
Extended Object Diagrams for Transformational Specifications in
Modeling Environments

Dragan Milicev

University of Belgrade
School of Electrical Engineering, Dept. Comp. Sc. & Eng.

POB 35-54, 11120 Belgrade, Serbia, Yugoslavia
emiliced@etf.bg.ac.yu

Abstract

One of the most important features of software tools for domain-specific modeling is automatic output generation. Since
the existing techniques for specifying output generation in customizable modeling and metamodeling environments
suffer from some weaknesses analyzed in this paper, a new approach is proposed. The analysis is based on the
observation that the output generation is a process of transformation of a model from the source domain into the model
from the target domain. If the domains are at distant levels of abstraction, the mapping is difficult to specify, maintain,
and reuse. Therefore, the proposed approach introduces one or more intermediate domains. Assuming that the source,
target, and intermediate domains are conceptually modeled (metamodeled) using the object-oriented paradigm, the
proposed approach uses extended UML object diagrams for specifying the mapping between them. The diagrams
specify instances and links that should be created by the transformational process. The proposed extensions are the
concepts of conditional, repetitive, and sequential creation. These concepts are implemented using the standard UML
extensibility mechanisms. Several examples from different software engineering domains are presented in the paper.
They prove some important benefits of the approach: the specifications are clear and concise, easy to maintain and
modify. Besides, the approach leads to better reuse of domain models and to remarkably shorter production time.

Keywords: object-oriented modeling, Unified Modeling Language (UML), object diagram, metamodeling, model
transformations

1 Introduction

Modeling is a central part of all the activities that lead
up to the deployment of good software, as of any other
engineering system [4]. Each modeling domain lies upon
another model that defines (1) abstractions of the domain;
(2) their properties and relationships; (3) their semantics
and behavior in the model; (4) their visual appearance
(notation) and behavior in the supporting tool. The latter,
underlying model is called the metamodel of the
considered modeling domain. Therefore, metamodeling is
the process of defining the metamodel of the considered
modeling domain. 'Meta' should be treated as a relative
reference, not as an absolute qualification: each modeling
domain has its underlying metamodel, which is specified
by abstractions of another meta-metamodel, etc. [11].
This paper is focused to the modeling domains that can
be metamodeled using the usual object-oriented paradigm
[4], as opposed to some other paradigms, such as
grammar-based specifications.

Apart from their important roles in specifying,
documenting, and visualizing systems, the purpose of
modeling tools is most often system construction [4],
where 'construction' means producing output from the
system specification that may be interpreted by a certain
external environment to provide the desired system's
behavior. The examples of output include, but are not
limited to: documentation, source code in a certain
programming language, database scheme, hardware

description, or any other formally defined structure. It
may be observed that the output generation is actually a
transformation of the user-specified model from the
domain of his interest into the model from another target
domain. (Precisely, this is actually generation of another
model, but the term transformation is used in this context
more often.) The problem of specifying output generation
may exist in three different contexts. (1) In fixed, non-
customizable domain-specific modeling tools, where the
source and target domain metamodels, along with the
mapping between them are fixed at the time of the tool
development (as the problem of designing the output
generation feature). (2) In customizable modeling tools,
where the metamodels are fixed, but the mapping is
customizable by the user. For example, a modeling tool
such as a CASE tool may offer interfaces to the built-in
metamodels (e.g., the UML metamodel, a metamodel of
the target programming language, the relational
metamodel, etc.), and the user may specify the mapping.
(3) In fully featured metamodeling tools, where the user
can specify both the metamodels and the mapping.

This paper discusses the problems of the techniques
for specifying output generation implemented so far in
the existing (meta-) modeling tools, and proposes a new
approach that deals with the problems. The approach has
two major contributions.

First, very often the source and the target domains are
at distant levels of abstraction, and the mapping is
difficult to specify, maintain, and reuse. Therefore, the

proposed approach introduces one or more intermediate
domains. In other words, it simplifies complex and
cumbersome transformations of a model into another
representation by doing the transformation in multiple
steps. This has the advantage that each step becomes
simpler and that existing transformation can be reused.

Second, it uses extended UML object diagrams to
specify visually the mapping between the domains. The
diagrams specify instances and links that should be
created by the transformational process. The proposed
extensions are the concepts of conditional, repetitive, and
sequential creation. These concepts are implemented
using the standard UML extensibility mechanisms.
Consequently, the specifications are clear and concise,
easy to maintain and modify, and lead to shorter
production time.

The paper continues as follows. Section 2 reveals the
motivation for this work and defines the problem
precisely using a simple demonstrative example. Section
3 briefly discusses the related work. The idea of our
approach is presented in Section 4. Section 5 shows
several examples that illustrate the applicability and
efficiency of the approach. The paper ends with
conclusions.

2 Motivation and problem statement

The problem and the proposed solution will be
demonstrated using a simple example from the field of
telecommunication software development. The goal is to
develop a simple modeling tool that generates C++ code
for state-machine models. The code generation for state

machines should be completely customizable: the user
should be able to change the code generated from the
same model if he needs another execution model due to
performance, concurrency, distribution, or other
requirements.

The example is shown in Figure 1. It is assumed that
the desired code is obtained using the State design pattern
[6]. It is also assumed that the user has specified a state
machine named FSM as shown in Figure 1a. For this
example, several classes are generated in the output C++
code. The first is named FSM and is the interface class
whose behavior is specified in the model by the given
state machine. It contains operations that correspond to
the events of the state machine. The second class is
abstract and is named FSMState. It contains one
polymorphic operation for each event. Finally, one class
derived from FSMState is generated for each state. It
overrides the operations that represent those events on
which the state reacts. These operations perform
transitional actions and return the target state. Other
details may be found in [6]. The metamodel of the
domain (state machines) is shown in Figure 1c. (This is a
simplified version of the metamodel for state machines
from [14].)

Now, the code generation strategy to be applied to
each state machine should be specified. Let us consider
two possible approaches. A straightforward one is to hard
code the output generation scheme in an operation (e.g., a
member function of the class StateMachine that
implements the state machine abstraction in the modeling
tool). The operation should read the data from the model

Figure 1: Demonstrational example: Code generation for state machines. (a) A sample state machine.
(b) An excerpt from the generated code. (c) The metamodel.

A B

C

s1 / t1

s2 / t2

s1 / t3

s3 / t4s1

ModelElement

State Transition
1..1 0..*+mySource1..1 +hSource 0..*Source

1..1
0..*

+myTarget1..1
+hTarget 0..*Target

Event
0..11..*

+myTrigger

0..1

+hEvents

1..* Trigger

StateMachine

0..*

1..1
+myStates

0..*

+hStates

1..1

States

0..*
1..1 +myTransitions

0..*
+hTransitions1..1

Transitions

0..*

1..1 +myEvents

0..*

+hEvents1..1 Events

class FSM;

class FSMState {
public:
 FSMState (FSM* fsm) : myFSM(fsm){}

 virtual FSMState* s1 ();
 virtual FSMState* s2 ();
 virtual FSMState* s3 ();

 virtual void entry () {}
 virtual void exit () {}

protected:
 FSM* fsm () const {return myFSM;}
private:
 FSM* myFSM;
};

class FSMStateA : public FSMState {
public:
 FSMStateA(FSM* fsm) :FSMState(fsm){}

 virtual FSMState* s1 ();
 virtual FSMState* s2 ();

 virtual void entry () { ... }
 virtual void exit () { ... }
};

FSMState* FSMStateA::s1 () {
 fsm()->t1();
 return &(fsm()->stateA);
}

FSMState* FSMStateA::s2 () {
 fsm()->t2();
 return &(fsm()->stateB);
}

(a)

(b)

(c)

instances (i.e. to navigate through the model and read
attribute values) and produce the textual output following
the C++ syntax and semantics. An excerpt of such
operation that generates the beginning of the declaration
for the class FSMState may be:
// Generate base state class:
output<<"class "<<(this->name+"State")<<"{\n";
output<<"public:\n";
output<<" "<<(this->name+"State")<<"(";
output<<(this->name)<<"* fsm):myFSM(fsm){}\n";
//...

The drawbacks of this approach are obvious:
(1) The process of specifying is extremely tedious, time-
consuming, and error-prone.
(2) The user must deal with the complexity of the target
domain (C++ syntax and semantics).
(3) The built-in general-purpose and reusable C++ code
generator is not used at all.
(4) Any modification is very difficult to apply because
the code is not clear and comprehensible.
(5) The code is not reusable.
(6) The user must deal with the technical details such as
the correctness of the output stream, opening files (.h and
.cpp files must be created in C++), etc.

The core reasons for the listed drawbacks may be
revealed by the following observation. The output
generation process may be viewed as a creation of a
target model from the source model. The source model is
the model explicitly specified by the user in the modeling
tool and consists of instances of state machines, states,
events, and other abstractions from the source domain.
The target model is the textual output, i.e. the generated
C++ source code whose metamodel is implicitly assumed
by the user (C++ syntax and semantics). The code of the
given operation is actually a specification of the mapping
between the two domains. Since the two domains are at
distant levels of abstraction, their direct mapping by the
hard-coded special-purpose generator has all these
drawbacks.

This mapping between two distant domains has the
same disadvantages as the process of object-oriented
programming in the target programming language (e.g.
C++) without previous modeling at a higher level of
abstraction (e.g. with UML). This is because the
programming language level of abstraction is too far from
the level of abstraction that is suitable for the developer's
way of thinking. For our example, instead of directly
generating the textual output, it may be reasonable to
create an intermediate model based on a metamodel of a
higher level of abstraction, such as a subset of UML,
which includes abstractions supported directly by a
common object-oriented programming language (class,
operation, attribute, etc.). Because the general-purpose
C++ code generator from UML models may be built in
the tool, it may be reused for the generated intermediate
model. Hence, the idea is to create needed instances from
the intermediate domain using the built-in UML
metamodel, and then to invoke the built-in code generator
to produce the output:

void StateMachine::generateCode () {
// Temporary package for the intermediate model:
 Package& pck = Package::create();

 // Intermediate model:
 // Base state class:
 Class& baseState = Class::create(pck);
 baseState.name = this->name+"State";

 // Base state class constructor:
 Method& baseStateConstr =
 Method::create(pck);
 baseStateConstr.name = this->name+"State";
 Link::create(Members::Instance(),
 baseState,baseStateConstr);
 //...
 // Code generation:
 pck.generateCode();
}

This code excerpt shows the creation of instances for
the class FSMState and its constructor. It creates
instances of UML abstractions Class and Method, using
the built-in UML metamodel interface. Then, it sets the
values of their attributes. Finally, it creates links between
these instances. All these instances are packed into a
temporary package for which the output is generated in
the end.

This approach remedies most of the drawbacks of the
first approach. In the first place, it eliminates the
impendance-matching problem between the source and
target domains by introducing an intermediate level. By
doing this, the process of output generation is split into
two steps, where each step is much easier to specify than
before. Besides, the second step is supported by the built-
in and reusable code generator. Thus, the first-step
mapping specification is completely reusable for other
target languages, provided that general-purpose code
generators from UML are available. However, the
specification of the operation body is still tedious and
error-prone. Besides, the code may be very complex and
difficult to manage. Since it is actually a specification of
the process of creating instances from the intermediate
domain, where both source and intermediate domains
may be formally defined by their metamodels, this
specification may be provided in another formal way. The
idea is to use a visual specification, preferably one that is
compatible with the UML standard. This is the subject of
this paper.

3 Overview of the Related Work

Due to the fact that the process of domain-specific
metamodeling can be formalized, the need for tool
support of this process has been recognized for long [2,
11, 13]. This need was first met in the domain of
automatic programming environment generation [10]. By
the maturation of numerous software-engineering
methodologies and notations, especially of object-
oriented ones, which all have been developed with the
perspective of CASE tools support, the field of meta-
CASE research has evolved [2, 11]. However, we do not
constrain our discussion here on the field of software
modeling, CASE, and meta-CASE tools, although it is

our major field of interest with a strong research
background. The results of our work may be applied to
metamodeling domains other than software systems. That
is why we use the term "metamodeling environment"
rather than the term "meta-CASE tool."

There are a number of approaches addressing a
similar problem using structural transformations of
grammar-based models and various rule-based techniques
[7, 8, 9]. Their goal is to transform a user-defined
structural model written in a domain-specific language
into another structural model in another target language.
Although the goal is similar to the one presented here
(transformation of models), there are a number of
differences. First, although their principles may be
generalized to more abstract terms, they primarily deal
with textual models (or, more generally, with strings of
entities). Second, their 'metamodels' are expressed with
grammars, where the entities are defined hierarchically
(using sub-entities), and where recursion is the main
difficulty, instead of the object-oriented paradigm that is
used here. The main purpose of the supporting
environments in that case is to build an internal
representation (derivation tree) from the user-defined
model (textual program) by parsing it, and then to
transform this internal representation into the target
internal representation. Thus, the internal structure of the
model is inherently a tree. In the modeling environments
that use object-oriented paradigm for metamodeling,
there is no need for the parsing phase, because the user
explicitly creates the instances of abstractions and their
links. Therefore, the model representation is a graph of
objects (instances of classes) connected with links
(instances of associations). This is why the approach
presented here may be considered as a more general
structural transformation.

The rule-based approaches allow the user to specify
the differences between the source and the target
grammars ('metamodels') and a supporting tool may help
in generating the model transformer but with some
intervention of the user [7]. The approach presented here
allows the user to specify the mapping, and the
transformer is generated without any intervention of the
user. Furthermore, defining a grammar for a certain
domain and specifying the mapping between the
grammars may be a difficult task because it requires more
sophisticated work than defining (in meta-environments)
or just understanding (in customizable modeling
environments) the metamodels specified in object-
oriented terms. It is evident that some domains may be
metamodeled with much less effort using the object-
oriented paradigm instead of grammars. This includes
most modeling methods with visual notations. For such
cases, the proposed approach is definitely superior.
Consequently, the proposed approach may be treated as a
complement to the grammar-based structural
transformations, more suitable for object-oriented
metamodels.

A research field also related to metamodeling is the
field of visual programming languages (VPL) [1, 5, 17].
However, the underlying metamodels of VPLs are also
grammars [5] or other formal models. Consequently,
VPL metaenvironments have the same characteristics as
the grammar-based environments described previously.
In an automatically generated VPL environment, the user
chooses a graphical element and puts it onto a diagram
rather arbitrarily. The task of the tool is to check the
correctness of the diagram when the translation operation
is explicitly invoked, considering the underlying
grammar. Then, it should parse the grammar elements
and develop an internal representation analogous to the
derivation tree in classical compilers. On the other side,
in object-oriented modeling environments, the user is
usually explicitly constrained in designing diagrams, and
the contents of the diagram is determined at the time of
its construction. The user creates and manages explicitly
model (semantic) elements, while visual elements are
only views to them. Besides, the problem of the model
transformation, which is the subject of this paper, is not
considered as an important one in the field of VPLs.

Automatic generation of CASE tools has been an
attractive discipline for years, and a lot of extensible
CASE and meta-CASE tools, both commercial and
academic ones, are available at the moment [18, 19, 20,
21, 22, 23, 24, 25]. A major commonality (and a
weakness also) of all existing meta-CASE tools that is of
greatest interest to our work is the output generation
facility. All these tools provide programming interfaces
to their metamodels through which the user may access
the models in the generated CASE tools to produce the
output. However, output generation is always specified
using a scripting language that is proprietary and vendor-
specific. Hence, the first hard-coded output generator
strategy described in the previous section is available to
the user. As they often offer a flexible interface to their
metamodels, the user may create an intermediate model
as described in the second approach in the previous
section. Nevertheless, this intermediate model may be
created only using the same scripting language, and there
is no other opportunity for doing this at a higher level of
abstraction (e.g., visually). None of these tools promotes
domain mapping as an explicitly supported strategy
available to the user. As a conclusion, to the best of our
knowledge, we are not aware of any other approach that
is closely related to the one presented in this paper.

4 Domain mapping specification

The idea of the domain mapping (Figure 3) is to
create an intermediate metamodel and a specification of
the mapping from the source to the intermediate domain.
A model transformer is automatically generated from the
mapping specification. It is used to create the
intermediate model from the user-defined source model.
Finally, the built-in code generator produces the ultimate
output. The benefit is because each of the transformations

is much less complex that the direct transformation, and
is thus easier to specify, maintain, and reuse.

The specification of the domain mapping should be
formal and preferably graphical. Since it is actually a
specification of a set of instances of the abstractions
(classes) from the intermediate domain that should be
created, UML object diagrams may be used. An excerpt
for our example is shown in Figure 4. It is assumed that
the diagram is defined for one instance from the source
model, which is referred to by a certain identifier in the
diagram. For this example, it is an instance of the type
StateMachine, referred to by the identifier fsm. The
diagram specifies the set of instances of classes from the
intermediate metamodel that should be created for each
StateMachine instance fsm from the source model. The
diagram specifies also the values of their attributes, along
with the links between them. The attribute values are
defined as expressions that refer to the instances from the

source model and their attribute values, using the
navigation through the source model. The links are
instances of associations from the intermediate
metamodel.

A standard object diagram is not sufficient for the
mapping purposes. There is also a need for repetitive
object creation. For our example, one method in the base
state class should be created for each event that the
machine reacts upon (see Figure 1). For this purpose, we
use a stereotyped package with the stereotype ForEach.
The example is shown in Figure 5. ForEach package
represents iteration through a collection of instances from
the source model and creation of a set of intermediate
domain instances for each of them. It contains three
tagged values:

- ForEach: An identifier that is introduced into the
scope of this package. It may be used inside the scope of
the package to refer to the current element of the
iteration.

- OfType: The type of the current element. The
iteration is type-sensitive, in the sense that only the
elements of the specified type from the collection are
processed, and the others are ignored (in the case that the
elements are polymorphic). The type is from the source
metamodel.

- InCollection: An expression that evaluates to a
collection of the instances from the source model to
iterate.

When a link connects an instance inside a package
and another outside that package, then each repetitive
instance created by the iteration will be linked to the
outer instance. For the expressions that are used to define
attribute values or collection in a ForEach package, any
formal language for navigation through the source model

Source
Domain

Metamodel

Intermediate
Domain

Metamodel

Source
Domain
Model

Modeling Level

Intermediate
Domain
Model

Target
Domain
Model

Output
Generation

Target
Domain

Metamodel

Hard-Coded
Output Generator

Implicit Instantiation:
Model tranformation

Implicit Instantiation:
Output Generation

Metamodeling Level

State Machines
Metamodel

C++ Code
Generator

C++ Syntax &
Semantics

Extended Object
Diagrams

State Machines C++ Source
CodeModel

Transformer

Automatic
generation

Explicit Instantiation:
Model specification

Domain Mapping
Specification

UML Subset
Metamodel

Figure 3: The idea of the domain-mapping strategy in the
context of the demonstrational example. The transformation
from the source into the target domain is split into two (or
generally more) steps in order to cope with the complexity of
the mapping specification.

baseState : Class

name = fsm.name+"State"

baseStateConstr : Method

name = fsm.name+"State"
isQuery = False
isPolymorphic = False
isAbstract = False
body = ""

baseStateEntry : Method

name = "entry"
isQuery = False
isPolymorphic = True
isAbstract = False
body = ""

baseStateExit : Method

name = "exit"
isQuery = False
isPolymorphic = True
isAbstract = False
body = ""

baseStateHelper : Method

name = "fsm"
isQuery = True
isPolymorphic = False
isAbstract = False
body = " return myFSM; "

baseStateAttr : Attribute

name = "myFSM"
type = fsm.name+"*"
initialValue = "fsm"

baseStateConstrParam : Parameter

name = "fsm"
type = fsm.name+"*"
kind = in
defaultValue = ""

baseStateEntryParam : Parameter

name = ""
type = "void"
kind = return
defaultValue = ""

baseStateExitParam : Parameter

name = ""
type = "void"
kind = return
defaultValue = ""

baseStateHelperParam : Parameter

name = ""
type = fsm.name+"*"
kind = return
defaultValue = ""

: formal parameter : formal parameter : formal parameter

: formal parameter

: members
: members

: m
embers

: members : members

Figure 4: A simple part of the object diagram for
the domain mapping specification of the
demonstrational example. The diagram shows
only the specifications for the base class
FSMState and its members that are generated by
default. The diagram belongs to the context of the
state machine accessible through the fsm
identifier.

baseState : Class

name = fsm.name+"State"

baseStateSignal : Method

name = ev.name
isQuery = False
isPolymorphic = True
isAbstract = False
body = " return this; "

baseStateSignalParam :
Parameter

name = ""
type = fsm.name+"State*"
kind = return
defaultValue = ""

: m
em

be
rs

: formal
parameter

{
ForEach = ev,
OfType = Event,
InCollection = fsm.hEvents
}

<<ForEach>>
BaseStateSignals

Figure 5: "ForEach" concept for repetitive object
specification. The diagram shows only the
specification for the base class FSMState and its
member functions generated for the state machine's
events. It belongs to the context of the state
machine accessible through the fsm identifier.

may be used. For example, Object Constraint Language
(OCL) may be used [15] if the tool is capable of parsing
these expressions or the programming interface of the
model is OCL-compliant. The other option is the
scripting language used in the tool.

Another needed concept is conditional creation. An
instance, a link, or a ForEach package may be tagged
with a condition that is a Boolean expression again in the
scope of the source model. If the expression evaluates to
False when the intermediate model is being created, the
conditional instance or link is not created, or the package
is ignored. A simple example is shown in Figure 6. The
example assumes that the StateMachine type in the
source metamodel has a Boolean attribute named
"isSynchronized." If the value of this attribute is True, the
generated state machine code should be mutually
exclusive in a concurrent environment. This is achieved
by an attribute of type Semaphore that is generated in the
base state class and the corresponding wait/signal
operations in all publicly accessible operations (not
shown in the picture).

Since ForEach packages actually represent loops in
the process of intermediate model generation, they may
be nested. An example is shown in Figure 7. For our
example, a derived class should be created for each state.
This is specified with the outer ForEach package. For
each of the events this state reacts upon, an operation
should be generated in this class (specified with the
nested package).

A ForEach package introduces a scope of the
expressions. The rules for the scope nesting are identical
as in the traditional procedural programming languages.
An expression may use identifiers from the scope in
which it is defined, as well as from its enclosing scopes.
A ForEach identifier is local for its package, and hides
the same identifiers from the enclosing scopes.

It has been mentioned that the presented
specifications belong to the context of one instance from
the source model. A certain identifier (fsm in our
example) refers to this instance. However, we generalize

this context in the following way. The whole mapping is
specified following the UML style of hierarchically
organizing models in packages. Thus, the mapping
specification is actually another model, represented with
a package hierarchy, where each package may, but need
not be a ForEach one, and may own instances, links, and
other packages. (Ordinary packages serve as grouping
elements only and map into the same grouping of the
elements of the generated model.) Besides, following the
UML diagrammatic style, it is allowed that the contents
of one package are defined by several diagrams to
enhance readability and clearance. Therefore, all the
diagrams shown in figures 4 to 7 belong to a ForEach
package with the InCollection value referring to a tool-
manipulated collection of all instances of the given type
in the source model (for our example, something like:
StateMachine::getAllInstances()).

The generated model is organized as a hierarchy of
packages, where each package is an unordered collection
of the elements it owns by default. More precisely, the
ordering of the elements in a package is implicitly
determined by the order of their creation; by default, the
ordering of creation is not defined. Sometimes, however,
an explicit ordering of the elements is needed. This
ordering may ensure a proper sequential traversal through
the model elements; for example, if a sequential structure
(e.g., text) is to be further generated from that model. If
an element x is to be created after an element y, it may be
considered dependent on y. This relationship is specified

derivedState : Class

name = fsm.name+"State"+st.name

{
ForEach = st,
OfType = State,
InCollection = fsm.states
}

<<ForEach>>
DerivedStateClass

baseState : Class

name = fsm.name+"State"

: generalization

supertype

subtype

<<ForEach>>
DerivedStateSignal

{
ForEach = tr,
OfType = Transition,
InCollection = st.hSource
}

derivedStateSignal : Method

name = tr.myTrigger.name
isQuery = False
isPolymorphic = True
isAbstract = False
body = "fsm()->" + tr.name + "();\n" +
"return &(fsm()->state" +
tr.myTarget.name + ");\n"

derivedStateSignal
Param : Parameter

name = ""
type =
fsm.name+"*"
kind = return
defaultValue = ""

: members

: formal parameters

Figure 7: Nesting of "ForEach" packages. The diagram
shows a part of the specification for the derived state
classes and their member functions for the events.

baseState : Class

name = fsm.name+"State"

baseStateSemaphore :
Attribute

{Cond = fsm.isSyncronized}

name = "sem"
type = "Semaphore"
inivitalValue = 1

: m
em

be
rs

Figure 6: Conditional object creation. The diagram shows
only the specification for the base class FSMState and its
data member (a semaphore) generated for synchronization,
only if the state machine is "synchronized."

in the mapping diagram with a dependency from x to y,
stereotyped as <<sequence>> [4]. Consequently, y will
precede x in a traversal of the elements of their enclosing
generated package.

From the diagrams formally specified as shown
above, the source or the scripting code for the model
transformer used at the modeling level may be generated
automatically. For our example, the code is shown in the
appendix, and the details are reported elsewhere [12].
The algorithm for generation of such code is as follows.
For a package, the algorithm is: first introduce implicit
sequence dependencies from links to the instances they
connect, then sort topologically the owned elements
according to the sequence dependencies, and then
generate code for each of the elements (recursively for its
nested packages). If the package is a ForEach one, the
specified iteration will be performed, and one package in
the generated model will be created for each iterated
element. Each instance generates statements that will first
create an object of the specified type and then set its
attributes to the specified values, using the programming
interface of the modeling tool.

The approach of the domain mapping may be
generalized to arbitrarily many intermediate domains.
The idea is that a tool may generate several intermediate
models as different levels of modeling abstraction, using
the domain mapping specifications. The process of
creation of intermediate models may be viewed as a
descent down the abstraction levels. The tool may allow
the user to make changes in each intermediate model,
prior to generating the next one, if the user is not satisfied
with the automatically generated model. By using
different domains for intermediate models, it may be
expected that a better understanding of the problem and
more complete modeling may be achieved. On the other

side, other more abstract domains may be built on top of
already designed domains, and the transformation may be
easily specified using the mapping from the new domain
into the already implemented lower-level one. This is one
of the directions for the future work.

5 Case study and evaluation

The example of the modeling tool for state machines
has been implemented as a final project for the B.Sc.
degree at the University of Belgrade. The specification
had about 30 instances and seven ForEach packages. The
implementation of the code generation part, using domain
mapping, and a built-in C++ code generator, took about
ten hours, including testing.

Apart from this example, two more are presented here
(these are just small excerpts of much more complex
examples from practice). The second example is the
problem of transforming object-oriented class model into
the relational database model. This is a common task in
object-oriented programming when persistence of objects
is accomplished by a relational database. Here, the source
domain is UML. The target domain is the code that may
be used to define database tables and fields, e.g., SQL
declarations. However, the direct mapping from the class
model into the textual SQL declarations is difficult to
specify. Therefore, an intermediate domain is introduced,
with the metamodel shown in Figure 8a. It is a simplified
version that encompasses tables and fields only. It is now
easy to specify generation of SQL declarations from this
intermediate domain, because it is almost (if not
completely) one-to-one mapping. In this example, the
accent is on inheritance, as the most difficult task in this
process. It is assumed that the user is offered two
strategies of implementing inheritance in relational tables.
The first one assumes that a derived class has its own

Table

+ name : String

Field

+ name : String
+ type : String

fie
ld

s

*

(a)

table : Table

name = cls.name

<<ForEach>>
OwnedAttributes

{
ForEach = attr,
OfType = Attribute,
InCollection = cls.myMembers
}

field : Field

name = attr.name
type = attr.type

: f
ie

ld
s

<<ForEach>>
BaseClasses

{
ForEach = gen,
OfType = Generalization,
InCollection = cls.supertype
}

: fields primaryKey : Field

name = "ID"
type = "AutoNumber"

foreignKey : Field

{ Cond = gen.inheritFieldsFromCommonTable }
name = "ID"+gen.supertype.name
type = "Long"

<<ForEach>>
InheritedAttributes

{
Cond = ! gen.inheritFieldsFromCommonTable,
ForEach =attr,
OfType = Attribute,
InCollection = gen.supertype.getAllMembers()
}

field : Field

name = attr.name
type = attr.type

: f
ie

ld
s

(b)

: f
ie

ld
s

Figure 8: Example: Generation of the relational database scheme from a UML class model. This example focuses on
inheritance. The source domain metamodel is UML (not shown here). (a) The target domain metamodel (relational).
(b) The domain mapping specification. Operation getAllMembers() returns the collection of all owned and inherited
members of a GeneralizableElement (Type in this case).

independent table, with all inherited attributes copied into
its own table. In this approach, an object is represented
with a single record in the table that represents its class.
In the second approach, a derived class has a table
without inherited attributes, but its records are dependent
on the records from the table that represents its base class.
In this second approach, an object is represented by a set
of records in the tables that represent its own class and its
base class. We assume that the user may chose one of the
approaches for each generalization in the class model, by
setting the Boolean attribute of the generalization named
"inheritFieldsFromCommonTable." This attribute should
be added to the UML metamodel as a tagged value of
generalization. If this field is set to True, the second
approach is chosen. In both approaches, the table should
have a primary key (of type "AutoNumber" and named
"ID"), and the set of the fields for the attributes of the
class. In the first approach, the table should have the
fields for all attributes from the base class, for each
inheritance relationship tagged with
inheritFieldsFromCommonTable = False. In the second
approach, the table should have only a foreign key (of
type "Long" and named "ID"+<baseClassName>) to link
it to the base class table. The corresponding mapping
scheme is shown in Figure 8b.

The third example shows a case when UML is not
used as any of the domains. It is taken from one of our
projects with database-centric web application
development. A method and infrastructure for rapid
application development have been developed. A very
small part of the idea is presented here, just to illustrate
the usage of metamodeling and domain mapping. In this
approach, application is modeled by the navigation
through web forms. From one web form, the user can
choose a command, which performs some actions in the
database on the server and displays another web form.
The commands are implemented as radio button options
in the web form, and a "Submit" button that posts the data
from the form to the server. A very small part of the
source domain metamodel is shown in Figure 9a. This
domain should be mapped into the standard HTML
textual output. However, this mapping is complex
because the source domain has other concepts not shown

here. Therefore, an intermediate model is introduced that
may be mapped one-to-one to the target domain. It
contains abstractions such as an HTMLPage or an
HTMLControl (text box, list box, radio button, etc.). This
metamodel is shown in Figure 9b. As in the previous
example, generation of HTML from the intermediate
domain is straightforward. The mapping scheme for this
example is shown in Figure 9c. The author implemented
the complete prototype tool in only three days, including
metamodeling, code generation, and testing.

In practice, the following method for defining
intermediate domains and mapping specifications is
proposed. After the source domain is defined and well
understood, the most important task is the design of its
metamodel. All common principles of object-oriented
analysis and design may be applied to this process [3].
Then, the desired target output is informally specified and
supported by an example. For this purpose, a simple yet
descriptive example from the source domain is
developed. Then, the desired code for this example is
generated manually. The result of this process
corresponds to the example shown in Figure 1.
Afterwards, an intermediate domain that will make the
output generation less complex is found. It should be very
close to the target domain, so that the desired output may
be easily generated from it. If it is still conceptually far
from the source domain, other intermediate domains
should be built upon it, etc. We have successfully found
such a domain in all the cases. Reuse of already
developed domain models is of much help. For example,
if the target output is C++ or any other object-oriented
programming language code, we use a UML subset as the
intermediate domain. Another useful and reusable
example is the relational domain. The metamodel of the
intermediate domain should be built, too, if it is not
already available. Finally, the domain mapping is
specified using the following procedure. The developer
goes through the sample output, and tries to find out of
which element in the intermediate model that part of the
code is an outcome. It is then specified in the mapping
object diagram. The procedure is applied iteratively and
incrementally. This procedure is much easier than the
hard-code approaches, because the elements of the target

form
C

om
m

ands*

(a) (c)

WebForm

+ name : String
+ description : String

Command

+ name : String
+ caption : String
+ description : String

ne
xt

W
eb

F
or

m

1

*

pageC
ontrols

HTMLPage

+ name : String
+ description : String

HTMLControl

+ name : String
+ type : HTMLControlType
+ value : String
+ caption : String

*

(b)

page : HTMLPage

name = wf.name
description = wf.description

<<ForEach>>
Commands

{
ForEach = cmd,
OfType = Command,
InCollection = wf.myCommands
}

button : HTMLControl

name = "Command"
type = "Radio"
value = cmd.name
caption = cmd.caption

submitButton : HTMLControl

name = "Submit"
type = "Submit"
value = "Perform Action"

: p
ag

eC
on

tr
ol

s

: pageControls

Figure 9: Example: Web design tool. (a) An excerpt from the source domain metamodel. (b) An excerpt from the target
domain metamodel. (c) The domain mapping specification.

output that originate from the same source model element
may be spread all over the target model. For instance, in
our first example, the events of a state machine produce
operation declarations in many separate classes.
Therefore, it is easier to go sequentially through the
generated output and build incrementally the domain
mapping object diagram as the need for each of its
elements arises. Other possible heuristics and a more
formal approach to this process will be investigated in the
future work.

The research team from the University of Belgrade
has successfully used the described approach in several
other large projects. All the examples confirmed the
expectations on possible benefits of the strategy. The
specifications of output generation are clear and concise,
easy to maintain, modify, and reuse. They are
hierarchically organized, visually presented (using
multiple consistent diagrams), and thus cope well with a
potential complexity of the mapping. It is possible to
build the mapping specifications incrementally and
iteratively, and to test them using only partially
developed object diagrams. (Such incremental testing of
partially defined mappings is not available in other
techniques.) The process of specification is less tedious
and error-prone. As the most important benefit, the
development of output generator is shortened a lot. For
instance, the first example (state machines) was started by
using the conventional hard-coded approaches. It took us
several weeks only to specify, without testing and
debugging that were extremely difficult. By using the
domain mapping strategy, we have reduced the working
time to the order of hours. Production time will be
shortened even more when a considerable repository of
domain models and their transformers to various versions
of the target implementation is created. In that case, user-
defined models and transformers may be reused for
different versions of the target implementation by using
different transformers of the intermediate domains from
the repository. Besides, as already stated, the mapping
from the higher-level domains into the reusable
intermediate domains may be defined with less effort
than before.

Nevertheless, there are some weaknesses of our
approach recognized so far. Although the specification
supports conditional, sequential, and repetitive instance
creation, it does not support recursion. Namely, one of
the most important features of the traditional approaches
that traverse the model structure and invoke operations
for the model elements is that these operations may be
recursive. This issue is particularly important when
generating recursive structures, what is sometimes needed
in textual output. In the examples we have studied so far,
we have not encountered the need for recursion.
However, the solution exists, but the future work will
investigate this issue more deeply and will try to find a
way for specifying recursion that best fits the definition
of the existing concepts.

Another issue that may be improved is the visual
specification. It is very often the case that a lot of
instances and links must be specified in the domain
mapping model, in order to describe formally the creation
of an instance of a composite abstraction (e.g., a class and
a set of its members in Figure 4). If that abstraction has a
compound symbol defined in the accompanying notation,
it may be much easier to use that symbol instead of the
set of instances and links. It is possible to incorporate this
feature in our approach, while completely preserving the
described semantics.

6 Conclusions

The problem of specifying output generation in the
context of modeling environments has been studied in
this paper, and a new approach, called domain mapping,
has been proposed. The approach is based on the
observation that the automatic output generation is a
process of creating a model in the target domain from the
model in the source domain. If the domains are at distant
levels of abstraction, the mapping is difficult to specify,
maintain, and reuse. This is why one or more
intermediate domains are introduced. The mapping is
specified using UML object diagrams that show the
instances from the intermediate domain that should be
created by mapping. The diagrams are extended with the
concepts of conditional, repetitive, and sequential
creation. These concepts are implemented using the
standard UML extensibility mechanisms.

Several case studies from different software
engineering domains have been presented. All the
examples have proved the major benefits of the approach.
The specifications are clear and concise, thus easy to
maintain and modify. The domain mapping strategy leads
to a better reuse of domain models and to a remarkably
shorter production time.

Acknowledgements

The author is grateful to D. Marjanovic, P. Nikolic,
M. Ljeskovac, M. Zaric, and Lj. Lazarevic who
contributed to the implementation of a supporting tool
and the case study.

References

[1] Anlauff, M., Kutter, P. W., Pierantonio, A.,
"Montages/Gem-Mex: A Meta Visual Programming
Generator," Proc. 14th IEEE Symp. Visual Languages,
Sept. 1998

[2] Artsy, S., "Meta-modeling the OO Methods, Tools, and
Interoperability Facilities,'' OOPSLA'95 Workshop in
Metamodeling in OO, Oct. 1995

[3] Booch, G., Object-Oriented Analysis and Design with
Applications, 2nd ed., Benjamin/Cummings, 1994

[4] Booch, G., Rumbaugh, J., Jacobson, I., The Unified
Modeling Language User Guide, Addison-Wesley
Longman, 1999

[5] Costagliola, G., Tortora, G., Orefice, S., De Lucia, A.,
"Automatic Generation of Visual Programming
Environments," IEEE Computer, Vol. 28, No. 3, March

1995, pp. 56-66
[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design

Patterns, Addison-Wesley Longman, 1995
[7] Garlan, D., Cai, L., Nord, R. L., "A Transformational

Approach to Generating Application-Specific
Environments," Proc. Fifth ACM SIGSOFT Symp. Softw.
Development Environments, Dec. 1992, pp. 68-77

[8] Garlan, D., Krueger, C. W., Staudt, B. J., "A Structural
Approach to the Evolution of Structure-Oriented
Environments," Proc. ACM SIGSOFT/SIGPLAN Softw.
Eng. Symp. Practical Softw. Development Environments,
Dec. 1986

[9] Habermann, A. N., Notkin, D. S., "Gandalf: Software
Development Environments," IEEE Trans. Software
Engineering, Vol. 12, No. 12, Dec. 1986, pp. 1117-1127

[10] Karrer, A. S., Scacchi, W., "Meta-Environments for
Software Production," Report from the ATRIUM Project,
Univ. of Southern California, Los Angeles, CA, Dec.
1994,
http://www2.umassd.edu/SWPI/Atrium/localmat.html

[11] MetaModel.com, Metamodeling Glossary,
http://www.metamodel.com

[12] Milicev, D., "Automatic Model Transformations Using
Extended UML Object Diagrams in Modeling
Environments," submitted for publication, available on
request

[13] Nordstrom, G., Sztipanovits, J., Karsai, G., Ledeczi, A.,
"Metamodeling – Rapid Design and Evolution of Domain-
Specific Modeling Environments," Proc. IEEE ECBS'98
Conf., 1998

[14] Rational Software Corp. et al., UML Semantics, Ver. 1.1,
Sept. 1997

[15] Rational Software Corp. et al., Object Constraint
Language Specification, Ver. 1.1, Sept. 1997

[16] Sztipanovits, J. et al. "MULTIGRAPH: An Architecture
for Model-Integrated Computing," Proc. IEEE
ICECCS'95, Nov. 1995, pp. 361-368

[17] Zhang, D.-Q., Zhang, K., "VisPro: A Visual Language
Generation Toolset," Proc. 14th IEEE Symp. Visual
Languages, Sept. 1998

Customizable CASE and meta-CASE tools

[18] Advanced Software Technologies, Inc., Graphical
Designer, http://www.advancedsw.com

[19] Lincoln Software Ltd., IPSYS ToolBuilder,
http://www.ipsys.com

[20] MetaCase Consulting, MetaEdit+ Method Workbench,
http://www.metacase.com

[21] mip GmbH, Alfabet, http://www.alfabet.de
[22] Platinum Technology, Paradigm Plus,

http://www.platinum.com/clearlake
[23] Rational Software Corporation, Rational Rose,

http://www.rational.com
[24] Univ. of Alberta, MetaView, http://

www.cs.ualberta.ca/news/CS/1998/research/
[25] Vanderbilt University, Multigraph Architecture,

http://www.isis.vanderbilt.edu

Appendix

The generated C++ code for the model transformer
(an excerpt for the diagram in Figure 7).
ForEach/EndForEach are C++ macros that implement
type-sensitive iteration.

// Temporary package for the intermediate model:
Package& pck = Package::create();
// Intermediate model:
ForEach(fsm,StateMachine,StateMachine::getAllInstances())
 // Generated for objects:
 // Object: baseState
 Class& baseState = Class::create(pck);
 baseState.name = fsm.name+"State";

 // Generated for ForEach packages:
 // Package: DerivedStateClass
 ForEach(st,State,fsm.states)
 // Generated for objects:
 // Object: derivedState
 Class& derivedState = Class::create(pck);
 derivedState.name = fsm.name+"State"+st.name;

 // Generated for ForEach packages:
 // Package: DerivedStateSignal
 ForEach(tr,Transition,st.hSource)
 // Generated for objects:
 // Object: derivedStateSignal
 Method& derivedStateSignal = Method::create(pck);
 derivedStateSignal.name = tr.myTrigger.name;
 derivedStateSignal.isQuery = False;
 derivedStateSignal.isPolymorfic = True;
 derivedStateSignal.isAbstract = False;
 derivedStateSignal.body = "fsm()->" + tr.name + "();\n" +
 "return &(fsm()->state" + tr.myTarget.name + ");\n");
 // Object: derivedStateSignalParam
 Parameter& derivedStateSignalParam = Parameter::create(pck);
 derivedStateSignalParam.name = "";
 derivedStateSignalParam.type = fsm.name+"*";
 derivedStateSignalParam.kind = Return;
 derivedStateSignalParam.defaultValue = "";

 // Generated for ForEach packages:

 // Generated for links:
 // Link: <unnamed> of Association: members
 Link& link02 = Link::create(Members::Instance(),derivedState,derivedStateSignal);
 // Link: <unnamed> of Association: formal parameters
 Link& link03 = Link::create(FormalParameters::Instance(),
 derivedStateSignal,derivedStateSignalParam);
 EndForEach(tr)

 // Generated for links:
 // Link: <unnamed> of Association: generalization
 Link& link01 = Link::create(Generalization::Instance(),derivedState,baseState);
 EndForEach(st)

 // Generated for links:

EndForEach(fsm)

