
1

On the Semantics of Associations and

Association Ends in UML

Dragan Milicev

University of Belgrade
School of Electrical Engineering, Department of Computer Science

P.O. Box 35-54, 11120 Belgrade, Serbia, Yugoslavia
dmilicev@etf.bg.ac.yu

Abstract

Association is one of the key concepts in UML that is intensively used in conceptual modeling.
Unfortunately, in spite of the fact that this concept is very old and is inherited from other successful
modeling techniques, a fully unambiguous understanding of it, especially in correlation with other
newer concepts connected with association ends, such as uniqueness, still does not exist. This paper
describes a problem with one widely assumed interpretation of the uniqueness of association ends – the
restrictive interpretation, and proposes an alternative – the intentional interpretation. Instead of
restricting the association from having duplicate links, uniqueness of an association end in the
intentional interpretation modifies the way in which the association end maps an object of the opposite
class to a collection of objects of the class at that association end. If the association end is unique, the
collection is a set obtained by projecting the collection of all linked objects. In that sense, the
uniqueness of an association end modifies the view to the objects at that end, but does not constrain the
underlying object structure. The paper demonstrates how intentional interpretation improves
expressiveness of the modeling language and has some other interesting advantages. Finally, the paper
gives a completely formal definition of the concepts of association and association ends, along with the
related notions of uniqueness, ordering, and multiplicity. The semantics of the UML actions on
associations are also defined formally.

Keywords

Object-oriented modeling, Unified Modeling Language (UML), association, association end, formal
semantics, conceptual modeling, model-driven development

1 INTRODUCTION

For about a decade, the Unified Modeling Language (UML) has been widely recognized as a
standardized, general-purpose, object-oriented language for specifying, visualizing, constructing, and
documenting software systems [2]. Its applicability to different domains of software applications, as
well as its expressiveness and richness of classical and novel object-oriented concepts, have
significantly contributed to its wide adoption in industry and in academy.

UML, in particular, its parts aimed at structural modeling, have been especially intensively used
for conceptual modeling, most notably in business and database applications. This fact is not surprising
when it is noticed that the central language constructs used for conceptual modeling in UML – class,
attribute, association, and generalization/specialization – have been basically inherited from much older
modeling techniques, such as Entity-Relationship modeling [4] or Object Modeling Technique [13],
which have been also extensively and successfully used for conceptual modeling for a long time.

Although standardized in 1997 and widely used in practice ever since, UML's main drawback is
still the lack of a complete semantic formalization. Many concepts of UML, especially in its early

2

versions, have not had definitions precise enough to be interpreted unambiguously. In other words,
many parts of a syntactically correct UML model can still be interpreted in different ways by different
readers. This has been recognized as the main obstacle for UML to become a machine-interpretable,
i.e., executable language. Instead, UML served predominantly for recording ideas, sketches, and design
decisions in the early phases of software analysis and design.

The recent model-driven development (MDD) trends in software engineering [16, 15] have
dramatically increased the importance of formalizing the semantics of UML, as the key prerequisite for
its switch from a solely descriptive to an unambiguously interpretable and executable language. As a
result, the major revision of UML has emerged in its version 2.0 [10], making a significant step
towards precise semantics of concepts [14]. Much effort have been made to clarify the meaning of the
widely adopted concepts in the very UML 2.0 specification [10, 14], as well as in other attempts before
and around it [1, 3, 5, 6, 7, 8, 11, 12, 18].

Being one of the central structural concepts in UML, the concept of association is not an
exception to this rule. Since it has been derived from the very old and intuitive notion of a relationship
between entities in Entity-Relationship (ER) modeling [4], its basic meaning appears to be fairly clear,
at least in its intention. Essentially, an association is a structural relationship between classes, which
represents a set of links; links, as instances of association, are structural connections among objects, as
instances of classes. Put another way, while a class (or entity in ER) represents a set of objects as its
instances, an association (or relationship in ER) is a relationship among these sets; therefore, the object
structure in a running system can be represented with a graph, whereby nodes are objects (as instances
of classes) and edges are links (as instances of associations). The graph is typed, because its nodes
(objects) are typed by their classes, and its edges (links) are typed by their associations.

In UML, this essentially simple concept has been significantly enhanced to increase
expressiveness of the language. Unfortunately, these enhancements have introduced many new
ambiguities in the interpretation of the entire concept. This is why many attempts have aimed at
clarifying [5, 7, 18] and formalizing the semantics of associations [3, 6, 11, 12] and some of the related
concepts, like aggregation [1] and multiplicity [8]. However, many issues regarding the specification of
UML 2.0 [10] remain open, and many parts in the specification can still be interpreted in different
ways.

One of such issues is related with the notion of uniqueness of association ends [10]. This paper
demonstrates how it can be interpreted in a straightforward and apparently widely assumed way [9],
which, however, imposes unnecessarily strong restrictions in modeling and thus reduces expressiveness
of the language. The paper then proposes an alternative interpretation of this concept with relaxed
modeling rules. The proposed interpretation appears to be more expressive and better aligned to the
current definition of the action semantics in UML. The paper argues for these and some other
advantages of the proposed interpretation. As its second goal, the paper presents a completely formal
definition of the semantics of the concept of association, along with the accompanying concepts of
multiplicity, uniqueness, and ordering of the association ends, as well as the definition of the semantics
of UML actions in correlation with these concepts. The paper does this for a general case of N-ary
associations.

The rest of the paper is organized as follows. Section 2 describes the considered problem of
semantic interpretation of uniqueness of association ends and describes the straightforward
interpretation and its drawbacks, as the motivation for the alternative interpretation proposed in this
paper. Section 3 defines the proposed interpretation of associations (including association classes) and
their ends, along with multiplicity, uniqueness, and ordering of association ends. Section 3 presents the
arguments for accepting the proposed approach. Section 5 briefly summarizes the related work. The
paper ends with conclusions.

3

2 MOTIVATION

Person

*

employer
C om pany

*

employee employment

(a)

p1 : Person

c1 : Company

p2 : Person

p3 : Person

p4 : Person

c2 : Company

c3 : Company

(b)

X1

X2 ...

Xnassoc

px1

px2

pxn

(c)

Figure 1: A basic example of associations in UML: (a) a binary association employment, relating two
classes; (b) an object diagram depicting a sample object structure for the class model in figure (a); (c) a
general case of an N-ary association relating classes X1, X2, ..., Xn.

According to the UML 2.0 specification [10], "an association specifies a semantic relationship that can
occur between typed instances; it has at least two ends represented by properties, each of which is
connected to the type of the end; more than one end of the association may have the same type... An
association declares that there can be links between instances of the associated types. A link is a tuple
with one value for each end of the association, where each value is an instance of the type of the end"
([10], pp. 36-37). For example, the binary association (i.e., association with two ends) named
employment in Figure 1a defines a semantic relationship between the classes Person and Company,
describing a set of links that can connect instances of these classes, representing the conceptual fact
that a certain person (as an instance of Person) is an employee of a certain company (as an instance of
Company), which plays the role of the employer in this relationship. Figure 1b shows an object diagram
that represents a sample object structure with objects (depicted as rectangles) and links (depicted as
lines) connected according to this class model. In that structure, the object p1 of the class Person is
linked to the objects c1 and c2 of the class Company, meaning that p1 is employed by c1 and c2, etc. In

4

total, there are six links of the association employment, which are pairs of objects they relate: (p1, c1),
(p1, c2), (p2, c2), (p3, c1), (p3, c3), and (p4, c2). Deriving the set of companies in which a person p is
employed from these pairs is straightforward: select the objects of Company, i.e., the second
coordinates, of all those and only those pairs (links) that have p as the first coordinate. For example, p3
is employed by c1 and c3, p4 by c2, etc. The similar holds for the opposite direction.

Figure 1c shows a general case of an N-ary association having any finite number N>1 of ends.
In that case, every link has also N ends (it can be imagined as a "star" rather than a line), each of which
is connected to an object of the appropriate class.

The UML 2.0 specification then continues with the description of the modifiers of each end of
an association: "When one or more ends of the association have isUnique=false [are specified as
unique], it is possible to have several links associating the same set of instances. In such a case, links
carry an additional identifier apart from their end values. When one or more ends of the association are
ordered, links carry ordering information in addition to their end values. For an association with N
ends, choose any N-1 ends and associate specific instances with those ends. Then the collection1 of
links of the association that refer to these specific instances will identify a collection of instances at the
other end. The multiplicity of the association end constrains the size of this collection. If the end is
marked as ordered, this collection will be ordered. If the end is marked as unique, this collection is a
set; otherwise it allows duplicate elements" ([10], pg. 37).

A straightforward (and seemingly widely assumed) interpretation of this specification is the
following. If an association end, for example, the end employee in Figure 1a, is specified as unique,
then the collection of objects of the class Person to which an object of the class Company is linked by
links of the association employment must not contain duplicates, i.e., is a set. Since this collection is
obtained as the collection of the first coordinates of the existing links (p, c), where c is the considered
object of Company, there must not be two pairs (p1, c) and (p2, c) such that p1=p2; this must hold for
every c. Consequently, there must not be two equal links in the association, i.e., two pairs (or tuples in
a general case) having all the same values. In other words, if one end of an association is unique, the
association is a set, i.e., must not contain duplicate links. Then it simply follows that the other end is
also unique [9].

To sum up, this straightforward interpretation implies that the uniqueness of an association end
imposes a constraint to the association itself, because it prohibits having (creating) duplicate links of
the association. For that reason, we will refer to this semantic interpretation as the restrictive

interpretation. Its consequence is that an association should have all its ends of the same kind (unique
or non-unique), because there is senseless to have one unique and one non-unique end of the same
association [9]. We name this rule as the uniqueness symmetry (meta)constraint.2

The problems with the restrictive interpretation and its consequence – the uniqueness symmetry
meta-constraint – are manifold:

• The uniqueness symmetry meta-constraint does not exist in the UML 2.0 specification.
Consequently, a UML model with an association having both unique and non-unique ends is a

1 In UML, the term "collection" denotes a generalized concept of several specialized kinds of value

containers. When a collection is non-unique and unordered (default), it represents a multiset (a set that allows
multiple occurrences of the same value, with irrelevant ordering of its elements, i.e., a bag); when it is unique
and unordered, it represents a set (having no duplicates, with irrelevant ordering of elements); when it is non-

unique and ordered, it represents a sequence (an ordered multiset, i.e., a multiset with some ordering of
elements); finally, when it is unique and ordered, it represents an ordered set (a set without duplicates and with
some ordering of elements).

2 It is a meta-constraint, because it is a constraint imposed on the model, not on the object space. In other
words, it is a constraint within the UML meta-model.

5

legal model, at least according to that specification, although it is not meaningful according to
the restrictive interpretation.

• If the uniqueness symmetry meta-constraint were added to the UML 2.0 specification, it would
impose additional restriction to the modeling: asymmetric associations with regards of
uniqueness would become illegal.

• If the uniqueness symmetry meta-constraint were not added to the UML 2.0 specification, the
specification itself would remain contradictory in a very subtle detail. Namely, the specification
of the abstract meta-class StructuralFeatureAction ([10], pp. 305-306), which represents a
generalization of all actions on structural features of a class, says: "If the structural feature is an
association end, then actions on the feature have the same semantics as actions on the links that
have the feature as an end." For example, for the Add Structural Feature Value Action ([10], pp.
254-255), it is explained that "if the feature is an association end, the semantics are the same as
creating a link, the participants of which are the object owning the structural feature and the
new value." Therefore, adding an already existing value to a non-unique association end over
the Add Structural Feature Value Action should behave as if the feature were not an association
end; that is, the value should be added to the feature as a duplicate. However, if the opposite
association end is unique, such action would add an already existing link and thus violate the
uniqueness of that end.

• Since at least one unique association end implies uniqueness of the entire association, the
uniqueness meta-property is conceptually more appropriate for the association, not for every of
its ends.

• As it will be demonstrated soon, the uniqueness symmetry meta-constraint reduces
expressiveness of the modeling language.
Fortunately, there is a solution to all these problems, because another semantic interpretation

exists and is proposed in this paper. It fits completely in the current UML 2.0 specification, yet
overcomes the listed deficiencies (unfortunately, this implies that the specification is ambiguous). The
alternative interpretation does not make any difference in specifying what kind of collection is obtained
for a considered association end by choosing some objects for the other ends and finding all links that
have these objects as the corresponding values: if the considered end is unique, the collection is a set,
otherwise it is a bag. Instead, the proposed interpretation treats differently how that collection is
obtained from the links of the association. In that interpretation, the uniqueness of an association end is
not a constraint on the association, but is construed as an intention of the modeler that designates how
the collection at that end should be derived from the links. This is why we refer to this interpretation as
the intentional interpretation.

6

Node
*

{unique, unordered}

edge
Edge

2
{nonunique, unordered}

node

(a)

n1 n2

n3

e2

e4

e3
e1

(b)

n1 : Node n2 : Node

n3 : Node

e1 : Edge

e2 : Edge

e3 : Edge

e4 : Edge

(c)

Figure 2: An example of asymmetric association with regard of uniqueness: modeling a multigraph of
nodes and edges. (a) The UML class model. (b) An example of a multigraph with three nodes (n1 to n3)
and four edges (e1 to e4). (c) The UML object diagram rendering the object structure that corresponds to
the graph example in (b) and the class model in (a); all links are of the same association.

The idea of the intentional interpretation is illustrated in Figure 2, using an example of
modeling graphs with multiple edges allowed between nodes (i.e., multigraphs). Figure 2a depicts the
UML class model that conceptualizes the notion of a multigraph. Two classes, Node and Edge are
related with an association the links of which anchor edges of a graph to their nodes. Since an edge is
anchored to nodes at exactly two its ends, but can be anchored to the same node at both ends, as shown

7

in Figure 2b, the association end node in Figure 1a is specified as non-unique (allows duplicates) and
has the multiplicity of exactly two.

It is obvious then that the UML model in this case should allow multiple links between the
same two objects. Figure 2b shows an example of a graph with three nodes (n1 to n3) and four edges
(e1 to e4), while Figure 2c depicts the UML object diagram representing the object structure that
corresponds to the graph example in Figure 2b and the class model in Figure 2a. The edge e1 is
anchored to the node n1 at both its ends. This is why there are two links between n1 and e1, i.e., two
occurrences of the pair (n1, e1). Consequently, the association is a bag (multi-set) of links, not a set.

Using the Z notation [17] for bags (elements enclosed with | ~), the association is the bag:

|(n1, e1), (n1, e1), (n1, e2), (n2, e2), (n2, e3), (n2, e4), (n3, e3), (n3, e4)~

On the other side, the association end edge is specified as unique. Opposed to the restrictive
interpretation, this does not restrict the existence of multiple occurrences of the same pair in the
association, but determines how the set of objects of Edge to which the association end edge results for
a certain object n of Node is obtained: it is obtained by projecting (or collapsing) the collection of all
second coordinates e of the links (n, e) of the association to a set by removing duplicates. Using the dot
notation for this collection, where e.g. n1.edge is the set of objects of Edge to which the end edge for
n1 results, it follows:
n1.edge = {e1,e2} – the set of es from all pairs (n, e) where n = n1 (duplicates removed);
n2.edge = {e2,e3,e4} – the set of es from all pairs (n, e) where n = n2 (duplicates removed);
n3.edge = {e3,e4} – the set of es from all pairs (n, e) where n = n3 (duplicates removed).

The opposite association end results in non-unique collections, i.e., bags (multi-sets), and are:
e1.node = |n1,n1~ – the collection (bag) of all occurrences of n in pairs (n, e) where e = e1;
e2.node = |n1,n2~ – the collection (bag) of all occurrences of n in pairs (n, e) where e = e2;
e3.node = |n2,n3~ – the collection (bag) of all occurrences of n in pairs (n, e) where e = e3;
e4.node = |n2,n3~ – the collection (bag) of all occurrences of n in pairs (n, e) where e = e4.

It should be noted that the mentioned resulting collections (denoted with n.edge and e.node)
can be obtained only by the appropriate actions that read links (Read Link Action or Read Structural
Feature Action [10]) – any access to the underlying object structure is performed through UML actions.
In other words, the only manifestation of the considered semantics of association and association ends
are the effects of actions upon associations. Therefore, the proposed intentional interpretation affects
actually the semantics of actions upon associations, not the very concept of association. Conceptually,
the uniqueness of the association end edge affects the semantics of the Read Link Action or Read
Structural Feature Action (denoted here with n.edge) so that these actions return "the set of all
(distinct) edges coinciding with the given node n." For the opposite non-unique end node, these actions
return "the collection of (all occurrences of) nodes to which the given edge e is anchored;" the
multiplicity constraint 2 at that end constrains the size of that collection to exactly two.

8

R oute
*

{nonunique, ordered}

city
C ity

*
{unique, unordered}

route

(a)

C ontainer
*

{nonunique, unordered}

element
Object

0..1
{unique, unordered}

container

(b)

Figure 3: More examples of asymmetric uniqueness of association ends. (a) A Route for tourists is an
ordered sequence of visited Cities, possibly visiting the same city several times. (b) A generic case of a
Container that can contain a collection of Objects, possibly containing the same Object more than once,
while an Object can be contained by at most one Container.

Another example is shown in Figure 3a. A Route for tourists is defined by an ordered sequence
of the Cities it visits, possibly visiting the same city more than once. This is why the association end
city is non-unique and ordered. The opposite association end route is marked as unique,
conceptualizing the fact that c.route for a city c results in the set of (different) routes that visit the
given city c. For example, if the route "Balkans Tour" visits the cities: Belgrade, Sarajevo, Athens,
Rhodes, Istanbul, Sofia, Bucharest, and Belgrade in that order, while the route "Eastern Europe Tour"
visits the cities: Prague, Budapest, Belgrade, Bucharest, Warsaw, and Moscow in that order, than the
set of routes that visit Belgrade has two elements (these two routes) and is obtained by b.route, where
b denotes Belgrade as an object of City.

Our final example in Figure 3b demonstrates a more serious expressiveness deficiency of the
restrictive interpretation, while the intentional interpretation provides a simple solution. As the example
is a generic one, having many concrete manifestations in specific domains, it demonstrates how the
intentional interpretation ensures stronger expressiveness of the modeling language. In this generic
case, a Container can contain a collection of Objects as its elements, possibly containing the same
Object more than once, while an Object can be contained by at most one Container. Assuming the
intentional interpretation, since the association end container is designated as unique, the upper
multiplicity bound equal to one constrains the number of elements in the set of (distinct) Containers
that contain a certain Object. The opposite end element is designated as non-unique and thus allows
multiple occurrences of the same Object as elements of the Container. Note how the same example
would behave if the restrictive interpretation were assumed: as the element end must be non-unique, the
opposite end container should also be non-unique; however, the number of elements in the collection
obj.container for a certain Object obj would then depend on the number of occurrences of that very
Object in the Container, and would not allow limiting that number to one. Letting the upper multiplicity
bound of that end be unlimited, however, would allow erroneous structures in which the same Object is
an element of more than one different Container. A separate user-defined constraint must be specified
to resolve this problem then.

The previous example illustrates one general deficiency of the restrictive interpretation. In any
case when an association end a must be non-unique due to some domain-specific reasons, but the
multiplicity constraint at the opposite end b should limit the number of different objects to which an
object of the class at the side a can be related, the restrictive interpretation fails. For the example in
Figure 3b, if the number of different Routes by which a City can be visited should be limited by any
reason whatsoever, e.g., to at most one or to a certain number, but the same City can still be re-visited
by the same Route a finite but unlimited number o times, the restrictive interpretation cannot provide a
direct solution. Moreover, all three given examples are rather generic and can be specialized in many
different domain-specific and isomorphic cases. For example, any specific conceptual domain that can

9

be modeled with a multigraph shown in Figure 2 or with the Container-Object pattern shown in Figure
3b, may raise the same issues discussed here. This concludes our motivation for adopting and
formalizing the proposed intentional interpretation.

3 SEMANTICS

X Y
px pyassxy

Figure 4: Sample model for describing the semantics of binary associations and association ends.

This section presents an informal, yet precise and unambiguous explanation of the semantics of
association and association ends, along with the related concepts of multiplicity, ordering, and
association classes. Fully formal definitions in the Z language [17] are given in the Appendix. For the
sake of simplicity of explanations, only binary associations will be considered in this section. The
generalization for N-ary associations is straightforward and is given in the Appendix.

The explanations will be based on a generic association assxy between classes X and Y shown
in Figure 4. It is assumed that the association end px is the first, and the association end py is the
second in the order of ends of the association assxy (association ends are ordered within an association
and the small filled triangle in diagrams points to the last end in the order). In these discussions, it is
irrelevant whether an association end belongs to the opposite class or to the association [10] – the only
difference is in whether the opposite class does or does not have the corresponding feature. The basic
semantics of association and its ends is independent of this aspect.

Associations and Association Ends

An association describes a collection of links, whereby a link is an ordered pair the values of which
refer to objects. For the considered sample model in Figure 4, the association assxy describes a
collection of links in the form (x,y), whereby x is an object of X and y is an object of Y. This collection
is not a set, i.e., it allows duplicates of pairs. Besides, it is never ordered; consequently, an association
is a bag. For example, if the subscripts of x and y indicate different objects of X and Y, respectively, at a
certain point t1 in time, the association assxy may be the following collection (the ordering of the pairs
in the collection is not relevant):

assxyt1 = |(x1,y1), (x1,y2), (x1,y3), (x2,y1), (x2,y3), (x2,y1), (x3,y2)~

Just for the purpose of referencing, the collections will be denoted with assxyti, with the meaning "the
collection denoted with assxy at the time ti."

The Create Link action executed for this association simply adds a new pair to this collection.
For example, if a Create Link action with the parameters (x1,y2) is applied twice to this association
assxyt1, the collection becomes:

assxyt2 =|(x1,y1), (x1,y2), (x1,y3), (x2,y1), (x2,y3), (x2,y1), (x3,y2), (x1,y2), (x1,y2)~

An association end defines a mapping of each object of the class at the opposite end to a
collection of objects of the class at that end. If that association end is non-unique, that collection
represents the corresponding values from all those and only those pairs from the association that have

10

the given object as the corresponding coordinate.3 For the given example, supposing that py is non-
unique, for an object x of X, the mapping py(x) is derived from the association to represent the
collection of the second coordinates y of all those and only those pairs from assxy that have x as the
first coordinate. The similar holds for non-unique px. Therefore, at the time t1 (the ordering of
collection elements is irrelevant):

py(x1)t1 = |y1,y2,y3~

py(x2)t1 = |y1,y3,y1~

py(x3)t1 = |y2~

px(y1)t1 = |x1,x2,x2~

px(y2)t1 = |x1,x3~

px(y3)t1 = |x1,x2~

Similarly, at the time t2 (the ordering of collection elements is irrelevant):

py(x1)t2 = |y1,y2,y3,y2,y2~

py(x2)t2 = |y1,y3,y1~

py(x3)t2 = |y2~

px(y1)t2 = |x1,x2,x2~

px(y2)t2 = |x1,x3,x1,x1~

px(y3)t2 = |x1,x2~

Note that if an association end belongs to the opposite class as its feature, it still represents the
same collection defined by the association end and thus has the same semantics. For example, if py
belongs to X, then x.py at a certain time represents the same collection defined by the mapping py(x)
at that time:4

x1.pyt1 = py(x1)t1 = |y1,y2,y3~

x2.pyt1 = py(x2)t1 = |y1,y3,y1~

x3.pyt1 = py(x3)t1 = |y2~

The Destroy Link action specifies a link, i.e., a pair of values to be removed from the
association. For each of the non-unique association ends of the association, it can be specified whether
all values from the collection defined by that end should be removed (according to the value of the
isRemoveDuplicates meta-attribute of the Remove Structural Feature Value Action [10], pp. 297-298).
Let us use the symbol ∀ as a prefix of a value in a pair to indicate that all pairs having that value at that
coordinate should be removed; if this symbol is missing, only one such pair should be removed. For
example:

• DestroyLink(assxy,(x1,y2)) means "remove one pair (x1,y2) from assxy."

3 Strictly speaking, this mapping is the definition of the semantics of the Read Link Action and Read

Structural Feature Action applied to the association end as a property of the class, as already discussed, because
the effect of the actions is the only manifestation of an association end's semantics.

4 This observation actually means that the semantics of the Read Link Action and Read Structural
Feature Action applied to the association end as a property of the class are the same.

11

• DestroyLink(assxy,(∀x1,y2)) means "remove those and only those pairs (x1,y2) from
assxy, such that px(y2) does not contain x1 any more;" it is easy to see that this means "remove
all pairs (x1,y2) from assxy."

• DestroyLink(assxy,(x1,∀y2)) means "remove those and only those pairs (x1,y2) from
assxy, such that py(x1) does not contain y2 any more;" it is easy to see that this means "remove
all pairs (x1,y2) from assxy." Consequently, DestroyLink(assxy,(∀x1,y2)),
DestroyLink(assxy,(x1,∀y2)), and DestroyLink(assxy,(∀x1,∀y2)) are all equivalent.
If an association end is designated as unique, then for each object of the opposite class, it

defines a sub-collection of the entire collection of coordinates, such that the duplicate values are
reduced to a single one; in other words, it is a projection of the entire collection to a set. For the
considered example, if py is unique, then:
py(x1)t1 = {y1,y2,y3}

py(x2)t1 = {y1,y3}

py(x3)t1 = {y2}

py(x1)t2 = {y1,y2,y3}

py(x2)t2 = {y1,y3}

py(x3)t2 = {y2}

Similarly, if px is unique, then:
px(y1)t1 = {x1,x2}

px(y2)t1 = {x1,x3}

px(y3)t1 = {x1,x2}

px(y1)t2 = {x1,x2}

px(y2)t2 = {x1,x3}

px(y3)t2 = {x1,x2}

As it can be noticed, uniqueness is not a characteristic of the association, but of its end(s).
Uniqueness defines the way the collection of ordered pairs that constitute the association is projected
on its end for each object of the opposite class. If the end is non-unique, the projection is one-to-one
correspondent to the original; otherwise, the projection defines a sub-collection.

If an association end is unique, the Destroy Link action always removes the given value from
the collection of that end totally. Precisely, if py is unique, then DestroyLink(assxy,(x,y)) means
"remove those and only those pairs (x,y) from assxy, such that py(x) does not contain y any more;"
as already shown, this simply means "remove all pairs (x,y) from assxy," denoted as
DestroyLink(assxy,(∀x,∀y)).

It is interesting to note that association ends (or more precisely, the actions upon them), as
projections of their association, are the only possibility to view the association, i.e., the only
manifestation of links, because there are actions in UML that read the collections defined by the
association ends, but not by the association per se. The collection of the association can be just inferred
from its projections, not explicitly retrieved. There is no action in UML that would return the entire
collection assxy, but only the action(s) that would return the collections py(x) or px(y) – these are
Read Link Action and Read Structural Feature Action.

As an interesting implication of such semantics, an association with both its ends specified as
unique actually behaves like a set. Really, since both ends are unique, adding a new pair (x,y) that
already exists in the association does not affect the collections of any of its ends, i.e., does not affect
the association's projections. The Destroy Link action, as described, has always the semantics of
removing all pairs with the given values (x,y) from the association. Since the collections of the ends,
as projections of the association, are the only available views to the association, exactly the same
projections would be obtained by treating the association as a set of pairs (without duplicates) instead
of as a bag (allowing duplicates) with the described semantics of actions. For example, if the
association assxy is at a certain moment in time:

12

|(x1,y1), (x1,y2), (x1,y3), (x2,y1), (x2,y3), (x3,y2)~

and CreateLink(x1,y2) is executed, then the association becomes, if it is treated as a bag:

|(x1,y1), (x1,y2), (x1,y3), (x2,y1), (x2,y3), (x3,y2), (x1,y2)~

or remains the same, if it is treated as a set:

|(x1,y1), (x1,y2), (x1,y3), (x2,y1), (x2,y3), (x3,y2)~

The DestroyLink(x1,y2) action has the same effect on both of these and produces the following:

|(x1,y1), (x1,y3), (x2,y1), (x2,y3), (x3,y2)~

As it can be concluded, if (and only if) all ends of an association are unique, then the
association itself is a set, meaning that it does not have duplicate tuples. It is important to emphasize
that this conclusion does not have any implications on the outwardly visible behavior and interpretation
of associations and their ends, but is just important for an implementation. Namely, an implementation
may rely on this conclusion to make the storage and manipulation of associations with all unique ends,
which are most frequent in practice, more efficient than of other associations.

Just as another illustration, let us suppose that the association end py is unique, while the end px
is non-unique. If the association assxy at a certain time is:

assxyt2 =|(x1,y1), (x1,y2), (x1,y3), (x2,y1), (x2,y3), (x2,y1), (x3,y2), (x1,y2), (x1,y2)~

then the association ends define the following projections:
py(x1)t2 = {y1,y2,y3}

py(x2)t2 = {y1,y3}

py(x3)t2 = {y2}

px(y1)t2 = |x1,x2,x2~

px(y2)t2 = |x1,x3,x1,x1~

px(y3)t2 = |x1,x2~

Multiplicity

The multiplicity of an association end is an implicit constraint attached to that end, which constrains
the cardinality of (i.e., the number of elements in) every collection specified by that end. Therefore, the
multiplicity is not a constraint on the very association, but on the cardinality of its projections only. For
example, let assxy at the time t2 be:

assxyt2 =|(x1,y1), (x1,y2), (x1,y3), (x2,y1), (x2,y3), (x2,y1), (x3,y2), (x1,y2), (x1,y2)~

If the association end py is non-unique, then the cardinalities of collections (denoted here with #) are:
#(py(x1))t2 = 5

#(py(x2))t2 = 3

#(py(x3))t2 = 1

If the association end py is unique, then the cardinalities are:
#(py(x1))t2 = 3

#(py(x2))t2 = 2

#(py(x3))t2 = 1

13

Ordering

Ordering is yet another characteristic of the association end, and not of the association itself. Ordering
of the association end py means that for each x of X, py(x) is an ordered collection, i.e., a sequence.
More formally, there is a one-to-one mapping from py(x) to a range of successive positive integer
numbers 1..n, where n = #(py(x)); the integer assigned to a collection element will be referred to as its
index. From now on, if an association end is ordered, we will consider that the elements of its
collection are written in that order and enclosed in symbols � �, and thus the indices are implied from
the position of the element in the sequence. The question now is how ordering works with Create Link
and Destroy Link actions that affect the entire association.

Let us first consider a non-unique ordered association end py. Since py(x) has all those and
only those values y for which there is a pair (x,y) in assxy, an index can be assigned to the y
coordinate of every pair in assxy. The index will be shown in square brackets aside the value in a pair.
For example, let assxy at the time t2 be:

assxyt2 = |(x1,y1[4]), (x1,y2[1]), (x1,y3[2]), (x2,y1[2]), (x2,y3[3]), (x2,y1[1]),

 (x3,y2[1]), (x1,y2[5]), (x1,y2[3])~

The non-unique ordered collections of py would be (in order):
py(x1)t2 = �y2,y3,y2,y1,y2�
py(x2)t2 = �y1,y1,y3�
py(x3)t2 = �y2�

If the other end px is also non-unique and ordered, then the first coordinates x of the pairs from
the association also have their indices, completely independent of the indices of the values y. For
example, let assxy at the time t2 be:

assxyt2 = |(x1[3],y1[4]), (x1[2],y2[1]), (x1[1],y3[2]), (x2[2],y1[2]), (x2[2],y3[3]),

 (x2[1],y1[1]), (x3[1],y2[1]), (x1[3],y2[5]), (x1[4],y2[3])~

The non-unique ordered collections of py would be the same as above, while the non-unique ordered
collections of px would be (in order):
px(y1)t2 = �x2,x2,x1�
px(y2)t2 = �x3,x1,x1,x1�
px(y3)t2 = �x1,x2�

It is clear that ordering is not a characteristic of the association by any means: the indices of the
two values in a pair are independent, as well as the indices of the values having different opposite
coordinates (e.g., indices of xs for two different ys). Therefore, an association cannot be treated as
ordered, even when both its ends are ordered.

If an association end is ordered, the Create Link action must specify the index that defines the
position at which the value will be inserted in the corresponding projection. When the pair is added to
the association, the indices of the values from the same projection are adjusted accordingly, so that the
new value is inserted at the given position. For the last example, when both ends px and py are ordered,
a Create Link action must specify indices for both coordinates. For the last given assxyt2 at the time t2,
after the execution of the action CreateLink(assxy,(x3[1],y3[2])), the association will look like
follows:

assxyt3 = |(x1[3],y1[4]), (x1[2],y2[1]), (x1[2],y3[2]), (x2[2],y1[2]), (x2[3],y3[3]),

 (x2[1],y1[1]), (x3[1],y2[1]), (x1[3],y2[5]), (x1[4],y2[3]), (x3[1],y3[2])~

while the ordered projections to the ends become:

14

py(x1)t3 = �y2,y3,y2,y1,y2�
py(x2)t3 = �y1,y1,y3�
py(x3)t3 = �y2,y3�

px(y1)t3 = �x2,x2,x1�
px(y2)t3 = �x3,x1,x1,x1�
px(y3)t3 = �x3,x1,x2�
Therefore, the command CreateLink(assxy,(x3[1],y3[2])) simply means "add the pair
(x3[1],y3[2]) to the association assxy," and has the effect that y3 is added to py(x3) at the position 2,
and x3 is added to px(y3) at the position 1, while x1 and x2 are moved one place forward in px(y3)
therefore.

When an association end is non-unique and ordered, the Destroy Link action must also specify
the index for that association end in order to unambiguously determine which pair will be removed
from the association. For the last given assxyt3 at the time t3, after the execution of the action
DestroyLink(assxy,(x3[1],y3[2])), the association will look exactly as it was before the same link
was created:

assxyt4 = |(x1[3],y1[4]), (x1[2],y2[1]), (x1[1],y3[2]), (x2[2],y1[2]), (x2[2],y3[3]),

 (x2[1],y1[1]), (x3[1],y2[1]), (x1[3],y2[5]), (x1[4],y2[3])~

Ordered unique association ends have a bit more complex interpretation. Let py be unique and
ordered. Since py(x) in general represents a part of the collection of all the values y in the pairs (x,y)
of assxy, such that duplicates are removed, only those values y that belong to py(x) do have indices;
other values y in the pairs (x,y) of assxy do not. For example, the association assxy at a certain
moment t5 may look like (px is still considered as non-unique and ordered):

assxyt5 = |(x1[3],y1[2]), (x1[2],y2), (x1[1],y3[1]), (x2[1],y1), (x2[2],y3[2]),

 (x2[2],y1[1]), (x3[1],y2[1]), (x1[3],y2[3])~

The projections py include only those values y that have indices (in order):
py(x1)t5 = �y3,y1,y2�
py(x2)t5 = �y1,y3�
py(x3)t5 = �y2�

px(y1)t5 = �x2,x2,x1�
px(y2)t5 = �x3,x1,x1�
px(y3)t5 = �x1,x2�

It is now the question who and how determines which values y in the pairs of the entire
association for a certain x have, and which ones do not have an index? The answer is – the actions
Create Link and Destroy Link that affect the association (and the corresponding Structural Feature
Actions that have the same semantics). Basically, these actions work on the association in a manner
that has the same effect on the ordered unique association end as the actions on unique ordered
attributes and variables have on attributes and variables.

The Create Link action must specify the index of the value that will be inserted in the ordered
association end. Besides, if that value already exists in the unique collection, the value is moved to the
given index. Such effect is achieved by the following behavior of actions. Let py be unique and
ordered. CreateLink(assxy,(x,y[i])) adds the pair (x,y[i]) to the association assxy; if assxy
already contains a pair (x,y[?]), where ? denotes any index, the index of y in that pair is removed.
Consequently, the y from that pair will not exist any more in py(x) at its old position, but will be
"moved" to the new position i as directed by the new pair (x,y[i]). Other indices in py(x) are

15

adjusted to constitute a continuous sequence of integers with the new index and preserve the proper
ordering. For the last example of assxyt5, after the execution of the action
CreateLink(assxy,(x1[1],y2[1])), the association becomes:

assxyt6 = |(x1[3],y1[3]), (x1[3],y2), (x1[1],y3[2]), (x2[1],y1), (x2[2],y3[2]),

 (x2[2],y1[1]), (x3[2],y2[1]), (x1[4],y2), (x1[1],y2[1])~

The projections py include only those values y that have indices (in order):
py(x1)t6 = �y2,y3,y1�
py(x2)t6 = �y1,y3�
py(x3)t6 = �y2�

px(y1)t6 = �x2,x2,x1�
px(y2)t6 = �x1,x3,x1,x1�
px(y3)t6 = �x1,x2�

The Destroy Link action for an association with an ordered unique association end must have an
effect on the projections of that end as any action that removes a value from an ordered unique
structural feature, and vice versa. Therefore, it can either specify the index of the value or the value
itself – either of these uniquely identifies the value to be removed. Let us keep assuming that py is
unique and ordered and px is non-unique and ordered. Then:

• DestroyLink(assxy,(x[i],y[j])) removes from the association the unique pair
(x[i],y[j]), and adjusts the rest of the indices in py(x) and px(y) accordingly; it can be thus
interpreted as "remove x[i] from px(y) and remove y[j] from py(x)."

• DestroyLink(assxy,(x[i],y)) removes from the association the pairs (x[i],y[?]), where
y has or does not have an index, and adjusts the rest of the indices in py(x) and px(y)
accordingly; it can be thus interpreted as "remove x[i] from px(y)." Note that
DestroyLink(assxy,(?[i],y)) has the same semantics as DestroyLink(assxy,(x[i],y)),
because x is uniquely identified as the value at the position i in px(y).

• DestroyLink(assxy,(x,y[j])) has the same semantics as
DestroyLink(assxy,(x[i],y[j])), because the pair (x[i],y[j]) is unique in the
association; it can be interpreted as "remove y[j] from py(x)." Note that
DestroyLink(assxy,(x,?[j])) has the same semantics as DestroyLink(assxy,(x,y[j])),
because y can be uniquely identified as the value at the position j in py(x); it can be thus
interpreted as "remove the value from the position j from px(y)."

It is interesting to note that in the case when both association ends are unique and ordered, as already
said, the association behaves like a set. In such a set, there will be no values without indices.

Association Classes

Association class in UML is a model element that has both association and class properties. An
association class can be seen as an association that also has class properties, or as a class that also has
association properties. It not only connects a set of classifiers but also defines a set of features that
belong to the relationship itself and not to any of the classifiers [10].

16

Order

*
{unique, unordered}

product
Product

*
{unique, unordered}

order
orderEntry

{nonunique}

OrderEntry

quantity

unitPrice

/ price

(a)

Person

*
{unique, unordered}

employer
C om pany

*
{unique, unordered}

employee
employment

{nonunique}

Em ploym ent

startingFrom : Date

upTo : Date

salary

position

(b)

Person

*
{unique, unordered}

employer
C om pany

*
{unique, unordered}

employee
employment

{unique}

Em ploym ent

startingFrom : Date

salary

position

(c)

Figure 5: Examples of association classes with different and independent uniqueness of the association
and its ends. (a) An excerpt from the conceptual model of an order-processing system. (b) The conceptual
model for employment history tracking. (c) The conceptual model for recording the current employment
of persons in companies.

Being both a kind of association and a kind of a class, all observations given so far for
associations hold for association classes, too. However, a crucial difference between an instance of a
pure association and an instance of an association class is that the former is a pure link without identity,
while the latter is a link and an object, having its identity as an inherent characteristic.5 This fact opens

5 It could be noted that pure links do not need to have identity, even when there are multiple links

relating the same set of objects. The described semantics of the association as a bag of links and the actions on it
successfully handle multiple occurrences of links without requiring their identity. The actions simply add or
remove (i.e., count) occurrences of links to or from the bag. The completely formal specification in the
Appendix states this mathematically.

17

an issue specific for association classes only, the result of which is the need for the uniqueness modifier
of the very association class, independent of the uniqueness of its ends. Unfortunately, such modifier
does not exist in the current UML 2.0 specification. This sub-section describes the rationale for its
introduction using the examples shown in Figure 5.

Figure 5a shows an excerpt from the conceptual model of an order-processing system. In that
model, an Order is a list of Products, while each Product can occur several times in the list; these
occurrences are referred to as Order Entries. For each Order Entry, the quantity, unit price, and total
price of the Product referenced in that entry are provided. The association end product is designated as
unique because the intention of the modeler is that it results in the set of (distinct) Products appearing
in a certain Order. Similarly, the unique association end order gives the set of (distinct) Orders in
which the given Product has been ordered. If any of these sets should be limited in size, the multiplicity
constraint can specify that. However, the association class itself must certainly allow duplicate links (as
pairs of linked objects), each link being also a separate object with its identity. Every such object
carries important information, such as quantity and price. For the given object ord of Order, the
collection ord.orderEntry gives all link-objects attached to ord, and thus provides the access to that
information. Note that these objects must have their identity and internal state, because the system
should modify that state of a particular object of interest (e.g., when setting the quantity).

A similar case is with the model for employment history tracking in Figure 5b. Each instance of
the Employment association class represents the fact that the given Person used to be or is still
employed in the given Company, providing other necessary information about that employment, such
as period, salary, and position in the Company. Since the same Person can be re-employed in the same
Company several times during different periods, this association class should allow multiple links (as
pairs of linked objects). Of course, every of these links would be a separate object with its identity and
its own properties that carry the information about the given period of employment. The unique
association end employer results in the set of distinct Companies in which the given Person has been
ever employed. The similar holds for the opposite end.

An interesting opposite circumstance arises when almost the same model conceptualizes a
different problem domain. The association class Employment in the model shown in Figure 5c
conceptualizes the current (instead of past) employment of a Person in a Company, carrying again the
additional information about that employment. However, unlike in the previous case, the association
class should not allow duplicate links, because there should not exist two different link-objects of
Employment recording the employment of the same Person in the same Company at the present time,
because it would cause clashing of information about that inherently unique employment. This is why
the very association class is designated as unique, unlike in the previous cases.

As a conclusion of this brief analysis, the uniqueness modifier should be provided for
association classes in UML, specifying the uniqueness of the association itself, independently of the
uniqueness of its ends. This requirement can be easily met by adding a meta-attribute isUnique to the
AssociationClass meta-class. If this meta-attribute is set to true, the association class should not allow
duplicate links. Otherwise, its semantics is as described for pure associations. Note that this meta-
attribute is not needed for pure associations, because their instances do not have identity and state.

4 CONSEQUENCES

The proposed intentional interpretation of association ends has several important advantages:
• It eliminates the need for adding the uniqueness symmetry meta-constraint for associations

to the UML 2.0 specification. Note that the addition of that meta-constraint would cause
disruption in compatibility and model compliance, because existing models with
asymmetric uniqueness of association ends would become illegal.

18

• As already demonstrated, it improves the expressiveness of UML and makes conceptual
modeling easier in many cases.

• It provides better flexibility of modeling, because models can evolve by changing the
uniqueness of association ends independently, while preserving the existing object structure.
Note that promotion of an association end from non-unique (less "restrictive") to unique
(more "restrictive") does not affect the underlying collection of links, which does not
become illegal due to existing duplicates; this promotion just affects the behavior of the
system (i.e., the results of actions).

• In case when all association ends of a pure association (not association class) are unique, the
association behaves (and can be implemented) exactly the same as in the restrictive
interpretation.

• It fits better to the notion of association ends as properties, whereby the Read Links Action
returns a collection of the specified uniqueness and ordering. Besides, the Structural Feature
Actions that modify an association end as a property of a class behave as if the property
were not an association end, even in case of asymmetric uniqueness.

• It is comprehensible for the people working in conceptual modeling of database
applications. Namely, the difference of the semantics between a non-unique and unique
association end, i.e., the Read Links Action for these kinds of ends, is completely analogous
to the difference of the effects of the SELECT statement in SQL without or with the
DISTINCT clause. This kind of applications is expected to benefit most from the addressed
concepts of association ends and their uniqueness.

• The described concepts and actions are straightforward to implement in relational databases.
Principally, an association corresponds directly to a table, each row of which represents a
link. Foreign keys can implement the values identifying objects within a link, while an
additional field must exist for the index of each ordered end. The Read Links Action can be
implemented by the appropriate SELECT SQL query, having the DISTINCT clause if the
association end is unique. The Create Link and Destroy Link actions can be implemented
according to the described semantics.

However, the proposed approach has also some drawbacks in comparison with the restrictive
interpretation:

• It has a bit more complicated semantics requiring somewhat more difficult implementation.
However, the increase in complexity of the semantics and its implementation is not so big to
disqualify the advantages.

• The notion of ordering is not completely orthogonal to the concept of uniqueness, as it
appears to be.

• There is a need for an additional isUnique meta-attribute for association classes as the
support for the new semantics of unique association classes, which is not needed for the
restrictive interpretation. However, its addition does not affect the compliance of existing
models to the standard, because the meta-attribute may have a default value. Its addition
may only affect the semantics of an existing model if the default value of this meta-attribute
is true (to ensure restrictive interpretation for association classes with unique ends), but all
ends of an association are non-unique.

As a conclusion, the mentioned drawbacks do not seem to be so convincing to invalidate the
listed advantages of the proposed approach.

5 OVERVIEW OF THE RELATED WORK

Many authors have addressed the formal semantics of associations, either in UML or in the preceding
modeling languages having analogous concepts.

19

Stevens [18] argues for two kinds of associations, according to their conceptual nature and
usage – "static," representing the structural links between objects that principally live longer than
during an interaction between objects, and "dynamic," which are transient and exist only during
interactions. Génova et al. [7] contribute to this understanding and propose different terminology with
the "structural" and "contextual" view of associations. Barbier et al. [1] study another modifier of an
association end – aggregation – and provide an in-depth analysis and explanations of its semantics.
Génova et al. [8] discuss the deficiencies of the interpretation of multiplicity for N-ary associations in
UML and propose solutions. The subjects of all these studies are almost independent of the subject of
this paper and their results are completely orthogonal to the conclusions of this paper.

Many other works [3, 5, 6, 11, 12] propose different approaches to formalizing the semantics of
associations, among other concepts. Although they use different formal methods for that, they basically
agree in the way they interpret associations. However, they do not address uniqueness and ordering of
association ends, and especially do not propose the intentional interpretation of uniqueness. This
absence of deeper analysis and formalization of the more advanced concepts related with associations
and their ends is understandable, since these concepts, most notably uniqueness, have been added
recently to the newer versions of UML. In particular, the uniqueness asymmetry issue was raised very
recently [9], for the last version of UML 2.0.

To the best of our knowledge, this paper is the first that proposes the alternative to the
traditional restrictive interpretation – the intentional interpretation – which solves the uniqueness
asymmetry issue, and also provides a complete formalization of the semantics of association ends, their
uniqueness, ordering, and actions upon them.

6 CONCLUSION

This paper has studied the semantics of association as one the key concepts in UML that is intensively
used in conceptual modeling. It has described the uniqueness symmetry problem with the widely
assumed interpretation of the uniqueness of association ends – the restrictive interpretation, and
proposed an alternative – the intentional interpretation. Instead of restricting the association from
having duplicate links, uniqueness of an association end in the intentional interpretation modifies the
way in which the association end maps an object of the opposite class to a collection of objects of the
class at that association end. If the association end is unique, the collection is a set obtained by
projecting the collection of all linked objects. In that sense, the uniqueness of an association end
modifies the view to the objects at that end, but does not constrain the underlying object structure. It
turns out that intentional interpretation improves expressiveness of the modeling language and has
other interesting advantages discussed in the paper. Finally, the paper has given a completely formal
definition of the concepts of association and association ends, along with the related notions of
uniqueness, ordering, and multiplicity. The semantics of the UML actions on associations has been also
defined formally.

Although this paper has covered several important issues related with associations in UML 2.0,
many others, such as generalization/specialization and redefinition of associations, as well as
derivation, redefinition, and subsets/unions of association ends, still remain open. The precise
semantics of some of these concepts, such as specialization of associations and redefinition of ends,
and especially their interference, are still very vague or explicitly left as semantic variation points in the
UML 2.0 specification ([10], pg. 38). The others, such as subsets and unions, seem to be closer to
formalization and the results of this paper may contribute to that. Anyway, all these issues require
future research.

20

APPENDIX

The Appendix gives formal specifications of the proposed semantics in Z [17], for the general case of
N-ary associations.

Sample Model

The sample model shown in Figure 6 will be used in this formalization. In that model, there is one
association with four ends, having all four combinations of (orthogonal) unique/non-unique and
ordered/unordered modifiers. The model shows how the formalization can be generalized for arbitrary
N-ary associations:

• for every end of an N-ary association, the parts of each Z schema that correspond to that kind of
end (regarding uniqueness and ordering) exist (or are omitted if such kind of association end
does not exist); these parts may be either entire declarations/predicates or their parts; in general,
the existence of the parts that correspond to one association end is independent of the other
association ends;

• in some cases, some parts of specifications are not independent of other association ends; such
parts are denoted with the following symbols:

� This part exists only when the association has no unique ends

¢ This part exists only when the association has a unique end.

assoc

X

{nonunique, unordered}px

Y

{unique, unordered}

py

Z

{nonunique, ordered}pz

W
pw

{unique, ordered}

Figure 6: Sample generic model used for formalization.

21

Conventions and Definitions

Apart from the standard Z notation [17], the following conventions and definitions will be used in the
formalizations that follow.

Informal comments start with // and last to the end of line. They do not carry semantics.

// Size of a bag - the number of elements in the bag:

[X]

size _ : bag X � Û

∀ b : bag X • size b = (µ n : Û • (∀ s : seq X | b = items s • n = # s))

// Insertion of an element x into a sequence s at the given position i, denoted with s � {x � i}:

[X]

_ � _ : seq X � {r : X � Û1 | # r = 1} � seq X

∀ s : seq X ; x : X ; i : Û1 • s � {x � i} = (1..(i–1) # s) > ÄxÔ > (i..# s # s)

Formal Semantics

// Classes as sets (object spaces):
[X, Y, Z, W]

// The extents of the classes – the (finite) sets of all live objects of the classes:
 Classes

extX : ¬ X ; extY : ¬ Y

extZ : ¬ X ; extW : ¬ W

// Association – a collection (bag) of tuples of the form (x, y, iz � z, iw � w),
// where iz > 0, iw ≥ 0 are indices (0 denotes absence of index), satisfying the given invariant.
// Note: if the association has at least one unique ordered end, the collection has no duplicates;
// formally, the bag maps all tuples to 1; it can be thus represented as a set in Z.
// Otherwise, it is a "true" bag. For the sake of generality, it is always treated as a bag here.

Assoc = = bag (extX × extY × (Û1 × extZ) × (Û × extW))

Association

Classes

assoc : Assoc

∀ x : extX ; y : extY ; w : extW •
{ z : extZ ; iz : Û1 ; iw : Û | (x, y, iz � z, iw � w) ∈ dom assoc • iz � z } ∈ seq extZ

22

∀ x : extX ; y : extY ; z : extZ •
{ w : extW ; iz : Û1 ; iw : Û1 | (x, y, iz � z, iw � w) ∈ dom assoc • iw � w } ∈ iseq extW

// Association ends – mappings of tuples of objects to collections of objects:

AssociationEnds

Classes

px : extY × extZ × extW → bag extX

py : extX × extZ × extW → ¶ extY

pz : extX × extY × extW → seq extZ

pw : extX × extY × extZ → iseq extW

∀ x : extX ; y : extY ; z : extZ ; w : extW •
x ∈ dom px (y, z, w) ⇔ y ∈ py (x, z, w) ⇔ z ∈ ran pz (x, y, w) ⇔ w ∈ ran pw (x, y, z)

// Multiplicity constraints on association ends (pxmin, pxmax, ..., pwmin, pwmax
// are upper and lower multiplicity bounds of the corresponding association ends, respectively):

Multiplicity

AssociationEnds

∀ x : extX ; y : extY ; z : extZ ; w : extW •
pxmin ≤ size px (y, z, w) ≤ pxmax ∧
pymin ≤ # py (x, z, w) ≤ pymax ∧
pzmin ≤ # pz (x, y, w) ≤ pzmax ∧
pwmin ≤ # pw (x, y, z) ≤ pwmax

// Read Links Action – defines how px, py, pz, and pw are obtained from assoc:

ReadLinksAction

Association

AssociationEnds

∀ x : extX ; y : extY ; z : extZ ; w : extW •
px (y, z, w) # x = size { iz : Û1 ; iw : Û ; n : Û | (x, y, iz � z, iw � w) � n ∈ assoc •
(x, y, iz � z, iw � w) � n }

∀ x : extX ; z : extZ ; w : extW •
py (x, z, w) = { y : extY ; iz : Û1 ; iw : Û | (x, y, iz � z, iw � w) ∈ dom assoc • y }

∀ x : extX ; y : extY ; w : extW •
pz (x, y, w) = { z : extZ ; iz : Û1 ; iw : Û | (x, y, iz � z, iw � w) ∈ dom assoc • iz � z }

∀ x : extX ; y : extY ; z : extZ •
pw (x, y, z) = { w : extW ; iz : Û1 ; iw : Û1 | (x, y, iz � z, iw � w) ∈ dom assoc • iw � w }

// The association's initial state:

AssociationInit

Association

23

assoc = ∅

// Create Link Action – defines how a link (as a tuple (x?, y?, iz?�z?, iw?�w?))
// is added to the association (as a bag of tuples):

CreateLinkAction

∆ Association

x? : extX

y? : extY

z? : extZ ; iz? : Û1

w? : extW ; iw? : Û1

// Auxiliary variables for improving readability:

assoc1a, assoc1b : Assoc

assoc2a, assoc2b : Assoc

assoc3a, assoc3b : Assoc

// Insertion indices for z and w in case iz? and iw? are out of range:

izins, iwins : Û1

// Replace every (x?, y?, iz � z, iw � w?) such that iz ≥ iz? with (x?, y?, iz +1 � z, iw � w?):

assoc1a = assoc ª
{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; w : extW ; iw : Û | x = x? ∧ y = y? ∧ w = w? ∧ iz ≥ iz?

∧ (x, y, iz � z, iw � w) ∈ dom assoc •
(x, y, iz � z, iw � w) � (assoc # (x, y, iz � z, iw � w)) }

assoc1b = assoc1a �
{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; w : extW ; iw : Û | x = x? ∧ y = y? ∧ w = w? ∧ iz ≥ iz?

∧ (x, y, iz � z, iw � w) ∈ dom assoc •
(x, y, iz +1 � z, iw � w) � (assoc # (x, y, iz � z, iw � w)) }

// Replace (x?, y?, iz � z?, iw0 � w?) with (x?, y?, iz � z?, 0 � w?):

assoc2a = assoc1b ª
{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; w : extW ; iw : Û1 | x = x? ∧ y = y? ∧ z = z? ∧ w = w?
∧ (x, y, iz � z, iw � w) ∈ dom assoc1b •
(x, y, iz � z, iw � w) � (assoc1b # (x, y, iz � z, iw � w)) }

assoc2b = assoc2a �
{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; w : extW ; iw : Û1 | x = x? ∧ y = y? ∧ z = z? ∧ w = w?
∧ (x, y, iz � z, iw � w) ∈ dom assoc1b •
(x, y, iz � z, 0 � w) � (assoc1b # (x, y, iz � z, iw � w)) }

// Replace every (x?, y?, iz � z?, iw � w) such that iw ≥ iw? and iw < iw0 with
// (x?, y?, iz � z?, iw+1 � w):

if (∃ x : extX ; y : extY ; z : extZ ; iz : Û1 ; w : extW ; iw0 : Û1 | x = x? ∧ y = y? ∧ z = z? ∧ w = w? •
(x, y, iz � z, iw0 � w) ∈ dom assoc1b) then

assoc3a = assoc2b ª

24

{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; iz0 : Û1 ; w : extW ; iw : Û1 ; w0 : extW ; iw0 : Û1 |
x = x? ∧ y = y? ∧ z = z? ∧ w0 = w? ∧ iw ≥ iw? ∧ iw < iw0 ∧
(x, y, iz0 � z, iw0 � w0) ∈ dom assoc1b ∧ (x, y, iz � z, iw � w) ∈ dom assoc2b •
(x, y, iz � z, iw � w) � (assoc2b # (x, y, iz � z, iw � w)) } ∧

assoc3b = assoc3a �
{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; iz0 : Û1 ; w : extW ; iw : Û1 ; w0 : extW ; iw0 : Û1 |
x = x? ∧ y = y? ∧ z = z? ∧ w0 = w? ∧ iw ≥ iw? ∧ iw < iw0 ∧
(x, y, iz0 � z, iw0 � w0) ∈ dom assoc1b ∧ (x, y, iz � z, iw � w) ∈ dom assoc2b •
(x, y, iz � z, iw + 1 � w) � (assoc2b # (x, y, iz � z, iw � w)) }

else

assoc3a = assoc2b ª
{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; w : extW ; iw : Û1 |
x = x? ∧ y = y? ∧ z = z? ∧ iw ≥ iw? ∧ (x, y, iz � z, iw � w) ∈ dom assoc2b •
(x, y, iz � z, iw � w) � (assoc2b # (x, y, iz � z, iw � w)) } ∧

assoc3b = assoc3a �
{ x : extX ; y : extY ; z : extZ ; iz : Û1 ; w : extW ; iw : Û1 |
x = x? ∧ y = y? ∧ z = z? ∧ iw ≥ iw? ∧ (x, y, iz � z, iw � w) ∈ dom assoc2b •
(x, y, iz � z, iw + 1 � w) � (assoc2b # (x, y, iz � z, iw � w)) }

// Add (x?, y?, iz? � z?, iw? � w?) to assoc:

izins = min { iz?, max ({0} � { x : extX, y : extY, z : extZ, iz : Û1, w : extW, iw : Û |
x = x? ∧ y = y? ∧ w = w? ∧ (x, y, iz � z, iw � w) ∈ dom assoc • iz }) + 1 }

iwins = min { iw?, max ({0} � { x : extX, y : extY, z : extZ, iz : Û1, w : extW, iw : Û1 |
x = x? ∧ y = y? ∧ z = z? ∧ (x, y, iz � z, iw � w) ∈ dom assoc • iw }) +1 }

assoc' = assoc3b � |(x?, y?, izins � z?, iwins � w?)~

// The effect that the Create Link Action should have on the association ends:

CreateLinkAssociationEnds

∆ AssociationEnds

x? : extX

y? : extY

z? : extZ ; iz? : Û1

w? : extW ; iw? : Û1

px' = px ¨ {(y?, z?, w?) � (px (y?, z?, w?) � | x? ~)}

py' = py ¨ {(x?, z?, w?) � (py (x?, z?, w?) � {y?})}

pz' = pz ¨ {(x?, y?, w?) � (pz (x?, y?, w?) � {z? � iz?})}

pw' = pw ¨ {(x?, y?, z?) � (pw (x?, y?, z?) & (extW \ {w?}) � {w? � iw?})}

// The complete definition of the Destroy Link Action on association is omitted for the sake of brevity

// The effect that the Destroy Link Action should have on the association ends:

25

DestroyLinkAssociationEnds

∆ AssociationEnds

x? : extX

y? : extY

z? : extZ ; iz? : Û1

w? : extW

if

x? ∉ dom px (y?, z?, w?) ∨ y? ∉ py (x?, z?, w?) ∨ z? ∉ ran pz (x?, y?, w?) ∨ w? ∉ ran pw (x?, y?, z?)
∨ pz (x?, y?, w?) (iz?) ≠ z?

then

px' = px ∧ py' = py ∧ pz' = pz ∧ pw' = pw

else

∀ x : extX ; y : extY ; z : extZ ; w : extW •

if

x ≠ x? ∨ y ≠ y? ∨ z ≠ z? ∨ w ≠ w?

then

px' (y, z, w) = px (y, z, w) ∧ py' (x, z, w) = py (x, z, w) ∧

pz' (x, y, w) = pz (x, y, w) ∧ pw' (x, y, z) = pw (x, y, z)

else

� px' (y, z, w) # x = px (y, z, w) # x – 1 ∧ // Only when the association has no unique ends

¢ px' (y, z, w) # x = 0 ∧ // Only when the association has a unique end

py' (x, z, w) = py (x, z, w) \ {y} ∧

� pz' (x, y, w) = Û1 \ {iz?} # pz (x, y, w) ∧ // Only when the association has no unique ends

¢ pz' (x, y, w) = pz (x, y, w) & (extZ \ {z}) ∧ // Only when the association has a unique end

pw' (x, y, z) = pw (x, y, z) & (extW \ {w})

REFERENCES

[1] Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M., "Formalization of the
Whole-Part Relationship in the Unified Modeling Language," IEEE Trans. Software

Engineering, Vol. 29, No. 5, May 2003, pp. 459-470

[2] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide, Addison-
Wesley Longman, 1999

[3] Bourdeau, R. H., Cheng, B. H. C., "A Formal Semantics for Object Model Diagrams," IEEE

Trans. Software Engineering, Vol. 21, No. 10, October 1995, pp. 799-821

[4] Chen, P. P., "The Entity-Relationship Model," ACM Transactions on Database Systems, Vol. 1,
No. 1, 1976, pp. 9-36

[5] Diskin, Z., Dingel, J., "Towards Formal Semantics for Associations in UML 2.0," manuscript
being prepared for submission (available through private communication), 2005

[6] France, R. B., "A Problem-Oriented Analysis of Basic UML Static Requirements Modeling

26

Concepts," Proc. 1999 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA '99), ACM SIGPLAN Notices, Vol. 34, No. 10,
November 1999, pp. 57-69

[7] Génova, G., Llorens, J., Fuentes, J. M., "UML Associations: A Structural and Contextual View,"
Journal of Object Technology, Vol. 3, No. 7, July-August 2004, pp. 83-100

[8] Génova, G., Llorens, J., Martínez, P., "The Meaning of Multiplicity of N-ary Associations in
UML," Software and Systems Modeling, Vol. 1, No. 2, February 2002, pp. 86-97

[9] Object Management Group, Issues for Mailing list of the UML 2.0 Superstructure and

Infrastructure Revision Task Force, Issue 5977, June 2003, http://www.omg.org/issues/uml2-
rtf.open.html#Issue5977

[10] Object Management Group, UML 2.0 Superstructure Specification, revised final adopted
specification (ptc/04-10-02), October 8, 2004, http://www.omg.org

[11] Övergaard, G., "A Formal Approach to Relationships in the Unified Modeling Language," Proc.

PSMT'98 Workshop on Precise Semantics for Modeling Techniques, Technische Universität
München, TUM-I9803, 1998

[12] Övergaard, G., Formal Specification of Object-Oriented Modelling Concepts, PhD Thesis,
Department of Teleinformatics, Royal Institute of Technology, Stockholm, Sweden, November
2000

[13] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object-Oriented Modeling

and Design, Prentice-Hall International, 1991

[14] Selic, B., "On the Semantic Foundations of Standard UML 2.0," Formal Methods for the Design

of Real-Time Systems: International School on Formal Methods for the Design of Computer,

Communication, and Software Systems (SFM-RT 2004), Bertinora, Italy, September 13-18, 2004,
Springer-Verlag Lecture Notes in Computer Science, Vol. 3185/2004, pp. 181-199

[15] Selic, B., "The Pragmatics of Model-Driven Development," IEEE Software, Vol. 20, No. 5,
September/October 2003, pp. 19-25

[16] Selic, B., Ramackers, G., Kobryn, C., "Evolution, Not Revolution," Communications of the ACM,
Vol. 45, No. 11, November 2002, pp. 70-72

[17] Spivey, J. M., The Z Notation: A Reference Manual, Prentice-Hall International, 1992

[18] Stevens, P., "On the Interpretation of Binary Associations in the Unified Modeling Language,"
Software and Systems Modeling, Vol. 1, No. 1, January 2002, pp. 68-79

