
Customizable Output Generation in Modeling Environments
Using Pipelined Domains

Dragan Milicev
School of Electrical Engineering, Dept. Comp. Sc. & Eng.

University of Belgrade
emiliced@etf.bg.ac.yu

Abstract
Domain-specific modeling and metamodeling environments most
often base their output generation capability on wizards, output
templates, grammar-based transformers, or hard-coded output
generators. The complexity of the specification process for such
generators, and their dependence on the domain do not encourage
customization, flexibility, and reuse. This paper proposes a
solution to this problem. In the proposed approach, the domains
are (meta) modeled using the standard object-oriented paradigm.
Second, the generation of a model in the target domain from a
model in the source domain is specified using extended UML
object diagrams that allow specification of conditional, repetitive,
and sequential creation of instances of the target domain's
abstractions. Finally, the transformation of models may be
performed in a pipelined fashion, where each domain model and
mapping may be either created from the scratch or reused from the
repository. This approach allows more efficient, incremental
building of more abstract domains and their mapping into less
abstract domains, because each transformation step is much less
complicated to specify, maintain, and reuse. Furthermore, by
simple choosing another pipeline, different versions of the ultimate
implementation from the same initial high-level, user-defined
model may be obtained automatically. A prototypal supporting
tool has been implemented and briefly presented in the paper.

Keywords: Domain-specific modeling, metamodeling, object-
oriented modeling, model transformation, The Unified Modeling
Language (UML)

1 Introduction
Apart from the important roles of domain-specific modeling and
metamodeling environments (included, but not limited to CASE
tools) in specifying, documenting, and visualizing systems, the
purpose of modeling tools is most often system construction [4].
'Construction' means producing output from the system
specification that may be interpreted by a certain external
environment to provide the desired system's behavior. The
examples include, but are not limited to: documentation, source
code in a certain programming language, database scheme,
hardware description, specification of implementation
interpretable by a runtime environment, or any other formal
structure. Most often, the existing tools base their output
generation capability on wizards, output templates, grammar-based
transformers, or hard-coded generators. The complexity of the
specification process for such generators, and their dependence on
the domain do not encourage customization, flexibility, and reuse,
as briefly explained in this paper. Therefore, a solution to this
problem is proposed here.

In the proposed approach, the domains are (meta) modeled using
the standard object-oriented paradigm. Second, the generation of a
model in the target domain from a model in the source domain is

specified using extended UML object diagrams that allow
specification of conditional, repetitive, and sequential creation of
instances of the target domain's abstractions. Finally, the
transformation of models may be performed in a pipelined fashion,
where each domain model and mapping may be either created
from the scratch or reused from the repository. This approach
allows more efficient, incremental building of more abstract
domains and their customizable mapping into less abstract
domains, because each transformation step is much less
complicated to specify, maintain, and reuse.

The paper continues as follows. Section 2 is a brief overview of
the existing approaches and their weaknesses. Section 3 presents
the core ideas of the approach. Section 4 contains a short
description of the prototypal supporting tool. The paper ends with
a conclusion. More details and comments may be found in [12].

2 Overview of the related work
A broadly accepted approach to output generation is the use of
wizards. Wizards allow the user to specify parameters of the
generation in a sequence of interactions, and then produce the
output. However, wizards are only a manifestation of the
background transformational process specified at the tool's
development time. The subject of this paper is the method of
developing transformations and reusing them. A sound assumption
is that the existing wizards are implemented using some of the
approaches discussed below.

A first approach is the development of a hard-coded transformer,
where the developer has to program the output generation in a
scripting language. Some of the drawbacks of this approach are
evident: (1) The process of specifying may be extremely tedious,
time-consuming, and error-prone. (2) The developer must deal
with the complexity of the target domain (e.g., target language
syntax and semantics). (3) Possibly available general-purpose and
reusable code generators from some common domains are not
reused. (4) The transformer is not reusable. Various variants exist
that partially cure the complexity and maintenance problem. A
first one is using the Visitor design pattern [6] to de-couple the
structural model specification from the transformer's code.
Another approach uses output templates that represent textual
specifications of the desired output, parameterized with references
to source model variables that are replaced at the transformation
time [21]. However, these approaches do not support a more
formal, preferably visual mapping specification, and do not
promote model pipelining proposed here.

It is similar with a number of approaches that use structural
transformations of grammar-based models and various rule-based
techniques [7, 8, 9]. Although their goal is the same as here, there
are a number of differences. First, they primarily deal with textual
models (or, more generally, with strings of entities). Second, their
'metamodels' are expressed with grammars, where the entities are

defined hierarchically (using sub-entities), and where recursion is
the main difficulty, instead of the object-oriented paradigm that is
used here. The main purpose of the supporting environments in
that case is to build an internal representation (derivation tree)
from the user-defined model (textual program) by parsing it, and
then to transform this internal representation into the target
internal representation. Thus, the internal structure of the model is
inherently a tree. In the modeling environments that use object-
oriented paradigm for metamodeling as the one proposed here,
there is no need for the parsing phase, because the user explicitly
creates the instances of abstractions and their links. Therefore, the
model representation is a graph of objects (instances of classes)
connected with links (instances of associations). This is why the
approach presented here may be considered as a more general
structural transformation. Finally, defining a grammar for a certain
domain and specifying the mapping between the grammars may be
a difficult task because it requires more sophisticated work than
defining or just understanding the metamodels specified in object-
oriented terms.

A research field also related to metamodeling is the field of visual
programming languages (VPL) [1, 5, 17]. However, the underlying
metamodels of VPLs are also grammars [5] or other formal
models. Consequently, VPL metaenvironments have the same
characteristics as the grammar-based environments described
previously. Besides, the problem of the model transformation,
which is the subject of this paper, is not considered as an important
one in the field of VPLs.

Automatic generation of tools and applications has been an
attractive discipline for years, and a lot of customizable CASE and
meta-CASE tools, both commercial and academic ones, are
available at the moment [18, 19, 20, 21, 22, 23, 24, 25, 26]. All
these tools provide programming interfaces to their metamodels
through which the user may access the models in the generated
CASE tools to produce the output. However, output generation is
always specified using the described hard-coded approach. As a
conclusion, to the best of our knowledge, we are not aware of any
other approach that is closely related to the one presented here.

3 Idea of the proposed approach
A simple example that will be used here is shown in Figure 1. It
deals with customizable generation of C++ code out from the
models that represent state machines. The code is generated using
the State design pattern [6]. It is assumed that the user has
specified a state machine named FSM shown in Figure 1a. For this
example, several classes should be generated in the output C++
code. The first is named FSM. It contains operations that
correspond to the events of the state machine. The second class is
abstract and is named FSMState. It contains one polymorphic
operation for each event. Finally, one class derived from
FSMState is generated for each state. It overrides the operations
that represent those events on which the state reacts. These
operations perform transitional actions and return the target state.

The first assumption of the proposed approach is that the domains
are (meta) modeled using the standard object-oriented paradigm.
The most important abstractions used for metamodeling are Class,
Attribute, Operation, Generalization, and Association. For the
definition of the semantics of these abstractions, a core (structure-
oriented) subset of the UML metamodel [14] is used (it is referred
to as the UMLCore domain). A conceptual model of a domain (the
metamodel) is defined in terms of instances of the UMLCore
abstractions (Class, Association, etc.) and links between them, as
in Figure 1c.

A model in a certain domain is again a set of instances of the
abstractions and links between them (as instances of associations).
'Abstractions' are instances of Class, and 'associations' are
instances of Association in the corresponding metamodel. Each
model is organized as a hierarchy of packages that own instances
and other nested packages. Figure 2 shows the metamodeling (a)
and modeling (b) phases for the example. In the metamodeling
phase, (meta-)metamodels (left browser) are the domains
UMLCore (contains Class, Association, etc.) and DomainMapping
(the metamodel of the mapping specifications, to be described
later). (Meta-)Models (right browser) are the (meta-)model of
StateMachines from Figure 1c, and OOPL, which is a reusable

A B

C

s1 / t1

s2 / t2

s1 / t3

s3 / t4s1

ModelElement

State Transition
1..1 0..*+mySource1..1 +hSource 0..*

Source

1..1
0..*

+myTarget1..1
+hTarget 0..*Target

Event

0..11..*

+myTrigger

0..1

+hEvents

1..* Trigger

StateMachine

0..*

1..1
+myStates

0..*

+hStates

1..1

States

0..*
1..1 +myTransitions

0..*
+hTransitions1..1

Transitions

0..*

1..1 +myEvents

0..*

+hEvents1..1 Events

class FSM;

class FSMState {
public:
 FSMState (FSM* fsm) : myFSM(fsm){}

 virtual FSMState* s1 ();
 virtual FSMState* s2 ();
 virtual FSMState* s3 ();

 virtual void entry () {}
 virtual void exit () {}

protected:
 FSM* fsm () const {return myFSM;}
private:
 FSM* myFSM;
};

class FSMStateA : public FSMState {
public:
 FSMStateA(FSM* fsm) :FSMState(fsm){}

 virtual FSMState* s1 ();
 virtual FSMState* s2 ();

 virtual void entry () { ... }
 virtual void exit () { ... }
};

FSMState* FSMStateA::s1 () {
 fsm()->t1();
 return &(fsm()->stateA);
}

FSMState* FSMStateA::s2 () {
 fsm()->t2();
 return &(fsm()->stateB);
}

(a)

(b)

(c)

Figure 1: Demonstrational example: Code generation for state machines. (a) A sample state machine.
(b) An excerpt of the generated code. (c) The metamodel.

domain that is used to generalize target OO programming
languages. It contains abstractions that may be mapped directly
into the target code (Class, Derivation, MemberFunction,
DataMember, FunctionBody, etc., but not Association as in
UMLCore). In the modeling phase, the metamodels are
StateMachines and OOPL, and the models are concrete examples
(instances) of them. For example, the model "StateMachine" is
from the "StateMachines" domain and contains a specification of
the example from Figure 1a.

Second, the generation of a model in the target domain from a
model in the source domain is specified using extended UML
object diagrams that allow specification of conditional, repetitive,
and sequential creation of instances of the target domain's
abstractions. The details may be found in [12]. An example is
shown in Figure 3, and its representation in Figure 2a. The
packages stereotyped with “ForEach” specify iteration through
collections of elements in the source model, and creation of
instances and links in the destination model for each iterated
element. The specifications are represented again as instances and
links from the "DomainMapping" domain. From that specification,
the tool generates executable code that may be used as a
transformer from a source model ("StateMachine" in Figure 2b)
into a destination model ("IntermediateOOPL" in Figure 2b). The
intermediate model is then transformed into the source code by a
built-in and reusable code generator.

Therefore, the proposed approach introduces one or more
intermediate domains in the output generation process. In other
words, it simplifies complex and cumbersome transformations of a
model into another representation by doing the transformation in
multiple steps. This has the advantage that each step becomes
simpler and that existing transformation can be reused. Finally, the
transformation of models may be performed in a pipelined fashion,
where each domain model and mapping may be either created
from the scratch or reused from the repository. Thus, by simple
choosing another pipeline, different versions of the ultimate

implementation from the same initial high-level, user-defined
model may be obtained automatically.

An example is shown in Figure 4. In the metamodeling phase, the
developer defines domain (meta)models, and domain-mapping
specifications. Because the transformational process is pipelined,
the domain models and mapping specifications may be reused
from a repository. For the example in Figure 4, code generators
from the OOPL domain are reusable. In the modeling phase, the
user defines the source model. The desired transformation is
chosen with specifying the pipeline. The example in Figure 4
shows that there may exist more transformations from the source
(StateMachine) into the intermediate (OOPL) domain, depending
on the desired concept for implementing state machines. Both of
them may be mapped into several target programming languages,
by simply choosing different transformation pipelines.

4 Supporting tool
A prototypal (meta) modeling tool that supports the described
approach has been implemented (Figure 2). The tool manipulates
with models and generates C++ code that is linked to the tool's
core (fixed) part. The same organization of the tool, shown in
Figure 5, is used in both phases (metamodeling and modeling). It
consists of two parts: the M2Level part manipulates with
metamodels, and the M1Level part manipulates with models. Each
of the parts has a fixed core part that is used for all domains. The
fixed parts provide the organization of the models (hierarchy of
packages). The generated parts (M2Gen and M1Gen) are domain-
specific. The M2Gen part contains instances of the UMLCore
abstractions (which are defined as C++ classes in M2Fix) that
define the domain metamodels. The M1Gen part contains C++
code for the classes that implement abstractions from the
corresponding domains, along with model transformers. If a
domain model is defined using the UMLCore metamodel, the tool
generates (using a built-in generator) M2Gen and M1Gen parts
that are linked with the Fix parts to produce the modeling tool for
that domain.

(a) (b)

Figure 2: Demonstrational example in the supporting tool. (a) Metamodeling phase. (b) Modeling phase. In both cases the left browser
shows the metamodels (domains), and the right one shows the models in the corresponding phase. Each model in the right browser is an
instance of exactly one metamodel from the left browser.

The tool supports three different strategies for specifying output
generation: domain mapping, Visitor-based hard coded generation
[6], and template-based generation. When a domain model is
defined, the developer may specify arbitrarily many domain-
mapping (represented as models in the DomainMapping domain)
or Visitor-based (coded in C++) transformers. If the desired output
is a text, templates may be used, too. The tool generates code for
the transformers that is a part of the generated domain-specific
tool. It is expected that these three techniques may satisfy most of
the needs in practice.

Since the tool generates its own extensions as C++ code that is
compiled and linked with the Fix parts to produce a modeling
environment, the tool is completely flexible and extensible,
because it allows arbitrary user-defined extensions written in C++.
Its user interface is also modifiable, so the developer may redefine
the default generic specification dialogs for the domain
abstractions.

Several reusable metamodels (UMLCore, OOPL) and Visitor-
based code generators for them have been implemented, too. The
future work will concentrate on developing a repository of other
reusable domains and transformers, such as relational database,
entity-relationship, dataflow, workflow, state-transition, etc.

5 Conclusion
The proposed approach has been successfully used in several
complex examples that will be reported elsewhere. It has proved
the expectations that it allows more efficient, incremental building
of more abstract domains and their mapping into less abstract
domains, because each transformation step is much less
complicated to specify, maintain, and reuse. Furthermore, it
provides customizable application generation in different versions
of the ultimate implementation from the same initial high-level
user-defined model.

Acknowledgements
The author is grateful to D. Marjanovic, P. Nikolic, M. Ljeskovac,
M. Zaric, and Lj. Lazarevic who contributed to the tool
implementation and examples.

References
[1] Anlauff, M., Kutter, P. W., Pierantonio, A., "Montages/Gem-Mex: A Meta

Visual Programming Generator," Proc. 14th IEEE Symp. Visual Languages,
Sept. 1998

[2] Artsy, S., "Meta-modeling the OO Methods, Tools, and Interoperability
Facilities,'' OOPSLA'95 Workshop in Metamodeling in OO, Oct. 1995

[3] Booch, G., Object-Oriented Analysis and Design with Applications, 2nd ed.,
Benjamin/Cummings, 1994

[4] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language
User Guide, Addison-Wesley Longman, 1999

[5] Costagliola, G., Tortora, G., Orefice, S., De Lucia, A., "Automatic
Generation of Visual Programming Environments," IEEE Computer, Vol.
28, No. 3, March 1995, pp. 56-66

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Addison-
Wesley Longman, 1995

[7] Garlan, D., Cai, L., Nord, R. L., "A Transformational Approach to
Generating Application-Specific Environments," Proc. Fifth ACM SIGSOFT
Symp. Softw. Development Environments, Dec. 1992, pp. 68-77

[8] Garlan, D., Krueger, C. W., Staudt, B. J., "A Structural Approach to the
Evolution of Structure-Oriented Environments," Proc. ACM
SIGSOFT/SIGPLAN Softw. Eng. Symp. Practical Softw. Development

derivedState : Class

name = fsm.name+"State"+st.name

{
ForEach = st,
OfType = State,
InCollection = fsm.states
}

<<ForEach>>
DerivedStateClass

baseState : Class

name = fsm.name+"State"

: generalization

supertype

subtype

<<ForEach>>
DerivedStateSignal

{
ForEach = tr,
OfType = Transition,
InCollection = st.hSource
}

derivedStateSignal : Method

name = tr.myTrigger.name
isQuery = False
isPolymorphic = True
isAbstract = False
body = "fsm()->" + tr.name + "();\n" +
"return &(fsm()->state" +
tr.myTarget.name + ");\n"

derivedStateSignal
Param : Parameter

name = ""
type =
fsm.name+"*"
kind = return
defaultValue = ""

: members

: formal parameters

Figure 3: An example of a domain-mapping
specification. The diagram shows a part of the
specification for the derived state classes and their
member functions for the events.

FSM OPL

CPP

JAV

CPP

CPP

JAV

Legend:

Domain Metamodel

Domain Mapping

Model

Metamodel (M2) Level:

Visitor-based output generator

Language Domain

Mapping Associations

Model (M1) Level:

Source code (textual output)

Transformation

"Instance of" relationship

FSM State Machine Domain

OPL OOPL Domain

CPP C++ Domain

JAV Java Domain

Figure 4: An example of model pipelining. In the metamodeling phase,
the domain metamodels and their mapping are specified. In the modeling
phase, a user-defined model from the source domain may be automatically
transformed into several target models, by choosing a pipeline.

M2Fix

M2Gen

M1Fix

M1Gen

M2Level M1Level

Figure 5: Organization of the tool. The M2Level part
manipulates with metamodels. The M1Level part
manipulates with models.

Environments, Dec. 1986

[9] Habermann, A. N., Notkin, D. S., "Gandalf: Software Development
Environments," IEEE Trans. Software Engineering, Vol. 12, No. 12, Dec.
1986, pp. 1117-1127

[10] Karrer, A. S., Scacchi, W., "Meta-Environments for Software Production,"
Report from the ATRIUM Project, Univ. of Southern California, Los
Angeles, CA, Dec. 1994,
http://www2.umassd.edu/SWPI/Atrium/localmat.html

[11] MetaModel.com, Metamodeling Glossary, http://www.metamodel.com

[12] Milicev, D., "Automatic Model Transformations Using Extended UML
Object Diagrams in Modeling Environments," submitted for publication,
available from the author on request

[13] Nordstrom, G., Sztipanovits, J., Karsai, G., Ledeczi, A., "Metamodeling –
Rapid Design and Evolution of Domain-Specific Modeling Environments,"
Proc. IEEE ECBS'98 Conf., 1998

[14] Rational Software Corp. et al., UML Semantics, Ver. 1.1, Sept. 1997

[15] Rational Software Corp. et al., Object Constraint Language Specification,
Ver. 1.1, Sept. 1997

[16] Sztipanovits, J. et al. "MULTIGRAPH: An Architecture for Model-
Integrated Computing," Proc. IEEE ICECCS'95, Nov. 1995, pp. 361-368

[17] Zhang, D.-Q., Zhang, K., "VisPro: A Visual Language Generation Toolset,"
Proc. 14th IEEE Symp. Visual Languages, Sept. 1998

Customizable CASE and meta-CASE tools
[18] Advanced Software Technologies, Inc., Graphical Designer,

http://www.advancedsw.com

[19] Lincoln Software Ltd., IPSYS ToolBuilder, http://www.ipsys.com

[20] MetaCase Consulting, MetaEdit+ Method Workbench,
http://www.metacase.com

[21] MicroGold Software Inc., WithClass Scripting Tool,
http://www.microgold.com

[22] mip GmbH, Alfabet, http://www.alfabet.de

[23] Platinum Technology, Paradigm Plus, http://www.platinum.com/clearlake

[24] Rational Software Corporation, Rational Rose, http://www.rational.com

[25] Univ. of Alberta, MetaView, http://
www.cs.ualberta.ca/news/CS/1998/research/

[26]Vanderbilt University, Multigraph Architecture, http://www.isis.vanderbilt.

