulo

tables) by executing IFs early enough (path splitting in SP-EPS).

It is important to underline again that the final schedule in the PSP IR need not be obtained

by iteratively applying the described transformations as in [7]. It might be obtained by modulo

scheduling when different modulo schedules are produced for different outcomes (paths) [14, 15].

It is important only that the operation instances from different paths are distinguished by

corresponding predicate matrices, and that the needed predicate matrix shift and index change is

applied if an operation is scheduled in an iteration other than the original.

Loop Execution Model and the NFA

In our preliminary observations we will ignore the startup and shutdown phases of the loop

execution. We will consider the steady state of the loop execution only, which is of major interest.

Let us consider one execution trace (a path) of a loop, defined by a (theoretically) infinite

sequence of outcomes. For a loop with two IFs, one path is shown in Figure 5.

The path may be described with a sequence of predicate matrices of a certain format, as in

Figure 5. By a "predicate matrix format" we mean a set of matrices with non-b elements at certain

positions. For the previous example, one matrix format might be (x stands for a non-b element):

Iteration: ... i i+1 i+2 i+3 i+4 ...
IF1 outcome: ... 0 0 1 0 1 ...
IF2 outcome: ... 1 0 1 1 0 ...

Sequence: ... 







bb 1

00?








bb 0

100








bb 1

010








bb 1

101








bb 0

?10 ...

Figure 5: A sample execution trace (path) of a loop with two IFs. The sequence of outcomes
may be represented by a sequence of predicate matrices of a certain format.

11

State Outc.[00] Outc.[10] Outc.[01] Outc.[11] Scheduled IFs Predicate vector [IF(-1);IF(0)]
A[000] AE AE ∅ ∅ IF(0) [b0]
B[100] AE ∅ ∅ ∅ IF(-1),IF(0) [00]
C[010] BF BF BF BF [bb]
D[110] ∅ BF ∅ BF IF(-1) [1b]
E[001] ∅ ∅ CG CG IF(0) [b1]
F[101] ∅ ∅ CG ∅ IF(-1),IF(0) [01]
G[011] DH DH DH DH [bb]
H[111] ∅ DH ∅ DH IF(-1) [1b]

Figure 6: The NFA for the sample loop and the given final schedule. The rows of the table
represent the states of the NFA, and the columns represent the IF outcomes as input symbols.
The states are identified by letters A..H. ∅ stands for the error state.









bxb

xxx
. It is assumed that the matrix format has no b elements between non-b elements in any

row. Such b elements are called "b-holes." Note the relation between two adjacent matrices in the

sequence: the successor is obtained by shifting the predecessor one position left, discarding its left-

edge elements, and filling its right-edge elements by the upcoming outcomes. An edge element is

one that has a b element by one of its sides. We will refer to this rule as the "sequencing rule."

Execution of a loop may be regarded as a (theoretically infinite) transition sequence of a

nondeterministic finite automaton (NFA), whose states correspond to the iterations of the

sequence. The NFA is constructed as follows. First, the predicate matrix format is defined, which:

1) has a non-b element at each position at which there is a non-b element in a predicate

matrix of any operation instance in the final schedule;

2) has a non-b element at the position (i, j) for each IF operation instance in the final

schedule that computes the predicate instance (i, j);

3) does not have b-holes. The explanations of these requirements will be given soon.

For the sample loop and its final schedule in Figure 4, the predicate matrix format is

[x x x]. The states of the NFA are defined by predicate matrices that have all variations of the

non-b elements of the constructed matrix format. The NFA for the example is given in Figure 6.

The meaning of the NFA being in a state is that the actual execution of the loop is

(supposed to be) following one of the paths included in the state's matrix. The corresponding

operation instances of the final schedule are to be executed in that state; these are the instances

12

whose predicate matrices are supersets of the state's matrix. Since only IF operations are

significant to the control flow and execution of the NFA, the IF instances that are to be executed

in each state are shown in Figure 6. The outcomes of IF instances are "input symbols" of the NFA,

because they define its transitions as follows. If the executed IF operation instance produces an

outcome that contradicts the predicate instance value defined by the assumed state's matrix, the

assumption of being in this state is found to be incorrect. The successor for this outcome is the

error state (∅), meaning that the set of the supposed paths determined by the state's matrix is to

be canceled. Otherwise, if no contradiction is found, the successors are determined by the

sequencing rule: these are the states with the matrices obtained by shifting the state's matrix one

place left and varying the right-edge elements. The successor set of states has 2m elements. At this

moment, nondeterminism occurs, because it is not known into which state the execution should

pass.

Consider the state F defined by [1 0 1] in Figure 6. Both instances IF(-1) and IF(0) from

the final schedule (Figure 4) are to be executed in this state because their predicate matrices are

supersets of the F's matrix. If IF(-1) computes 1 (columns [1 0] and [1 1]), which contradicts to

the supposed 0 of the state F[1 0 1] at (1,-1), the assumption is found incorrect, and the NFA

should pass to ∅. Similarly, if IF(0) computes 0 (columns [0 0] and [1 0]), which contradicts to

the supposed 1 of the state F[1 0 1], the NFA should pass to ∅. For the remaining outcome [0 1]

(IF(-1)=0, IF(0)=1), no contradiction is found, and the NFA should pass nondeterministicaly to

one of the states C and G, because they might be F's successors in a legal execution trace.

The reasons for the stated requirements for matrix format construction are clear now. The

first requirement enables distinguishing all necessary states according to the predicate matrices of

operations, which assures their conditional execution. The second one enables finding

contradictions or accordance for all scheduled IF instances in each state and defining the

transitions of the NFA. The third one enables determining the legal successors of states without

loss of history.

13

Control Flow Regeneration

The process of control flow regeneration consists of two steps. First, the DFA equivalent

to the defined NFA is constructed. The DFA defines the set of kernels for the transformed loop,

one for each DFA state, and the deterministic transitions between these kernels, which will be the

loop back edges. Second, the acyclic control flow graph is constructed for each kernel.

The construction of an equivalent DFA for the given NFA is well known [1], except that

the automata here do not have either "starting" or "ending" states. A state of the DFA is a set of

NFA states, i.e., an element of the power set of the NFA states. The set of input symbols of the

DFA is the same as of the NFA. The initial set of states of the DFA consists of the NFA state sets

that exist as destinations in the NFA transition table; this is the set: {S={Si| i=1,...,k, Si is an NFA

state}| S is a successor of an NFA state}. Then, an iterative procedure is applied: for each

unprocessed DFA state T={Si| i=1,...,k, Si is an NFA state}, transitions are defined as:
TransDFA T I TransNFA S I

S T
(,) (,)=

∈
U .

If there is a transition TransDFA(T,I)=Q such that Q does not exist yet in the DFA, a new state Q

is added. The procedure ends when there are no new states in the DFA. It ultimately ends because

the set of all possible DFA states is finite. The DFA for our example is given in Figure 7.

The obtained DFA is a directed cyclic graph that might consist of several strongly

connected components (SCCs) that may be topologically sorted. Because an execution of a loop is

treated to be an infinite sequence of DFA transitions, and any sequence of IF outcomes may occur,

the DFA might eventually end in one of the SCCs that have no successors (other than ∅) in the

topological order. These SCCs will be called the tailing SCCs. Therefore, all the SCCs other than

[00] [10] [01] [11]

∅ ∅ ∅ ∅ ∅
AE [00b] AE AE CG CG
BF [10b] AE ∅ CG ∅
CG [01b] BDFH BDFH BDFH BDFH
DH [11b] ∅ BDFH ∅ BDFH
BDFH[1bb] AE BDFH CG BDFH

Figure 7: Construction of the DFA for the NFA in Figure 6. The DFA states are sets of NFA
states. The predicate matrices assigned to the DFA states are unions of the corresponding NFA
states. The states are listed in order of appearance. The states of the tailing SCC are shaded.

14

one of the tailing may be ignored. Consequently, the final DFA consists of a single tailing SCC

(plus possibly ∅). The final DFA for the example consists of the states AE, CG, and BDFH,

corresponding to the kernels A, C, and B, respectively in the final control flow graph in Figure 1c.

The last step is the construction of the acyclic control flow graph for each kernel. The

procedure is quite similar to the reverse if-conversion, but modified for the PSP IR. The algorithm

maintains the leaf node (basic block) set, which initially contains the starting node only. Each basic

block is assigned a set of "active" NFA states NFAS that corresponds to the allowable predicate

set in the reverse if-conversion. The starting block is assigned an NFAS that is equal to the DFA

state of the kernel being constructed. The algorithm processes operation instances from the

schedule, one at a time. An operation instance with predicate matrix pmopi is added to those leaf

basic blocks which have an active NFA state S∈NFAS in which the operation should be executed

(pmS⊆pmopi). When an IF operation instance is encountered, two new basic blocks are added as

successors to all the blocks the operation has been placed in. The leaf node set is updated

accordingly. Each of the two new basic blocks for the two outcomes has the active NFA state set

updated according to the same rule as in the procedure of the NFA construction: if this IF

operation instance computes the predicate instance (i, j) and is to be executed in an NFA state S∈

NFAS, but the predicate matrix element pmS(i, j) has the opposite value of the outcome for the

branch, this state S is deleted from the new basic block's NFAS. The transition edge (loopback

edge) is constructed for each final leaf basic block according to the sequencing rule for the states

of its NFAS. The intermediate representation does not support predicate merge operations yet,

which is a weakness of the approach. The active NFAS sets are also shown in Figure 1c.

Preloop and Postloop

A real, finite loop execution path may be viewed as a subpath of an infinite path, whereby

the iterations before and after the considered finite path are virtual. The virtual iterations execute

no operations, but produce some assumed (arbitrary) outcomes of IFs. For example, consider a

path of the sample loop in Figure 8a, with the sequences of NFA and DFA transitions in Figure 8b.

15

When a current iteration -i (i>0, absolute numbering) is virtual, preceding the actual

subpath, it should execute only those operations that have indices greater than or equal to i. These

might be the operations that have been moved from the actual iterations. Therefore, the schedules

for the NFA states for this iteration are partial, including only those operations. The excluded IF

instances are virtual and are assumed to produce arbitrary outcomes. The next iteration -(i-1)

should include only those operations with indices greater than or equal to i-1, etc. Ultimately, the

iteration schedule completes, and the loop reaches the steady state. This is the principle of preloop

construction. It starts from an "early enough" absolute iteration -i so it does not skip any actual

operation. Partial schedules are constructed for the preloop iteration by iteration, until a full kernel

schedule is reached. For the given example, this occurs for the iteration 1, because the first actual

iteration 0 should not execute the operations with indices -1. Since an arbitrary virtual subpath

may be assumed to precede the actual subpath, it may be one that leads the DFA into one of its

tailing SCCs. The DFA then stays in it forever. That is why only one tailing SCC is important.

In our model, we distinguish conditional loop exit operations, denoted with BREAK, and

IF operations considered so far. Executing a BREAK means a signal to exit the loop, while IF

operations direct the control flow inside the loop. Their difference is only conceptual, but their

implementation is the same. The postloop construction follows the similar idea as for the preloop.

Iter.: ...-3 -2 -1 0 1 2 ... n-2 n-1 n n+1 n+2...
Outc.: ...0 1 1 0 0 1 ... 0 1 0 0 1...

(a)
NFA: ...? ? G D B E ... ? ? C B E...
DFA: ...? ? CG BDFH BDFH AE ... ? ? CG BDFH AE...

(b)
Pipeline:

(c)

Figure 8: Extending a real execution of a loop to a virtual infinite execution. Iteration 0 is the
first, and n is the last actual iteration. (a) A supposed path for the original sample loop. The
bolded outcomes represent the actually executed outcomes as a subpath of an infinite path.
Other outcomes belong to the virtual iterations with no executed operations, and are arbitrarily
assumed. (b) The sequences of the NFA and DFA state transitions that correspond to the
supposed path. Bolded are those states that should be executed to ensure that all the operations
from the supposed original path are executed. Underlined are the states that constitute the
preloop and postloop. (c) The model of the preloop, body, and postloop execution is the model
of filling, executing, and draining a pipeline, where the pipeline stages interchange conditionally.

16

The postloop is constructed for each BREAK instance, i.e., for its loop-exit branch. The active

NFA state sets are constructed for each basic block following this branch as previously, but the

pipeline is being drained for those paths that execute the BREAK, by constructing partial

schedules. The draining is performed by considering indices of the operations and the index of the

BREAK, which defines the index of the broken actual iteration, relative to the current iteration.

We have only shown the principles, while the details and algorithms can be found in [8].

For our example, assuming that op5 is a conditional BREAK, and that the state BDFH is chosen

as the loop entry state, the final control flow graph of the transformed loop is given in Figure 1c.

5 Case Study

To illustrate the general applicability of the approach, we show some interesting cases that

existing techniques cannot deal with. The example we have studied so far is simple, where the IF

operation instance (which is of major interest because it affects the control flow) was split non-

speculatively (it was split on the predicate instance from the previous iteration), and moved also

non-speculatively (it was moved down). The result was a simple final DFA without the error state.

The example in Figure 9 shows a non-speculative split, but a speculative move of an IF.

The initial instance IF(0)[b] was split on (1,-1), producing two instances: IF(0)[0b] and IF(0)[1b].

Then, the former was moved up, and the latter was moved down one iteration, producing the

State [0b0] [1b0] [0b1] [1b1] IFs

A[0000] AI AI ∅ ∅ IF(+1)
B[1000] AI ∅ ∅ ∅ IF(-1),IF(+1)
C[0100] BJ BJ ∅ ∅ IF(+1)
D[1100] ∅ BJ ∅ ∅ IF(-1),IF(+1)
E[0010] CK CK CK CK
F[1010] CK ∅ CK ∅ IF(-1)
G[0110] DL DL DL DL
H[1110] ∅ DL ∅ DL IF(-1)
I[0001] ∅ ∅ EM EM IF(+1)
J[1001] ∅ ∅ EM ∅ IF(-1),IF(+1)
K[0101] ∅ ∅ FN FN IF(+1)
L[1101] ∅ ∅ ∅ FN IF(-1),IF(+1)
M[0011] GP GP GP GP
N[1011] GP ∅ GP ∅ IF(-1)
P[0111] HQ HQ HQ HQ
Q[1111] ∅ HQ ∅ HQ IF(-1)

(a)

State [0b0] [1b0] [0b1] [1b1]

AI[000] AI AI EM EM
EM[001] CGKP CGKP CGKP CGKP
CGKP
[01b]

BDHJLQ BDHJLQ DFHLNQ DFHLNQ

BDHJLQ
[1b0]∪
[111]

AI BDHJLQ EM DFHLNQ

DFHLNQ
[1b1]∪
[110]

CGKP BDHJLQ CGKP DFHLNQ

(b)

Figure 9: Non-speculative split, speculative move of an IF. The final schedule is: IF(+1)[0];
IF(-1)[1bb]. (a) The NFA. (b) The final DFA.

17

schedule IF(+1)[0]; IF(-1)[1bb]. The schedule involves a speculative execution of an IF under

certain condition, which is rather difficult to explain and comprehend intuitively.

Even more peculiar are the following two examples. The example in Figure 10 shows a

speculative split on a future predicate instance. IF(0)[b] was split on (1,1), producing IF(0)[b0]

and IF(0)[b1], and the latter was moved down, producing the schedule: IF(0)[b0]; IF(-1)[1]. The

DFA has two SCCs. The states of the tailing SCC are shaded in Figure 10, while the states of the

other have transitions to the error state.

Finally, the example in Figure 11 shows an IF speculatively split on itself. First, IF(0)[b]

was split to IF(0)[0] and IF(0)[1], and the former was moved up speculatively, producing

IF(0)[1]; IF(+1)[b0]. The final DFA has two states, one of them leading to the error state.

Not only are these examples hard to comprehend, but they can unlikely occur in a real

scheduling technique. However, they prove the general applicability of the approach, which might

be regarded as a complete formal model of loop execution, whereby the execution of separate

paths may be viewed as separate threads of control that are canceled or approved by executed IFs.

The difference of the paths is limited to the scope of predicate instances described by predicate

matrices. At the same time, the execution is encoded by a static, conventional code in the form of

State [00] [10] [01] [11] IFs

A[000] AE AE ∅ ∅ IF(0)
B[100] AE AE ∅ ∅ IF(0)
C[010] ∅ ∅ BF ∅ IF(-1),IF(0)
D[110] ∅ ∅ ∅ BF IF(-1),IF(0)
E[001] CG CG CG CG
F[101] CG CG CG CG
G[011] DH ∅ DH ∅ IF(-1)
H[111] ∅ DH ∅ DH IF(-1)

(a)
State [00] [10] [01] [11]

CG[01] DH ∅ BDFH ∅
DH[11] ∅ DH ∅ BDFH
ACEG[0b] ACDEGH ACEG BCDFGH CG
BDFH[1b] ACEG ACDEGH CG BCDFGH

ACDEGH[b1]∪
[00]

ACDEGH ACDEGH BCDFGH BCDFGH

BCDFGH[b1]∪
[10]

ACDEGH ACDEGH BCDFGH BCDFGH

(b)
Figure 10: Speculative split on a future IF. The
final schedule is: IF(0)[b0]; IF(-1)[1]. (a) The NFA.
(b) The states of SCCs of the DFA; those of the
tailing SCC are shaded.

State [00] [10] [01] [11] IFs

A[00] AC AC ∅ ∅ IF(+1)
B[10] ∅ AC ∅ ∅ IF(0),IF(+1)
C[01] BD BD BD BD
D[11] ∅ BD ∅ BD IF(0)

(a)
State [00] [10] [01] [11]

BD[1] ∅ ABCD ∅ BD
ABCD[b] ABCD ABCD BD BD

(b)

Figure 11: Speculative split of an IF on itself. The
final schedule is: IF(0)[1]; IF(+1)[b0]. (a) The
NFA. (b) The final DFA.

18

the control flow graph. Moreover, the model might improve our understandings of the

phenomenon. For example, an interesting issue is the reachability of the error state in the final

DFA. We speculate that it is reachable only if there is an IF that was split speculatively. This

property might be understood intuitively, but needs a formal proof.

6 Implementational Implications

The code generation algorithm has actually two tasks. First, it has to find out which

kernels (DFA states) comprise the transformed loop body and which paths (NFA states) start each

kernel. Second, it has to reconstruct the acyclic control flow graph for each kernel. The latter is

very similar to the reverse if-conversion. Its complexity much depends on the schedule and is

difficult to describe. The former is the main contribution of the approach and its core step, because

it must balance the two needs: to distinguish paths by separate kernels if possible (if IFs are

computed early enough), and to merge paths that cannot be distinguished due to speculation. The

separation of paths leads to the kernels and transitions that "remember the history" of execution.

For example, if the schedule for the current iteration depends on an outcome from k iterations

before, an order of 2k kernels are needed to "remember the history" of outcomes. This issue is

inherent in our approach, because NFA states are generated for all variations of predicate

instances between columns -k (on which an operation is control dependent) and 0 (which is

computed by the IF). Basically, our algorithm inherently resolves the overlapped predicate

lifetimes, but only for those predicates for which this is necessary (a predicate matrix may have

different non-b elements in different rows), without explicit need for unrolling, which would

expand all predicates equally.

There are some other properties of the algorithm that may simplify its implementation.

First, the NFA definition does not need the full transition table with 2q columns, where q is the

number of IF instances in the final schedule, because a successor of an NFA state N may only be

either ∅ or the set of NFA states S defined by the sequencing rule. A compact representation of

the set of "input symbols" (variations of outcomes of all IF instances) that lead to the non-∅

successor S is a predicate vector. Each predicate vector has one element from {0, 1, b} for each

19

IF instance in the final schedule. A primitive predicate vector is one that has no b elements; it

represents one "input symbol" of the automata. Each NFA state N is thus defined only by its

predicate matrix, the set S, and a predicate vector. Its predicate vector is defined as follows. If an

IF instance opif is to be executed in N (pmN⊆pmopif) and its outcome contradicts to the N's matrix

element computed by opif, N will not contribute to the set of successor states of a leaf basic block

in a kernel (DFA state), because it will be canceled. Therefore, only if the outcome of the IF is x(≠

b) that coincides with this N's matrix element, N will contribute to the successor state set with S.

That is why x stands in N's predicate vector element for opif. If opif instance is not executed in N,

b stands in N's vector element for opif, meaning that N contributes regardless to the opif's

outcome. For the sample loop, predicate vectors are given in the rightmost column in Figure 6.

Furthermore, instead of constructing the full DFA transition table, the algorithm may only

record the possible successors of each DFA state T. Instead of varying all elements of the

predicate vector, which would mean filling all columns of the transition table for T, the algorithm

varies only the elements of the vector at places where there is at least one non-b element in the

vectors of the NFA states that constitute T. This property may significantly reduce the searching

space. Consequently, the algorithm constructs a new successor set Q of NFA states for each such

vector v: for each NFA state N∈T with vector u, if v⊆u, then N's successors S are added to Q. The

meaning is that for outcomes defined by v, N contributes to the T's successor Q only if v⊆u.

Figure 12 gives the complexity estimation of the NFA and DFA construction procedures.

Although it is very difficult to give the precise total complexity because some important

parameters depend heavily on the final schedule, it is obvious that the NFA construction is an

exponential algorithm with the complexity O(2N), where N is the number of non-b elements in the

predicate matrix format. The exponentiality is an inherent property of the problem due to the

described effect that non-b elements in a matrix row mean a need to remember the history of

outcomes. Moreover, it may be assumed that the DFA construction algorithm is predominantly

influenced by the factor D (the number of DFA states), because D is a factor that might be

expected to be large and out of the direct control of the scheduler. It is also very difficult to

20

estimate how D depends on other parameters, such as N. However, it is expected that D is much

less than its theoretical upper bound 2L, where L=2N. Experiments prove this expectation.

In order to estimate the complexity, we have generated a set of final schedules and ran the

algorithm with them. Each final schedule consisted of one IF operation that was split at adjacent

predicate instances in columns -splitWidth/2 + splitOffset..splitWidth/2 + splitOffset. The obtained

instances were then moved up and/or down, so their predicate matrices were shifted in the range

-shiftWidth/2 + shiftOffset..shiftWidth/2 + shiftOffset. Values shiftWidth and splitWidth varied in

the range 1..3, and shiftOffset and splitOffset in the range -3..3, producing a set of 429 samples.

Figure 13a shows the algorithm's total execution time at a 300 MHz Pentium II processor,

in relation with the value of D. The results are grouped in two series according to whether samples

included a speculative split of IF or not. It may be easily noticed that all the experiments without

speculative splits ran in 50 ms or less, regardless to the value of D, while those with speculative

splits have shown large variations of execution time for a same D, and produced runtime explosion

in some cases. Figure 13b shows the value of D in relation with the value of 2N. Again, for the

samples without speculative splits, the correlation was very close to linear with a slope less than 1,

meaning that the size of the DFA is expected to be smaller than that of the NFA. For the samples

Symbol Meaning

nops Number of operation instances in
the final schedule

nifs Number of IF operation instances
in the final schedule

m Number of IF operations in the
initial loop; number of rows in the
predicate matrix

n Number of columns in the
predicate matrix

N Number of non-b elements of the
NFA predicate matrix format

D Number of DFA states
M Mean number of NFA states in a

DFA state
nv Mean number of non-b elements

in a predicate vector format of a
DFA state

(a)

Proc. Step Complexity

Create predicate matrix format O(nops⋅m⋅n)
Create NFA states by the matrix format; For each NFA
state:

O(2N)

NFA Create the state's predicate matrix O(m⋅n)
constr. Create the state's successor set O(2m⋅m⋅n)

Create the state's predicate vector O(nifs⋅m⋅n)

Create initial DFA states O(2N)
For each DFA state T: O(D)

Create predicate vector format vf O(M⋅nifs)
For each predicate vector v as a variation of vf O(2nv)

DFA Create an empty successor set Q O(1)
constr. For each NFA state N∈T with

predicate vector u
O(M)

if v⊆u then O(nifs)
add N''s successors
to Q

O(2m⋅M)

if Q does not exist, add it to the DFA O(D⋅M)

(b)
Figure 12: The complexity of the NFA and DFA construction algorithms. (a) Notation.
(b) Complexity of the main steps of the algorithms. It is assumed that a set is implemented as a
sorted array of included elements.

21

with speculative splits, the correlation is again undeterminable and the values vary in large ranges.

It may be concluded that for the schedules without IFs speculatively split, the algorithm is

expected to run with an acceptable time and space complexity. When speculative splits exist,

however, time and space explosion might be expected. Note once again that this does not include

speculatively moved IFs, which are quite "harmless" for this technique, unlike for many other

techniques. This precaution is directed to speculatively split IFs, which, fortunately, are of

theoretical significance only and may not be expected to occur in real scheduling techniques.

7 Conclusions

We have proposed a new intermediate representation that may be used in modulo

scheduling or other techniques for software pipelining loops with conditions. It allows separation

of operations from different paths and their conditional movement. We have also defined an

algorithm that transforms the representation into the executable code. The algorithm uses the

notion of finite automata to represent the execution of separate paths as threads of control that are

canceled or approved by executed IF operations. Our future work may follow two directions.

First, we will try to use the formalism to investigate further how some important aspects of

scheduling, such as code size, are affected by parameters such as predicate scope or level of

speculation. Second, we will try to understand better how some existing scheduling techniques

0.001

0.01

0.1

1

10

1 10 100 1000

D

T
im

e
[s

ec
]

W/o speculative
splits
W/ speculative
splits

1

10

100

1000

1 10 100

2^N

D

W/o speculative
splits

W/ speculative
splits

(a) (b)
Figure 13: Experimental results. (a) The algorithm's execution time in relation with the
number of DFA states (logarithmic scale). (b) The number of DFA states in relation with the
number of NFA states (logarithmic scale).

22

work by using our model and to improve them, or to search for novel techniques which would

benefit from our model.

References
[1] Aho, A., Sethi, R., Ullman, J., Compilers: Principles, Techniques, and Tools, Addison-

Wesley, 1986
[2] Aiken, A., Nicolau, A., "Optimal Loop Parallelization," Proc. ACM SIGPLAN 1988 Conf.

Prog. Lang. Design and Implementation, 1988, pp. 308-317
[3] Allen, J. R., Kennedy, K., Porterfield, C., Warren, J., "Conversion of Control Dependence to

Data Dependence," Proc. 10th ACM Symp. Principles of Prog. Lang., 1983, pp. 177-189
[4] Ebcioglu, K., "A Compilation Technique for Software Pipelining of Loops With Conditional

Jumps," Proc. 20th Ann'l Workshop on Microprogramming (MICRO-20), 1987, pp. 69-79
[5] Ferrante, J., Ottenstein, K. J., Warren, J. D., "The Program Dependence Graph and its Use

in Optimization," ACM Trans. Prog. Lang. and Systems, Vol. 9, July 1987, pp. 310-349
[6] Milicev, D., Jovanovic, Z., "A Formal Model of Software Pipelining Loops with

Conditions," Proc. 11th Int'l Parallel Processing Symp. (IPPS '97), 1997, pp. 554-558
[7] Milicev, D., Jovanovic, Z., "Predicated Software Pipelining Technique for Loops with

Conditions," Proc. 12th Int'l Parallel Processing Symp. (IPPS '98), 1998
[8] Milicev, D., Jovanovic, Z., "Code Generation for Software Pipelined Loops with

Conditions," Technical Report TI-RTI-99-0041, University of Belgrade, Faculty of
Electrical Engineering, 1999

[9] Moon, S.-M., Ebcioglu, K., "An Efficient Resource-Constrained Global Scheduling
Technique for Superscalar and VLIW processors," Proc. 25th Ann'l Int'l Symp. Microarch.
(MICRO-25), 1992, pp. 55-71

[10] Nikolau, A., "Percolation Scheduling: A Parallel Compilation Technique," TR-85-678,
Cornell Univ., 1985

[11] Rau, B. R., "Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops,"
Proc. 27th Ann'l Int'l Symp. Microarch. (MICRO-27), 1994, pp. 63-74

[12] Rau, B. R., Schlansker, M. S., Tirumalai, P. P., "Code Generation Schema for Modulo
Scheduled Loops," Proc. 25th Ann'l Int'l Symp. Microarch. (MICRO-25), 1992, pp. 158-69

[13] Schwiegelshohn, U., Gasperoni, F., Ebcioglu, K., "On Optimal Parallelization of Arbitrary
Loops," J. of Parallel and Distributed Computing 11, 1991, pp. 130-134

[14] Shim, S., Moon, S.-M., "Split-Path Enhanced Pipeline Scheduling for Loops with Control
Flows," Proc. 31st Ann'l Int'l Symp. Microarch. (MICRO-31), 1998

[15] Stoodley, M., Lee, C., "Software Pipelining Loops with Conditional Branches," Proc. 29th
Ann'l Int'l Symp. Microarch. (MICRO-29), 1996

[16] Su, B., Wang, J., "GURPR*: A New Global Software Pipelining Algorithm," Proc. 24th
Ann'l Workshop Microprog. and Microarch. (MICRO-24), 1991, pp.212-216

[17] Tang, Z., Chen, G., Zhang, C., Zhang, Y., Su, B., Habib, S., "GPMB–Software Pipelining
Branch-Intensive Loops," Proc. 26th Ann'l Int'l Symp. Microarch. (MICRO-26), 1993

[18] Warter, N. J., Bockhaus, J. W., Haab, G. E., Subramanian, K., "Enhanced Modulo
Scheduling for Loops with Conditional Branches," Proc. 25th Ann'l Int'l Symp. Microarch.
(MICRO-25), 1992, pp.170-179

23

[19] Warter, N. J., Mahlke, S. A., Hwu, W-M. W., Rau, B. R., "Reverse If-Conversion," Proc.
ACM SIGPLAN 1993 Conf. Prog. Lang. Design and Implementation, 1993, pp. 290-299

[20] Warter-Perez, N. J., Partamian, N., "Modulo Scheduling with Multiple Initiation Intervals,"
Proc. 28th Ann'l Int'l Symp. Microarch. (MICRO-28), 1995, pp. 111-118

