
A Formal Model of Software Pipelining Loops with Conditions

Dragan Milicev and Zoran Jovanovic
University of Belgrade

E-mail: emiliced@etf.bg.ac.yu

Abstract
This paper addresses the problem of parallelizing loops
with conditional branches in the context of software
pipelining. A new formal approach to this problem is
proposed in the form of Predicated Software Pipelining
(PSP) model. The PSP model represents execution of a
loop with conditional branches as transitions of a finite
state machine. Each node of the state machine is
composed of operations of one parallelized loop iteration.
The rules for operation movements between nodes in the
PSP model are described. The model represents a new
theoretical framework for further investigation of
inherent properties of these loops.

Keywords: instruction level parallelism, loops with
conditional branches, software pipelining.

1 Introduction

Applications that call for efficient execution generally
spend most of their running time in loops. Hence, loops
are extremely interesting for parallelization. Loops that do
not contain conditional branches have been both
theoretically and practically analyzed in detail [1,2].
There are few theoretical and empirical results for loops
with conditions [3], and several effective methods for
their optimization [4,5,6,7]. This work addresses the
problem of modeling such loops in the context of software
pipelining, in order to enlighten the way towards their
better understanding. A more detailed version of this
paper can be found at http://ubbg.etf.bg.ac.yu/~emiliced.

2 Problem analysis

This section describes the conclusions of our analysis of
the problem. Some inherent properties of the loops and
the motivation for our model are explained.

2.1 Inherent properties of the loops

Every specific execution of a loop with conditional
branches is characterized with the number of iterations,
and the outcomes of the branches (conditions) during the
execution. It can be described with the data dependency
graph (DDG) that incorporates all operations that have
been executed according to the outcomes of the
conditions, and dependencies between them. The graph
has its critical path(s), and this path dictates the shortest
possible execution time, again for that specific execution.

The heart of our problem is that the described DDG
alters its shape from one execution to another, due to
various outcomes of conditions. In some boundary cases,
the DDG of a loop may have a shape of a graph of a
DOALL loop, with all iterations being independent. For
some other executions of the same loop, the graph may
turn into a chain of dependencies of a DOACROSS loop,
with little or no opportunities for parallelization. Since we
cannot predict in advance the outcomes of all the
branches, we cannot adjust the target code to every single
execution. We continue our analysis by observing the
effects that outcomes of the conditions produce on the
DDG of the loop.

Our analysis suggests separating the meanings of
conditional operation (or condition for short) and
outcome of the condition. An outcome of a condition is a
Boolean value that actually affects the shape of the DDG.
It is an abstract term that we will also refer to as
predicate. A conditional operation is an operation that
performs some computation, thus occupying some
resources, and defines the actual value of the predicate.
This operation is connected with other operations by data
dependencies. Such a separation provides better focus on
the problem of defining the schedule of an iteration,
determined by a combination of predicates.

We first have to semantically decouple these two
entities and adjust the code according to various values of
the predicates. As a result of this adjustment, which
incorporates operation movements guarded by the values

of the predicates, we get some predicated code. Some
operations are executed only if a certain predicate has a
certain value. Finally, we recouple the two entities by
observing at what time a predicate is actually computed
(when its own conditional operation has been scheduled).
Two cases may occur. First, the conditional operation may
be computed before the moment its predicate is used for
the first time, perhaps several iterations away. This case
suggests recording of the outcomes of several conditional
operation instances from previous iterations. Second, the
outcome may be used before its conditional operation has
been computed. This is the occurrence of speculative
execution. Both features can (but need not) be supported
by hardware.

2.2 Motivation

As a result of different outcomes of the conditions, some
operations in the DDG of the unrolled loop that are
control dependent upon the conditions do not exist.
Consequently, the data dependency edges that come into
or go out from them do not exist. This is the primary
effect of changing the shape of the DDG that opens
possibilities for parallelization. For example, consider the
loop DDG in Figure 1. Control dependencies are
represented by bold edges, with True denoted by the filled
edge, and False by the hollow one. Data dependencies are
marked with operation latencies expressed in clock cycles.

If the outcome is True, operation 4 is executed, and
operation 5 does not exist. There is a dependency chain 6-
1-2-3-4-6 that limits the latency of an iteration to at least
8 cycles. If the outcome is False, operation 4 does not
exist, and operation 3 becomes bottom-free, so it can be
moved downwards into the next iteration. However, there
is a chain 6-5-6 that dictates the execution of the iteration
in at least 3 cycles. Consequently, the chain 1-2-3 should

be adjusted to this latency of 3 cycles, to prevent an
increase in latency of the iteration. This can be done by
moving operation 3 into the next iteration, as in Figure
2a. This movement of operation 3 does not affect the
latency of the next iteration, since it also lasts for at least
3 cycles.

We may conclude that operation 3 is moved into the
next iteration only if the outcome is False. Thus,
operation 3 from the considered iteration exists in this
iteration under the condition True, as shown in Figure 2a.
Otherwise, this operation exists in the next iteration, as an
instance of operation 3 from the previous iteration,
denoted by 3[-1]. Figure 2b shows the net effect of the
described movement on the code of a single iteration.
Since software pipelining must produce a "periodic" code,
every single iteration can have the instance 3[-1]
controlled by the instance IF[-1] = False, and the instance
3[0] controlled by IF[0] = True.

Two things can be noticed. First, each iteration may
have from null up to two instances of the same operation
3, controlled by different instances of the same condition.
The combination of their outcomes determines the actual
number of the instances of operation 3. This way, we can
get the predicated code for each iteration, i.e., a set of
operations that should be executed under certain
composed condition (IF[0]IF[-1] in the example). Second,
we can see that an instance may depend on an outcome of
a condition from previous iteration, which raises the need
for recording the outcomes from previous iterations.

3 The model

The proposed model for treating loops with conditional
branches is referred to as Predicated Software Pipelining
(PSP). To simplify, we first consider loops with non-
nested IF statements. We will discuss nested IFs later.

6

1

2

3

4

6

5

IF

1

2

1
1

2

2

2

1

2

1

Figure 1: DDG of a loop iteration. Dotted lines
represent the iteration boundaries

6

1

2

3

4

6

5

IF

1

2

1
1

2

2

2

1

2

1

a)

3[-1]

1

2

3

4

6

5

IF

1
1

2

2

1

2

1

b)

3[-1]

IF[-1]

2

Figure 2: Operation movement

3.1 The PSP model

Our analysis has pointed out that the code of a
transformed iteration consists of different instances of
operations, controlled by different instances of predicates
(Figure 2b). In other words, different combinations of
predicate instances dictate the contents of an iteration.
The predicate instances come from different iterations.
Consequently, a loop iteration can be described by the
predicate matrix, having m rows and n columns, where m
is the number of conditional operations in the loop, and n
is an arbitrary number that determines the maximum
scope (number of adjacent iterations) of a predicate. For
example, suppose that a loop has two conditions, denoted
by p1 and p2. The predicate matrix may be:

p p p

b p p

1 1 1 0 1 1

2 0 2 1

[] [] []

[] []

−









This matrix describes that the contents of an iteration
are (or may be) dictated by predicate instances p1[-1],
p1[0], p1[1], p2[0], and p2[1], where p[0] denotes the
instance from current iteration, p[-1] from previous, etc.
The symbol b serves only to fill in an empty element of
the matrix, because p2[-1] is of no interest.

For the purpose of operations movements, we pose the
following restrictions to predicate matrix construction:

1. (∀p∈P)(∀i,j∈Z)(i<j∧PM(p,i)≠b∧PM(p,j)≠b ⇒ (∀
k∈Z)(i≤k≤j⇒PM(p,k)≠b)), where P is the set of
predicates, and PM(p,i) denotes the element of the
predicate matrix in the row p and column i. Simply said,
every row in the matrix must not have "b-holes:" these
would be b elements between non-b elements.

2. The predicate matrix must have a column with
index 0, and all elements of this column must be non-b.

Consequently, a general form of the predicate matrix is
as in Figure 3. It is important to emphasize that the rows
of the matrix may have different non-b elements, so that
different instances of different conditions are taken into
account. Consequently, we can enlarge the scopes of only
those predicates that provide a better schedule. On the
other side, loop unrolling multiplies the scope of each

predicate the same way. This is one of the advantages of
PSP over loop unrolling.

Every specific execution of the loop consists of
iterations, and each iteration can be described with a
matrix containing concrete values of the predicate matrix
elements. The matrix with concrete values is called the
state matrix. For the same example, if the execution
sequence (the sequence of the predicates' outcomes) is (1
stands for True and 0 for False):

p1: ..., 1, 1, 0, 0, 1, ...
p2: ..., 0, 0, 0, 1, 0, ...

then the corresponding sequence of the state matrices is:

..., , , , ...
1 1 0

0 0

1 0 0

0 1

0 0 1

1 0b b b































The way this sequence has been obtained is obvious:
the next state matrix is derived from the previous one by
shifting all its values one place left, discarding the left-
edge elements, and filling the right-edge elements with
the "arriving" predicate outcomes. An edge element is the
one that is on the border of the matrix, or that is adjacent
to a b element.

This approach leads to the idea of representing an
execution of a loop by transitions in a finite state
machine. The machine is determined by the predicate
matrix. It has 2k states, where k is the number of non-b
elements in the predicate matrix. Every state is
determined by a state matrix. A transition from state A to
state B exists if state B can follow A in a legal execution
sequence. In other words, the successor states of the state
A are determined by shifting its state matrix one place
left, discarding the left-edge elements, and filling the
right-edge elements with all 2m (m is the number of
conditional operations) variations of the set {0, 1}. Hence,
every state has 2m predecessors and the same number of
successors.

For example, consider a loop with one conditional
operation and the predicate matrix [p[-2] p[-1] p[0]].
The states can be numbered as follows:

1. [000] 2. [100] 3. [010] 4. [110]
5. [001] 6. [101] 7. [011] 8. [111]

Figure 3: General form of the predicate matrix. Non-b
elements are shaded, and the column with index 0 is

bordered

1

5 8

42 3

6 7

Figure 4: State transition diagram of a PSP model with 8
states

The state transition diagram is shown in Figure 4.
An interesting property of the diagram can be easily

proved for general case: exactly 2m nodes have the same
set of 2m successors, and these 2m successors have only
the considered 2m nodes as predecessors. Hence, the
transitions group the states in clusters: the set of nodes
that have the same set of successors will be called the
source cluster, and the set of the successors will be called
the destination cluster. For example in Figure 4, the
nodes 1 and 2 form a source cluster, with the
corresponding destination cluster consisting of the nodes
1 and 5.

3.2 Operation moves

In the PSP model, every node of the state machine
comprises a set of operations that are executed if the
execution sequence passes through that node. This set of
operations can be represented by an acyclic DDG which is
an extract of the whole DDG of the (infinitely) unrolled
loop. This DDG has its own critical path(s).

It might happen that the DDGs of two adjacent nodes,
when the nodes are concatenated in an execution, have a
common critical path shorter than the sum of their
separate critical paths. This is the opportunity for loop
parallelization: some operations should be moved from
one of the iterations into the other, in order to adjust the
sum of the separate critical paths to the common one.

In the PSP model, an operation move should be
performed between two adjacent states. The move should
preserve the semantics of the execution. Consider the
diagram in Figure 4. Suppose that an operation should be
moved from state 3 to state 6. Preservation of semantics
requires that if that operation is to be executed in state 3,
it should be executed in every path that passes through
that state. If it is moved into state 6, it should be also
moved into state 2. After this move, the operation will be
executed in every path that passes through the states 2
and 6, including the paths that come from the node 4.
Consequently, the requirement for the move was that the

operation existed in both states 3 and 4, and it was
bottom-free in both states (none of the other operations in
these states was dependent on it).

To sum up, we define a move of operation Op[i]
downwards from all the states of a source cluster into all
the states of its corresponding destination cluster, if Op[i]
exists in all these states and is bottom-free in all of them.
The operation becomes Op[i-1] in the destination cluster,
which indicates that the operation origin is the previous
iteration, and that the index adjustment should be made.
In a similar way we define a move upwards, from a
destination cluster to its appropriate source cluster: the
operation should be top-free and becomes Op[i+1].

For example, consider a simple loop and the initial
schedule as in Figure 5. The model is initialized so that
every state consists of the operations that are to be
executed under condition p[0]. The tables in Figure 5
represent the contents of the states, with the operations
scheduled according to their dependencies.

For example, the operation 3[0] exists in both states 1
and 2 of a source cluster and is bottom-free. It can be
moved into the states 1 and 5 of the destination cluster.
The schedules (DDGs) of the states 1 and 5 are updated
according to possible dependencies from the incoming
operation 3[-1] towards the existing operations in the
states 1 and 5. The result is as in Figure 6.

As a result, we obtain shorter schedule of the states 1
and 2, without lengthening the schedules of the states 1
and 5, since there are no dependencies on 3[-1].

We underline that this discussion represents only an
approach to treating loops with conditional branches and
defines the rules for operation moves. Concrete
techniques, i.e., heuristics for selecting moves and
scheduling could be defined separately.

1: [000] 2: [100] 3: [010] 4: [110]
1[0] 1[0] 1[0] 1[0]
2[0] 2[0] 2[0] 2[0]
3[0] 3[0] 3[0] 3[0]

5: [001] 6: [101] 7: [011] 8: [111]
1[0] 1[0] 1[0] 1[0]
2[0] 2[0] 2[0] 2[0]
3[0] 3[0] 3[0] 3[0]
4[0] 4[0] 4[0] 4[0]

Figure 5: An example of initial schedule

1: [000] 2: [100] 3: [010] 4: [110]
1[0] 3[-1] 1[0] 1[0] 1[0]
2[0] 2[0] 2[0] 2[0]

3[0] 3[0]

5: [001] 6: [101] 7: [011] 8: [111]
1[0] 3[-1] 1[0] 1[0] 1[0]
2[0] 2[0] 2[0] 2[0]
3[0] 3[0] 3[0] 3[0]
4[0] 4[0] 4[0] 4[0]

Figure 6: The schedule after a move of operation 3
downwards

3.3 Model expansion

Consider the same loop in Figure 5, but with the predicate
matrix [p[0]]. There are only two states 1 and 2 with the
initial contents as in Figure 7.

There are state transitions from states 1 and 2 into the
same states. Note that not any operation can be moved
downwards. Only the operation 1[0] can be moved
upwards. After that move, we get the schedule in Figure
8. Now the operation 2[0] can be moved upwards, but this
move does not bring any improvement (it is dependent on
operation 1). An inherent property of the model inhibits
further movements because the predicate matrix does not
provide information about interference between
conditions in adjacent iterations. If we expand the
predicate matrix by adding p[1], we get a 4-state model as
in Figure 9.

This model allows further movements. It can be easily
shown that this schedule could be obtained by starting
from matrix [p[0] p[1]] and the initial schedule. We
conclude that expansion of the matrix can open
possibilities for new movements and improvements of the
schedule. Furthermore, without detailed justification, we
state that the left expansion, i.e., adding less indexes into
the predicate matrix, enables downward moves; similarly,
right expansion enables upward moves.

5.4 Execution model

The basic principle of PSP schedule execution is simple.
If we have, for example, the predicate matrix
[p[-2] p[-1] p[0]], the transformed loop can be
represented by a CASE structure:

CASE (p[-2]p[-1]p[0]) OF
 000: ... // code for state 000
 001: ... // code for state 001
 ... // etc.
END CASE

Several issues can be noticed. First, some of the states
might have parts of code in common. These are the
operations that do not depend on the predicates that
distinguish these states. In this case, some of the code
replication can be eliminated. This issue is correspondent
to unification in other techniques [8].

Second, the combination p[-2] p[-1] p[0] indicates the
need for storing the results of conditional operations
belonging to previous iterations. Third, it might happen
that certain predicate is determined by a conditional
operation that is scheduled after the use of the predicate.
In this case, the PSP state machine is nondeterministic
with the following meaning. There are several "current"
states at any moment of execution. When a state is to be
exited, the machine passes nondeterministicaly to its
successors, because the corresponding predicate has not
been defined yet. When a conditional operation that
defines the predicate has been executed, some of the
nondeterministic paths (i.e., current states) of execution
are discarded.

Loops with nested IFs can easily fit in the PSP model.
For example, if we denote the outer IF's predicate by p1,
and the inner IF is in THEN branch, we can denote the
inner predicate by p2. The predicate matrix will have two
rows, and the initial schedule will contain the same
operations in both states in which p1[0]=0 (p2[0] is either
0 or 1, actually it does not exist).

4 Conclusion

We have proposed a new approach to treating the problem
of software pipelining loops with conditions—the PSP
model. The approach can serve as a new research
direction in the domain, since the preliminary analysis

1: [0] 2: [1]
1[0] 1[0]
2[0] 2[0]
3[0] 3[0]

4[0]
Figure 7: Initial schedule for 2-state PSP

1: [0] 2: [1]
2[0] 1[+1] 2[0]
3[0] 3[0]

4[0]
1[+1]

Figure 8: The schedule for 2-state PSP after operation 1/1 moved upwards
1: [00] 2: [10] 3: [01] 4: [11]

2[0] 1[1] 2[0] 2[0] 1[1] 2[0]
3[0] 3[0] 3[0] 3[0]

4[0] 4[0]
1[1] 1[1]

Figure 9: Expanded schedule for a 4-state PSP

shows some interesting regularities. It can also be a
framework for concrete optimizing techniques.

References

[1] Bacon D. F., Graham S. L., Sharp O. J., "Compiler
Transformations for High-Performance Computing,"
ACM Computing Surveys, Vol. 26, No. 4, Dec 1994

[2] Gasperoni F., "Compilation Techniques for VLIW
Architectures," Tech. Rep. #435, New York University,
Comp. Sci. Dept., Mar 1989

[3] Schwiegelshohn U., Gasperoni F., Ebcioglu K., "On
Optimal Parallelization of Arbitrary Loops," J. Par.
Distr. Computing 11, 1991, pp. 130-134

[4] Moon S.-M., Ebcioglu K., "An Efficient Resource-
Constrained Global Scheduling Technique for
Superscalar and VLIW processors," Proc. 25th Annual
Intl Symp Microarchitecture (MICRO-25), Dec 1992

[5] Su B., Wang J., "GURPR*: A New Global Software
Pipelining Algorithm," Proc. 24th Annual Workshop on
Microprogramming and Microarchitecture (MICRO-
24), Nov 1991

[6] Tang Z., Chen G., Zhang C., Zhang Y., Su B., Habib
S., "GPMB–Software Pipelining Branch-Intensive
Loops," Proc. 26th Annual Intl Symp Microarchitecture
(MICRO-26), Dec 1993

[7] Warter N. J., Bockhaus J. W., Haab G. E., Subramanian
K., "Enhanced Modulo Scheduling for Loops with
Conditional Branches," Proc 25th Annual Intl Symp
Microarchitecture (MICRO-25), Dec 1992

[8] Nikolau A., "Percolation Scheduling: A Parallel
Compilation Technique," Tech. Rep. TR-85-678,
Cornell University, 1985

