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Abstract: The subject of this paper is the instruction-level parallelism and the process of software
pipelining loops with conditional branches. First, preconditions for treating such loops are introduced,
and some effects of existence of conditional instructions and their outcomes that are important for
parallelization are analyzed. These effects are emphasized and systematized.
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1 Introduction

Modern high performance computers with RISC, VLIW, or superscalar processors base their power on
the ability to execute several operations in parallel. As a contrast to the higher level of parallelism,
explicitly stated by high level programming language concepts, these machines use instruction level
parallelism, which means that they extract parallelism from the executable (or intermediate) code. This
extraction can be either static, when the compiler reorganizes initial sequence of instructions in order to
group those operations that can be executed simultaneously [5], or dynamic, when the processor itself
detects independent operations. Whichever the approach, a parallelizing compiler can make significant
optimizations by reorganizing instructions of the initial program.

The basic precondition for parallel execution of several operations is their data-independence. The
factors that affect the performance of a parallel execution of a program on a processor are:

(1) the existence of data-independent operations in the program,
(2) the capability of the compiler to discover these independent operations and to group them, and
(3) the availability of processing elements and other resources in the processor to perform all

currently independent operations.
The first factor is predominantly an inherent property of the algorithm, and the compiler can hardly

affect it. The third factor has a steadily decreasing influence, due to the ever increasing power of
processors, but will never vanish as a limiting factor in compilation. We are specially interested in
investigating the second factor.

Applications that call for efficient execution generally spend most of their running time in loops.
This is why loops are extremely interesting for parallelization. Loops that do not contain conditional
branches (IF-THEN-ELSE constructs) have been both theoretically and practically analyzed in detail [2,
5, 9, 11, 20]. In contrast, there are few theoretical and empirical results for loops with conditional
branches [10, 12, 22, 27], and several effective methods for their optimization [6, 7, 14, 16, 17, 23, 24,
25, 26, 28, 30]. This work addresses the problem of parallelization of such loops. Besides, we
concentrate here on the innermost loops, since they iterate the most, and since there are techniques that
optimize outer loops after transforming the inner ones [16].



The rest of the paper has the following outlline. The problem is described in greater detail in
Section 2, where some conditions and assumptions are stated. Section 3 describes some inherent
properties of loops with conditional branches. Section 4 seeks sources of parallelism in such loops, in
order to enlighten the way towards new software pipelining approaches. Section 5 is a conclusion.

2 Problem Statement

2.1 Problem Description

Consider a loop with a conditional statement as in Figure 1. Suppose that the target processor has
enough resources to perform in parallel all operations that are independent, and that the given
intermediate code can be directly mapped into the processor instructions and registers. Let the latency of
addition be one, and of multiplication two clock cycles. For the purpose of this example, we will initially
neglect the latency of the conditional operation (IF), assuming that there is a kind of hardware
mechanism that supports this assumption.

      DO I=1,N
O1:       D[I]=A[I-1]+B
O2:       E[I]=D[I]*C
O3:       F[I]=E[I]*A[I-1]
          IF (D[I]>0) THEN
O4:           G[I]=F[I]+5
          ELSE
O5:           J[I]=A[I-1]-2
          ENDIF
O6:       A[I]=G[I]*J[I]
      END

Figure 1: Example of a loop with a conditional statement

With all other assumptions stated in the next subsection taken into account, we can see that the
latency of one iteration of this initial loop is eight clock cycles for both branches of IF. If we apply a
simple and greedy scheduling with speculative execution and renaming [5], but constrained to the code
of a single iteration, we can get the transformed loop in Figure 2, with the initiation interval (II) of eight
cycles for one, and five cycles for the other branch.

           DO I=1,N
O1, O5':       D[I]=A[I-1]+B;  JR=A[I-1]-2
               IF (D[I]>0) THEN
O2:                E[I]=D[I]*C
O3:                F[I]=E[I]*A[I-1]
O4:                G[I]=F[I]+5
O6:                A[I]=G[I]*J[I]
               ELSE
O2, O6:            E[I]=D[I]*C;       A[I]=G[I]*JR
O3, O5":           F[I]=E[I]*A[I-1];  J[I]=JR
               ENDIF
           END

Figure 2: Transformed loop from Figure 1, with greedy scheduling applied. Operations that can be
performed in parallel are in the same line

We have moved the operation 5 upwards, above the conditional operation. It is now executed
speculatively, and its destination variable J[I] has been temporarily renamed. Consequently, another



compensational operation was required to restore the value of J[I] in the ELSE branch. We have also
scheduled the operations 2 and 6 together in the ELSE branch, since the operation 4 does not exist and
the operation 6 is dependent on the operation 5 only.

The previous transformation did not move any operation across the boundaries of the initial loop
iteration. By applying this kind of movement, which leads to software pipelining, we can achieve II of
eight and three cycles for the two branches. The transformed loop body is given in Figure 3.

                 Preloop
                 DO I=2,N-1
                     IF (D[I-1]<=0) THEN
O1,O5',O3[-1]:           D[I]=A[I-1]+B; JR=A[I-1]-2; F[I-1]=E[I-1]*A[I-2]
                         IF (D[I]>0) THEN
O2:                          E[I]=D[I]*C
O3:                          F[I]=E[I]*A[I-1]
O4:                          G[I]=F[I]+5
O6:                          A[I]=G[I]*J[I]
                         ELSE
O2,O6,O5":                   E[I]=D[I]*C; A[I]=G[I]*JR; J[I]=JR
                         ENDIF
                     ELSE
O1,O5':                  D[I]=A[I-1]+B; JR=A[I-1]-2
                         IF (D[I]>0) THEN
O2:                          E[I]=D[I]*C
O3:                          F[I]=E[I]*A[I-1]
O4:                          G[I]=F[I]+5
O6:                          A[I]=G[I]*J[I]
                         ELSE
O2,O6,O5":                   E[I]=D[I]*C; A[I]=G[I]*JR; J[I]=JR
                         ENDIF
                     ENDIF
                 ENDDO
                 Postloop

Figure 3: Transformed loop from Figure 1, with operations moved across the boundaries of the initial
iteration. Operation O3[-1] is the instance of the operation O3 from the previous iteration

We will describe later the technique that has produced this schedule. Here we just want to draw
the reader's attention to the occurrence of several instances of the same operation 3 from two adjacent
iterations in a single new iteration of the transformed loop. The instance from the previous iteration is
indexed with [-1]. Thus, there is a set of conditions from two adjacent iterations that dictates the
execution of the transformed iteration. The set increases the number of basic blocks in the transformed
iteration.

To conclude, the problem of loop parallelization is to find out a technique for applying movements
of operations across initial iteration boundaries, in order to achieve a transformed loop with IIs as short
as possible.

2.2 Conditions and Assumptions

We impose the following conditions:
1. We will perform the problem analysis in the context of software pipelining. Software pipelining

[9, 11] has proven to be an effective technique for optimizing loops in general. Informally, we define
software pipelining as a technique that performs movements of operations across boundaries of
iterations, while preserving periodicity of the loop body. The transformed loop consists of a preloop (or



prologue), that initializes the first p iterations, a transformed loop body, and a postloop (or epilogue),
that completes the last p iterations.

Several formal definitions of software pipelining were proposed by other authors. However, we
cannot accept the definition in [9] because it is too broad and allows even DOALL loops, with all
iterations of the initial loop executed simultaneously, to be considered as pipelined. Furthermore, a
definition which would require that only one instance of each operation exists in the transformed
iteration is not appropriate, because in loops with conditional branches, as outlined in the previous
subsection, the existence of several instances in one iteration may be useful. Finally, we find that the only
common property of all existing software pipelining techniques, which allows existence of several
instances of an operation in one iteration, is the property of preserving the number of executed
iterations. More formally, we define a necessary condition for software pipelining in the following way:
A transformed loop P' is achieved by software pipelining from the initial loop P only if for any execution
I of P with a sufficiently large number n of iterations, and the semantically equivalent execution I' of P'
with n' iterations is: n = n' + p, where p is the number of iterations initialized by the preloop, and
completed by the postloop, and is independent on n.

2. We will search for code transformations that produce a variable II. The inherent property of
loops with conditional branches is a variable latency of their iterations due to various outcomes of the
conditions. We try to exploit this property, so we allow a variable II, which means that the execution
time of an iteration of the transformed loop can last differently, depending on outcomes of the
conditions.

We are introducing the following assumptions in order to make our conclusions architecture-
independent:

(a) The input to our analysis is a loop body represented by the data dependency graph (DDG) of
the intermediate code [1]. We assume that all dependencies have been detected, their iteration distances
are known, and that the latency of the operations is deterministic.

(b) We assume that all usual transformations such as renaming (anti- and output dependencies
elimination) and induction variable elimination [1, 5] have already been done, and we do not take them
into account.

(c) We neglect the loop-overhead operations that increment the loop index variable and test the
loop exit condition. These operations can be attached to the transformed loop body afterwards.
Incrementing the loop-index variable is usually a data independent operation, so it can be attached
anywhere in the transformed body, while all references to it (in vector indices) can be adjusted according
to their new position relative to this operation.

(d) The problem of the preloop and postloop generation is beyond the scope of this paper, because
we concentrate on the loop body only.

(e) We neglect resource constraints, assuming sufficient hardware parallelism.
(f) When vector operations are treated, we assume that there is a kind of indirect addressing

supported by the machine. Moving such an operation in an adjacent iteration does not cause any
additional overhead. For instance, if the operation a[i]=... is moved to the previous iteration, it
becomes a[i+1]=... . As the access to the vector a can be performed via an index register, there is
no additional operation for computing i+1. (Note that this does not mean the operation itself does not
imply latency, but only that its movement does not add any extra latency.)



3 Inherent Properties of the Loops

Every specific execution of a loop with conditional branches is characterized by the number of iterations,
and the outcomes of the branches (conditions) during the execution. It can be described with the DDG
that incorporates all operations that have been executed according to the outcomes of the conditions,
and dependencies between them. This graph has its critical path(s), and this path dictates the shortest
possible execution time, again for that specific execution.

The heart of our problem is that the described DDG alters its shape from one loop execution to
another, due to various outcomes of conditions. In some boundary cases, the DDG of a loop can have a
shape of a graph of a DOALL loop, with all iterations being independent. For some other executions of
the same loop, the graph can turn into a chain of dependencies of a DOACROSS loop, with little or no
opportunities for parallelization. Since we cannot predict in advance the outcomes of the branches, we
cannot adjust the target code to every single execution. All we can do is produce a code that is "near-
optimal." We continue our analysis by observing the effects that outcomes of the conditions produce on
the DDG of the loop.

Our analysis suggests separating the meanings of a conditional operation (or condition for short)
and an outcome of the condition. An outcome of a condition is a Boolean value that actually affects the
shape of the DDG. It is an abstract term that we will also refer to as a predicate. A conditional operation
is an operation that performs some computation, thus occupying some resources, and determines the
actual value of the predicate. This operation is connected with other operations by data dependencies.
This is a physical term, and can be treated as any other operation. Such a separation provides a better
focus on the problem of defining the schedule of an iteration, determined by a combination of predicates.

We first have to decouple these two entities and adjust our code according to various values of the
predicates. As a result of this adjustment, which incorporates operation movements guarded by the
values of the predicates, we get some predicated code, like in the if-conversion [4, 29], but without
introducing unnecessary data dependencies from control dependencies. Some operations are executed
only if a certain predicate has a certain value. Finally, we recouple the two entities by observing at what
time a predicate is actually computed (where its own conditional operation was scheduled).

Two cases can occur then. First, the conditional operation can be computed before the moment its
predicate is used for the first time, perhaps several iterations away. This case suggests the recording of
the outcomes of several conditional operation instances from previous iterations. This feature can be
implemented in hardware, as in Cydra 5 [18]. Second, the outcome can be used before its conditional
operation has been computed. For example, one operation can be control-dependent on a predicate, and
scheduled before the conditional operation that defines that predicate. This is the occurrence of
speculative execution, which again can (but need not) be supported by hardware [21].

4 Sources of Parallelism Specific for Loops with Conditional Branches

This section summarizes some of the effects of outcomes on a loop DDG. These effects represent
important sources of parallelism that every ambitious loop parallelization technique must exploit.

4.1 Disappearance of operations

As a result of different outcomes of the conditions, some operations in the DDG of the unrolled loop
that are control dependent upon the conditions do not exist. Consequently, the data dependency edges
that come into or go out from them do not exist. This is the primary effect of changing the shape of the
DDG that opens possibilities for parallelization. For example, consider the loop DDG in Figure 4.



Control dependencies are represented by thick edges, with True denoted by the bold edge, and False by
the hollow one. Data dependencies are marked with operation latencies expressed in clock cycles.
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Figure 4: DDG of a loop iteration. Dotted lines represent the iteration boundaries

If the outcome is True, the operation 4 is executed, and the operation 5 does not exist. There is a
dependency chain 6-1-2-3-4-6 that limits the latency of an iteration to at least 8 cycles. If the outcome is
False, the operation 4 does not exist, and the operation 3 becomes "bottom-free." There is a dependency
chain 6-5-6 of 3 cycles. As we will see later, if we allow speculative execution, this disappearance of the
operation 4 allows execution of this iteration in 3 cycles. Therefore, we may conclude:

One effect of conditional operations and a source of parallelism is the "disappearance" of some
operations from the DDG, as a consequence of their different outcomes.

4.2 Variable iteration distance

The second important effect is a variable iteration distance. Consider the loop in Figure 5.

     LOOP
          ...
          IF (Test) THEN
1:           X=...
          ENDIF
2:        ...=f(X)
          ...
     ENDLOOP

Figure 5: An example of a variable iteration distance

In this example, the operation 2 depends on the operation 1 from the same iteration, if the
condition Test is true. Otherwise, the operation 2 depends on the operation 1 from the previous
iteration, if Test from that iteration was true, etc. As a result, there is a dependence of a variable
iteration distance from the operation 1 to the operation 2, which can have all values starting from 0.

Figure 6a depicts the DDG of four adjacent iterations with the outcome True in the first, and
False in the others. Figure 6b shows the same effect, but with a set of potential dependencies pointing to
the operation 2, where only that one from the last executed operation 1 exists.
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Figure 6: Variable iteration distance. Dotted lines represent iteration boundaries

This effect enables the later instances of the operation 2 to be moved upwards into the previous
iterations (Figure 6a), while "stretching" the dependency edges that start from the moved operation 2.
This stretching "spreads" the execution of the moved operation 2 over several iterations, causing shorter
latencies of these subsequent iterations. (Moving later instances of the operation 2 upwards causes
replication of instances of this operation in earlier iterations.)

Here we have the combined predicates that control the moved up operation, e.g. op2[2]: it is to be
moved up only if op1[0]=True and op1[1]=False and op1[2]=False. Besides, if these conditional
operations may be moved upwards and executed early enough, these predicates will be known when op2
is to be executed. Otherwise, we may execute the future instances of the operation 2 speculatively.

This is another source of parallelism. We therefore conclude:

Another effect of control dependencies is that under some conditions certain iteration distances
of data dependencies are increased. This allows moving some operations upwards into previous
iterations, while increasing the iteration distances of the dependencies that go out from these
operations.

4.3 Replication of operation instances

Let us go back to the example in Figure 4. If the outcome is False, the operation 4 does not exist, and
the operation 3 becomes bottom-free, so it can be moved downwards into the next iteration. However,
there is a chain 6-5-6 that requires at least 3 cycles for the iteration. Consequently, the chain 1-2-3
should be adjusted to this latency of 3 cycles, to prevent an increase in the latency of the iteration. This
can be done by moving the operation 3 into the next iteration, as in Figure 7a. This movement of the
operation 3 does not affect the latency of the next iteration, since it also lasts for at least 3 cycles.
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Figure 7: Operation movement

We may conclude that the operation 3 is moved into the next iteration only if the outcome is
False. Thus, the operation 3 from the considered iteration exists in this iteration under the condition
True, as shown in Figure 7a. Otherwise, this operation exists in the next iteration, as an instance of the
operation 3 from the previous iteration, denoted with 3[-1]. Figure 7b shows the net effect of the
described movement on the code of a single iteration. Since software pipelining must produce a
"periodic" code, every single iteration can have the instance 3[-1] controlled by the instance
IF[-1] = False, and the instance 3[0] controlled by IF[0] = True. This is the graph of the example in
Section 2, Figure 1, and the way we can achieve II of 8, or 3 cycles, as in Figure 3.

Two things can be noticed. First, each iteration can have from zero to two instances of the same
operation 3, controlled by different instances of the same condition. The combination of their outcomes
determines the actual number of the instances of the operation 3. Second, we can see that an instance
can depend on an outcome of a condition from previous iteration, which raises the need for recording
the outcomes from previous iterations. We may conclude:

In order to achieve parallelism, one iteration might have several instances of the same operation
from different iterations, which are control-dependent on different instances (predicates) of the same
or different conditional operations. All, some, or none of the operation instances can be executed,
depending on the combinations of the outcomes.

4.4 Interference of conditions

The described effects point out that there is a significant interference of outcomes from different
iterations. At the first sight, it seems that different conditional operations from the same iteration, or
adjacent iterations, have the major impact. This is not always the case. Consider the example of a loop
whose cyclic DDG is depicted in Figure 8. Dependencies are marked with the pairs (latency, iteration
distance). Only predicates are shown.
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Figure 8: Cyclic DDG of a loop with a condition

Since the iteration distance of the edge 2-3 is 2, there is an important interference between the
outcomes from iterations at that distance. Let the outcome of IF from the iteration i+k be denoted by
p[k], where i is the considered iteration connected with the operation 3. The operation op from iteration
i+k is denoted similarly: op[k]. There are four cases:

a) p[0]=F, p[-2]=F; the graph becomes the chain 4-1-2, because 3[0] does not exist;
b) p[0]=F, p[-2]=T; the graph becomes the chain 4-1, because 3[0] and 2[-2] do not exist;
c) p[0]=T, p[-2]=F; the graph is as shown, because both 3[0] and 2[-2] exist;
d) p[0]=T, p[-2]=T; the graph becomes the cycle 4-1-3-4, because 2[-2] does not exist.
Finally, we conclude: There are important interferences between those outcomes that are at the

distance dictated by the data dependencies between the controlled operations, no matter whether these
are the outcomes of instances of the same or different conditional operations from different iterations.

This conclusion discourages every solution that is oriented towards loop unrolling, since loop
unrolling treats all instances of all conditions equally: a loop is unrolled n times, and all conditions are
represented with the same number n of instances.

5 Conclusion

We have provided a brief analysis of the problem of parallelizing loops with conditional branches in the
context of software pipelining. Several important sources of parallelism have been identified. One of the
most important is the need to allow several instances of the same operation from different initial
iterations to exist in one transformed iteration. These instances are control-dependent on different
instances of predicates. These conclusions have guided to the definitions of the Predicated Software
Pipelining (PSP) loop execution model [13], the PSP scheduling technique [14], and the PSP
intermediate representation and code generation algorithm [15].
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