
Note: Not for distribution or attribution: for review purposes only. 1

Object-Oriented Modeling of Database-Centric
Web Applications

Dragan Milicev
University of Belgrade

School of Electrical Engineering, Department of Computer Science and Engineering
E-mail: emiliced@etf.bg.ac.yu

Abstract: The contemporary three-tier Internet architectures provide a convenient infrastructure
for database-centric distributed applications with universal, cross-platform accessibility.
However, the software development process for such applications seems to be insufficiently
mature and raised on the appropriate level of abstraction to follow efficiently the highly evolved
infrastructure and to enable an adequately productive application construction. This paper
analyzes the problem in order to discover a common database-centric Web application model
that may be formalized. A modeling technique is proposed, which follows well-defined and widely
accepted object-oriented modeling principles and the Unified Modeling Language notation.
Thus, the approach enables modeling at a high level of abstraction and supports a formalized
transition from the object-oriented specification to the running Web application that may be
automated. A light prototypal runtime environment and a simple tool that may generate the
application from the UML specifications have been implemented. The proposed approach is easy
to comprehend, apply, and implement. It is least restrictive, in the sense that it is open for
arbitrary extensions that may be implemented using other programming paradigms.

Keywords: Internet, World Wide Web, Three-Tier Architecture, Object-Oriented Modeling, The
Unified Modeling Language (UML), Rapid Application Development, Database, Conceptual
Modeling

Introduction
The contemporary three-tier Internet architectures provide a convenient infrastructure for
database-oriented distributed applications with universal, cross-platform accessibility [6, 7, 8].
The crisp separation of the user interface, application, and database tiers, which are loosely
coupled through standardized interfaces, is one of the most important rationales for their
applicability. However, the software development process for such applications seems to be
insufficiently mature and raised on the appropriate level of abstraction to follow efficiently the
highly evolved infrastructure and to enable an adequately productive application construction.
One of the reasons is that the Web implementation model does not relate well to state-of-the-art
software development models [4]. Much effort has been made to find a solution to this problem.
There are constant attempts to incorporate the object-oriented model into the Web infrastructure
generally [6, 4], and with special emphasis on the database-centric applications [2] (see the
sidebar). This paper proposes yet another approach, which follows well-defined and widely
accepted object-oriented modeling principles and the Unified Modeling Language notation. This
is why it does not demand adoption of special-purpose conceptual models and development
principles. Besides, it is easy to comprehend, apply, and implement. Finally, it is highly flexible,
in the sense that it is open for arbitrary extensions that may be implemented using other
programming paradigms, as well as for other conceptual models.

Note: Not for distribution or attribution: for review purposes only. 2

Problem Analysis
The problem is analyzed first, in a way that may discover a common database-oriented Web
application model and a pattern that may be formalized. In this case, a modeling technique, a tool
for rapid application development, and a runtime environment may support the approach.

Observed from the execution and infra-structural perspectives, a typical database-centric
Web application model is shown in Figure 1a. On the client machine, Web pages are presented to
the user by a Web browser. The page may be a form with controls (textboxes, listboxes,
checkboxes, etc.) that allow retrieval and modification of the data from the database. The user
may change the data and activate the "Submit" operation. This action causes the standard post
method to be invoked, which consists of sending a series of items from the client to the
application server. Each item corresponds to one form's control, and carries the name and the
value of the control. The application server is responsible for applying business rules, retrieving
and storing data to the database, and finding the next page that will be sent to the client as an
HTML page. In order to communicate with the database server, the application server performs
SQL queries upon the database.

IntranetInternet

Send HTML

Apply Business Rules

Retrieve/Update Data
Change Data

Submit

SQL Query

Client Application Server Database Server

Post

Find Next Page

(a)
T h i s i s t h e s c h e m e o f t h e g e n e r a t e d o u t p u t .

The In te rp re te r a l lows 0 . . * mu l t ip l i c i t y ,

b u t t h e m a t a m o d e l a l l o w s a n d w i l l

genera te 0 . .1 .

H T M L C o n t r o l

m y N a m e : S t r i n g

myType : S t r i ng

m y V a l u e : S t r i n g

myCap t i on : S t r i ng

m y L a b e l : S t r i n g

H T M L C o n t r o l ()

g e n e r a t e C o d e ()

W e b F o r m

H T M L P a g e

n a m e : S t r i n g

desc r i p t i on : S t r i ng

s e t W e b F o r m ()

p r e p a r e F o r C G ()

g e n e r a t e C o d e ()

c lea r ()

0..*1 0..*1

p a g e C o n t r o l s

1

1

+ m y W e b F o r m1

1

S Q L S e l e c t

I D : l o n g

query : S t r ing

SQLSe lec t ()

g e n e r a t e C o d e ()

S Q L U p d a t e

I D : l o n g

query : S t r ing

S Q L U p d a t e ()

g e n e r a t e C o d e ()

C o m m a n d

P a r a m e t e r M a p p i n g

myAP : WFAc tua lPa rame te r *

m y F P : W F F o r m a l P a r a m e t e r *

P a r a m e t e r M a p p i n g ()

g e n e r a t e C o d e ()

C m d D D A

n a m e : S t r i n g

nex tPage : S t r ing

desc r i p t i on : S t r i ng

s e t C o m m a n d ()

g e t N a m e ()

p r e p a r e F o r C G ()

g e n e r a t e C o d e ()

c lear()

0..*

1

0..*

+ m y C m d

1

s e l e c t Q u e r i e s

0..*

1

0..*

+ m y C m d

1

u p d a t e Q u e r i e s

1

1

+ m y C o m m a n d1

1

0..*

1

+ m y P a r a m e t e r s0..*

+ m y C m d

1

p a r a m e t e r s

Database scheme
Class View

Database

Figure 1: A typical database-centric Web application model. (a) The infra-structural
and execution perspective. (b) The conceptual perspective.

Observed from the conceptual perspective (Figure 1b), and following the widely accepted
object-oriented principles, a typical database-centric application is an implementation of an
object-oriented model [1], where the database scheme is only a persistent implementation of the
domain's structural (class) model. Namely, the structural model of the domain for which such
application is developed may be specified (in the analysis phase) by the class model with
abstractions (classes) from the domain and relationships between them (most notably,
associations and generalizations). On the other side, the behavioral aspect of the application is

Note: Not for distribution or attribution: for review purposes only. 3

specified by use-cases [1, 5]. However, it may be noticed that a majority of use-cases that have to
be implemented in a typical application may be characterized as "structural." These are use-cases
that simply create, modify (attribute values of), or delete instances of the domain abstractions and
their links (as instances of associations). Often very few use-cases may be qualified as
"behavioral," meaning that they navigate through the application structure (instances and links)
and provide the functionality that is specific for the application. Besides, structural use-cases may
be designed using various patterns that are based on the semantics of the relationships between
abstractions. Consequently, these use-cases may be implemented fully or semi-automatically.
Consequently, a modeling technique should support modeling at a high level of abstraction, allow
fast development of typical structural scenarios, and be open for implementation of non-typical
behavioral scenarios.

Note: Not for distribution or attribution: for review purposes only. 4

The Idea of the Proposed Approach
The idea of the proposed solution is based on the observation of a typical man-machine
interaction cycle, shown in Figure 2. While executing the application, the user modifies data in a
certain starting Web form. This operation does not encompass any interaction with the servers,
because it may be completely performed by the Web browser. The cycle starts when the user
chooses to submit the form. This operation may be generalized and it may be assumed that the
user chooses one of the commands that are offered in the form. The data from the form are sent to
the server by the post method. The application server should first update the database by the data
obtained from the form. This operation will be referred to as performing SQL Update queries,
although the queries may be any that change the database (Insert, Delete, or none). Then, the
server should find the next Web page for the issued command. Since this page may be another
form whose controls should be filled in by the data from the database, the server performs SQL
Select queries to retrieve the data. Upon reception of the query results, the server reformats the
next HTML page by filling in the concrete values of the controls. Finally, the server sends the
ending HTML form to the client, and the cycle is repeated.

8: Reformat HTML
with the retrieved data

5:Data to fill the Page?

IntranetInternet

Starting Form

2:Post
3:SQL Update

4:Find Next Page
6:SQL Select

10:Ending Form

1:Submit

7:Query Result9:Send HTML

Figure 2: A typical man-machine interaction cycle during execution of a database-
centric Web application.

Note: Not for distribution or attribution: for review purposes only. 5

Application Scenario Command C

Form A

Form B

Perform SQL Update query for C,
with data from A’s controls as params

Find the next form B

Perform SQL Select query for C

Fill the B’s controls
with the query results

Send the filled form B to the browser

(a)
Application Scenario

What is the SQL Select query,
parameterised by FP,

to fill the F’s controls?

What are the commands in F?

What are the next pages
for the commands?

What are the SQL Update queries
for the commands?

Form F (Formal Params FP)

(b)

Figure 3: The conceptual view of the proposed environment. (a) What is important to
the computer: the transition cycle. (b) What is important to the user and developer:
the application forms, their parameters, queries, and commands.

Consequently, the conceptual model of the presented cycle that is important for the
application execution may be defined (Figure 3a). When a command is issued, a set of SQL
Update queries must be applied. Each query may be parameterized with the data obtained from
the starting form. For example, if the user defines the ID of a database record in the starting form,
the query may be parameterized as "UPDATE ... WHERE ID = $ID," where $ID is the reference
to the control named ID in the starting form. The server should replace the parameters with the
concrete values obtained from the form, prior to applying the query. Then, the server finds the
target Web form (HTML page) associated with the issued command. This form may contain
controls, with the values also defined as references to the results of the SQL Select queries
associated with the command. Such an HTML page is usually called a template page. Thus, the
server applies the Select queries (which may also be parameterized with the starting form's
controls), and replaces the references (or placeholders) with the concrete results of the queries.
Finally, the filled ending page is sent to the client. This way, the application server may execute
an interpreter that interprets the application, which is defined in terms of Web forms (as
templates), commands, and parameterized queries associated with the commands.

However, the described perspective is execution-oriented and is at a too low level of
abstraction. For the user and developer, it is much easier to use more abstract terms, appropriate
for the application specification task. For this purpose, another conceptual model is introduced,
shown in Figure 3b, which may be transformed uniquely and automatically into the previous one.
The application is specified in terms of Web forms, where each form may have formal

Note: Not for distribution or attribution: for review purposes only. 6

parameters. A set of Select queries is assigned to the form, possibly parameterized with the
form's formal parameters. Besides, the form may contain controls, the values of which may also
refer to the form's formal parameters or Select query results. The formal parameters and the
values of the controls represent the set of "local variables" (or local scope) of the form, just as
formal parameters and local variables do in procedural programming languages. A set of Update
queries is also assigned to the form, parameterized with the form's local variables. Finally, a set
of commands is associated with the form. A set of Update queries may also be associated
separately with each command, as well as the next Web form. A command passes actual
parameters to the next form. The actual parameters may have the values of the invoking form's
local variables. Consequently, this model is similar to the commonly accepted and easily
understood procedural model, where forms are analogous to procedures.

The Modeling Technique

CourseManipulat ion

ModifyCourse

ent ry : SELECT * FROM Course WHERE ID=$ID

exi t : UPDATE Course SET Course.descr ipt ion = "$descr ipt ion", Course. IDMetadata = "$IDMetadata"

CourseUpdated

SelectCourse

ent ry : SELECT ID, Name FROM Course

M odify

Delete

Cancel
Modify/Delete

Create

Update

Cancel

(a)
Command C

Perform SQL Update query for C

Find the next form B

Perform SQL Select query for C

Fill the B’s controls

Send the filled form B to the browser

Extender for C:
onPreUpdate()

onPostUpdate()

onPreSelect()

onPostSelect()

(b)

Figure 4: Elements of the modeling technique. (a) UML state-transition diagrams for
navigational specifications. (b) Extenders for implementation of non-typical
behavioral use-cases.

An adequate UML concept for specification of the described elements of the application are
UML state-transition diagrams, where states represent Web forms, and transitions represent
commands (Figure 4a). Thus, the navigational perspective of the application is easily specified in
a standard way. Following the UML style, "structural" use cases that are directly oriented to the
database access, are specified with the UML use-case [1] and state-transition diagrams.

In these diagrams, states and transitions are stereotyped [1], denoting that they represent
Web forms and commands. They are tagged with the corresponding tagged values [1] as follows.
States are tagged with SQL Select and Update queries, and formal parameters. Transitions are

Note: Not for distribution or attribution: for review purposes only. 7

tagged with a caption that will be displayed at the starting Web form for that command, optional
SQL Update queries, and actual parameters for the target Web form's formal parameters.

As stated in the introduction, the approach should provide an easy way to implement
typical "structural" use-cases, but it should be open enough to support non-typical, "behavioral"
use-cases. These use-cases should be implemented in a usual way, using common object-oriented
modeling and programming techniques. For the purpose of implementation of such use cases, the
so-called extenders are provided. An extender is a Java object assigned to a command. This
object conforms to a predefined interface, which comprises of a set of operations, each of which
is called at one step of the described command interpretation cycle (Figure 4b). This way, the
user may attach one Java extender to a command and define its operations arbitrarily. The
interpreter will invoke its operations at each step of the interpretation cycle. A built-in extender
with all empty methods is attached to a command by default.

Following the UML style, an interaction diagram [1] is used to specify the scenario for a
"behavioral" use-case. The use-case is then implemented in Java code, using common forward-
engineering techniques [1]. The code is incorporated in a method of an extender, which will be
invoked at a certain point of a certain command of the application.

The Process

Database scheme

Domain key abstractions

This is a
documentation
of the Course
key
abstraction...

OO class model

For each WFFormalParameter fp
in Command.invokedWebForm.m
yFormalParameters exists exactl
y one WFActualParameter ap in
Command.myActualParameters

FormControl
name : TextString
type : Enumeration
value : TextString
caption : TextString
label : TextString

getContainingWebForm()

WebForm
name : TextString
description : TextString
selectSQL : TextString
updateSQL : TextString

getCommandIterator()
getFormControlIterator()
getFormalParamIterator()

0..*

1

+myControls

0..*+myWebForm

1
formControls

Command
name : TextString
caption : TextString
description : TextString
performFormUpdate : Boolean
updateSQL : TextString
onPreUpdate : TextString
onPostUpdate : TextString
onPreSelect : TextString
onPostSelect : TextString

getContainingWebForm()
getNextWebForm()
getActualParamIterator()

0..*

1

+myCommands 0..*

+myWebForm 1

formCommands

1

0..*

+invokedWebForm1

+theCommands0..*

nextWebForm

WFFormalParameter
name : TextString

getContainingWebForm()

0..*

1
+myFormalParameters

0..*

+myWebForm

1 formalParameters

WFActualParameter
value : TextString

getContainingCommand()
getFormalParameter()

0..*1

+myActualParameters

0..*

+myCommand

1 actualParameters

1

0..*

+myFormalParameter1

theActualParameters
0..*

parameterMapping

Not used in the
current version.

(a)

Modify CourseModify Course from list

<<include>>

Select Course

<<include>>

Provider actor
(from Actors)

Delete CourseDelete Course from list

<<include>>

<<include>>

OO use case
decomposition

CourseManipulation

ModifyCourse

entry: SELECT * FROM Course WHERE ID=$ID
exit: UPDATE Course SET Course.description = "$description", Course.IDMetadata = "$IDMetadata"

CourseUpdated

SelectCourse

entry: SELECT ID, Name FROM Course

Modify

Delete

Cancel
Modify/Delete

Create

Update

Cancel

OO scenario definition

Use cases textual
definition

This is a
documentation
of the Course
key
abstraction...

(b)

Figure 5: The process. (a) The structural track of the process. (b) The behavioral
track of the process.

The proposed process of application development follows the common object-oriented principles.
The process has two tracks. The first one deals with the structural, and the second one with the
behavioral aspect of the application (Figure 5). The process is started with a textual requirement
specification, which, among other technical and non-technical details, contains two major parts.

Note: Not for distribution or attribution: for review purposes only. 8

The first part is the spoken-language yet formal description of the key abstractions of the domain,
along with their roles, properties, and relationships. This part defines the vocabulary of the
domain. The second one is the spoken-language description of use-cases, expressed in terms of
interactions between the system and its actors [1]. Of course, the two tracks are tightly coupled,
and they are developed in parallel, iteratively and incrementally.

The first developing track is started from the textual specification of the key abstractions
(Figure 5a). From this specification, the object-oriented class model is developed. Then,
following the usual rules, the class model is transformed into the relational database scheme. The
latter transformation may be applied with or without help of a tool.

The behavioral developing track is started from the functional requirements. First, the use-
case model is developed (Figure 5b), where the use-cases are decomposed by "include" and
"extend" relationships [1]. Then, the scenarios for the use-cases that encompass interaction with
the user are specified using state-transition diagrams, which define the navigation through the
application. The typical "structural" use cases are specified in terms of SQL queries that directly
access the database. Other non-typical, "behavioral" use cases are specified by object-oriented
interaction diagrams [1]. Each interaction is attached to a transition in an interaction scenario
defined by a state-transition diagram. This way, the state-transition diagrams represent the
navigational skeleton of the application, which is "filled" either with SQL queries for the
"structural," or with Java code for the "behavioral" use-cases. State transition diagrams are
defined in a formal way and thus may be automatically forward-engineered into the application
specification that is interpreted as described. Interaction diagrams may be also forward-
engineered into the Java code using common forward-engineering techniques and tools [1]. This
way, the application is modeled at a high level of abstraction, using standard UML object-
oriented concepts, and is then forward-engineered into a running system.

The Implementation
Following the ideas and concepts described here, a research team from the University of Belgrade
has implemented a supporting runtime environment [9]. The environment consists of an
application interpreter and a meta database. The interpreter is implemented in Java using servlet
technology. It accepts the "post" requests from the client, and performs the issued commands.
The meta database stores the application specification that is interpreted by the servlet: the
commands and the attached SQL queries. This way, the application skeleton is easily modified by
changing the data in the meta database, without need for compilation. This makes the developing
and debugging process easier. The application is flexible because it may be changed even
dynamically, at runtime. The meta database is implemented using the standard relational database
technique, which makes the environment completely portable.

Web pages are implemented as usual HTML pages, and may be developed and viewed by
any standard Web page designer. Except for the three dedicated elements, other contents of the
page by no means affect the runtime environment. The first dedicated element is the command
issued from a page. It is identified by the interpreter as a form control with the name
"Command." Thus, the commands offered at a page are implemented as radio buttons in a group
named "Command." The value of the chosen radio button specifies the issued command. The
second element is the "value" property of an HTML control in the page. If a form control should
be filled with the value retrieved from the database by the interpreter, its "value" property must
refer to the SQL Select query from which the control will be filled in. This reference is simply
defined as a string "$<SQL Select query ID> $<Field name>". The interpreter will replace the
"value" property of each such control with the corresponding field of the result of the query, prior

Note: Not for distribution or attribution: for review purposes only. 9

to sending the page to the client. The third element is the formal parameters of the page. In order
to make them available to the command's SQL Update queries when the page is abandoned, the
interpreter stores the values of the page's formal parameters in its hidden controls. Thus, each
page must contain hidden controls for its formal parameters. However, all these elements have
the standard HTML format, which makes it readable to all standard Web design tools.

Similar holds for the parameterized SQL queries, which are stored in the meta database as
strings. Prior to executing an SQL query, the interpreter replaces each reference to a local
variable in the string with the value of that variable. The connection with the application and the
meta databases the interpreter realizes through the JDBC standard.

A simple prototype forward- and reverse-engineering tool that may transform the higher
level state-transition specifications into the data of the meta database, and vice versa, has also
been implemented. The tool is able to generate HTML tags for the command controls, along with
the SQL queries that are used to fill the meta database. The tool is aimed to be used as an add-in
of the Rational Rose development tool [10], allowing a complete integration of Web application
design into a usual tool-supported object-oriented development process.

An Example
Among several other minor projects and students' exercises, the proposed technique and process
have been successfully used at the University of Belgrade in a large project of an educational
Web system called Socratenon [9]. Socratenon is a complex system aimed for education in
industry and academy. It is based on a complex conceptual model, which allows customization of
curricula to particular students' cognitive states and preferences. Its rich functionality and user
interface provide the impression of a virtual classroom.

Although it is still in its experimental phase, Socratenon is a large application. At the
moment, it consists of about 130 Web pages and 200 commands (the full version will have over
1000 pages). However, it has been implemented by two students at the cost of about four men-
months. Its development has approved the benefits from the proposed approach. First, the method
is easy to understand and apply: the students needed only a couple of days of practice to become
fully familiar with the method. Second, the application is easy to modify and debug. Finally, the
application is extensible and fully portable.

However, as the whole process was not automated when the project started, the
development suffered from the difficulty of organization of the complex model. When the
modeling tool that will support the whole described approach and application generation becomes
fully operational, this problem is expected to vanish. Standard UML techniques for hierarchical
model organization (packages and diagrams) are expected to be an efficient cure for the problem
of model complexity.

Comparison with the Related Work
The proposed approach will be briefly compared with the existing solutions from two
perspectives: infrastructure (implementation) and modeling. From the perspective of
infrastructure, the approach may be compared with other HTML-DBPL integration technologies
(see the sidebar). The proposed infrastructure (the interpreter, commands, and database access)
can be compared with other similar technologies that enable HTML extensions for database
access, such as Microsoft Active Server Pages (ASP) or Java Server Pages (JSP). In contrast to
other approaches, our approach uses a simple concept of referring to the SQL queries from the
"value" properties of page controls, so the HTML pages may be created and viewed by any
standard Web page designer. Besides, the SQL queries are stored in the meta database on the

Note: Not for distribution or attribution: for review purposes only. 10

server, rather than in the page itself, which makes the application more compact, and the pages
independent of the technology. The whole infrastructure is very simple, flexible, and portable,
because it is based on all standard technologies: HTML, Java servlet, relational database, and
JDBC. The technique, however, does not prevent usage of other standard technologies at the
client side, such as Applets or JavaScript. Furthermore, the application is easily and arbitrarily
extensible at the server side by any Java code in the extenders. Finally, the technology is open
and not vendor-specific.

From the modeling perspective, since the whole modeling technique and process for
developing Web-centric database applications have been proposed, the approach may be
categorized in the model-driven category (see the sidebar). As opposed to other available
approaches of that category reviewed in [2], the proposed approach follows the usual object-
oriented habits of developing applications. It also uses only the standard UML concepts and
extensibility mechanisms, rather than vendor-specific and dedicated modeling concepts. The
approach is compatible with all other UML modeling concepts available to the developer, such as
the class view, use-case view, interactions, etc. [1]. This enables the developer to design object-
oriented applications with Web interface and with arbitrary complex functionality using usual
object-oriented and UML methods.

As for the three perspectives proposed in [2] (structure, navigation, and presentation; see
the sidebar), our approach supports the structural perspective in a usual object-oriented way.
Namely, classes and their relationships, which are transformed into the database scheme
afterwards, model the structural aspect of the application. The only navigational concept
currently supported by our approach is the state-transition paradigm, i.e., the application is
represented as a graph with explicit transitions from page to page. As suggested by other
researchers, other navigational and presentational concepts are also needed for Web applications,
such as indexed search [3] and composite/abstract contents definition [4]. This is not directly
supported by our approach, but the definition of complex navigation and presentation is
completely left to the developer to incorporate it in the pages. These are weaknesses of our
approach, because the developer may not specify a unique presentational style for conceptually
close application pages. On the other side, this may be an advantage, because a specialized page
designer tool may be more suitable for customizing page outlook. However, our approach is fully
open or orthogonal to the navigational and presentational conceptual models from other
approaches. In other words, our conceptual model may be easily enhanced by the abstractions
supporting navigation and presentation styles. Our current research investigates such possible
conceptual models that may be automatically generated from the application's structural
definition, and then transformed into the described executable model. The conceptual models and
their automatic mapping may be easily specified using our originally developed metamodeling
technique and tool, as it will be reported elsewhere.

Conclusions
The Web has evolved into a global and mature infrastructure for deploying large-scale enterprise
applications, which assume universal and cross-platform database access. However, the
development of these applications is too often at-hoc and not supported by rigorous, systematic
approach, as in other application domains. The approach proposed in this paper is expected to
contribute to the solution. It adapts the well-defined and broadly accepted object-oriented
development principles for the Web environment. The proposed modeling technique and the
process are fully compliant with the UML philosophy. The runtime environment is lightweight,

Note: Not for distribution or attribution: for review purposes only. 11

efficient, portable, and extensible. The first experiences show that the approach is very easy to
learn and apply. Finally, it is also flexible and open to further improvements.

Acknowledgements
The described method has been developed for the needs of the Socratenon project, which was
conducted in collaboration with the University of Salerno, Italy, and under the leadership of
Prof. Dr. Veljko Milutinovic from the University of Belgrade, to whom the author is grateful for
numerous useful comments. The author is grateful to Dejan Marjanovic and Nenad Nikolic who
have implemented the runtime environment. Milan Milicevic and Milan Trajkovic have
implemented the Socratenon system. The author highly appreciates the fruitful collaboration with
Prof. Dr. M. De Santo, Prof. Dr. S. Salerno, Mr. M. Marsella, and the development team from the
University of Salerno, Italy.

References
[1] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide, Addison-Wesley, 1999
[2] Fraternali, P., “Web Application Development: Tools and Approaches,” Proc. 7th World Wide Web Conf., April

1998, ftp://ftp.elet.polimi.it/pub/Piero.Fraternali/www_docs/www7/webtools.html
[3] Fraternali, P., Paolini, P., “A Conceptual Model and a Tool Environment for Developing More Scalable,

Dynamic, and Customizable Web Applications,” Tech. Rep. 1997-X, Politecnico di Milano, Dipartimento di
Elettronica e Informazione, August 1997, http://www.ing.unico.it/autoweb

[4] Gellersen H.-W., Gaedke, M., "Object-Oriented Web Application Development," IEEE Internet Computing,
Vol. 3, No. 1, January/February 1999, pp. 60-68

[5] Jacobson, I. et al., Object-Oriented Software Engineering — A Use Case Driven Approach, Addison-Wesley,
1992

[6] Manola, F., "Technologies for a Web Object Model," IEEE Internet Computing, Vol. 3, No. 1,
January/February 1999, pp. 38-47

[7] Milutinovic, V., Infrastructure for E-Business on the Internet, to appear, CRCPress, New York, New York,
USA, 2000, available at http://galeb.etf.bg.ac.yu/~vm

[8] Milutinovic, V., "Mini-Track on System Support for E-Business on the Internet," Proc. HICSS-33, Maui,
Hawaii, USA, January 2000, pp. 159.1-159.3

[9] Nikolic, N., Trajkovic, M., Milicevic, M., Milicev, D., Marjanovic, D., Sokic, I., Milutinovic, V.,
De Santo, M., Salerno, S., Ritrovato, P., Marsella, M., "Socratenon — A Web-Based Training System with an
Intellect," Proc. HICSS-33, Maui, Hawaii, USA, January 2000, pp. 160.1-160.10

[10] Rational Software Corporation, Rational Rose, http://www.rational.com

URLs of Selected Products
1. Access, Microsoft Corporation, http://www.microsoft.com/access/

2. Active Server Pages, Microsoft Corporation, http://msdn.microsoft.com/workshop/server/asp/ASPover.asp
3. Cold Fusion Web Construction Kit, Allaire Inc., http://www.allaire.com/products/ColdFusion/
4. Crystal Report Print Engine, Seagate, http://www.seagatesoftware.com/products/CrystalReports/

5. Delphi Client/Server Suite, Borland, http://www.borland.com/delphi/
6. Designer, Oracle, http://www.oracle.com/tools/designer/index.html
7. Developer, Oracle, http://www.oracle.com/tools/developer/index.html

8. HahtSite, HAHT Software, http://www.haht.com/
9. Java Server Pages, Sun Microsystems, http://www.java.sun.com
10. NetDynamics, NetDynamics, http://www.netdynamics.com/product/overview/

11. PowerBuilder, Sybase, http://www.powersoft.com/products/powerbuilder/
12. StoryServer, Vignette, http://www.vignette.com/
13. Visual InterDev, Microsoft Corporation, http://msdn.microsoft.com/vinterdev/

Note: Not for distribution or attribution: for review purposes only. 12

Sidebar: Database-Centric Web Application Development: An Overview

The work of Fraternali [2] provides an excellent classification and evaluation of tools and
approaches for development of data-intensive web applications. The evaluation is driven by the
following concerns:

• Software engineering: what support does a solution provide to the development of an
application according to software engineering principles?

• Architecture: what support does a solution provide to application scale-up and
reconfiguration?

• User-perceived quality: what kind of support does a solution ensures to make an
application more adherent to the end-user’s requirements in terms of structure,
presentation, and navigation.

The survey emphasizes the following three design perspectives as relevant:
• Structure: what are the objects constituting an application and which semantic

relationships connect them? In other words, what is the metamodel of the modeling
approach?

• Navigation: How are the objects reached, i.e., what are the available paradigms for
specifying the navigation through the application structure?

• Presentation: How is the information organized and presented on the screen?
According to the level of support the tools offer to the structured development of Web

applications, they are classified into five categories. The first category contains visual HTML
editors and site managers. The second one contains Web-enabled hypermedia tools. They both do
not really support the development of large-scale Web-database applications, but are interesting
because they pioneered many concepts (such as presentation styles and top-down site design)
later integrated into more complex environments.

The third category is the first that explicitly addresses the integration of Web and databases,
and includes HTML–database programming language (DBPL) integrators. These are proprietary
intermediate programming languages and infrastructures, enabling either HTML extensions (in
the form of page templates), or DBPL extensions that provide database access through the Web.
However, these approaches address the integration at the programming language level, without
support for higher-level software modeling. That is why they are used typically at the
implementation level of the next category tools.

The fourth category takes quite a database-centric approach to Web-database integration,
by addressing the migration of client/server, form-based applications to the Web. It includes Web
form editors, report writers, and database publishing wizards. These tools offer a higher level of
support than those in the previous category, but still concentrate on the implementation phase.

Finally, the last category is model-driven application generators [3, 11, 12, 13, 14]. They
cover the whole developing process, from analysis to implementation. They use conceptual
modeling of structure and behavior of the system, and code generation techniques to produce the
implementation in the underlying infrastructure. They apply the fundamental principles of
software engineering: the application is first modeled conceptually at a higher-level of
abstraction, and then implemented through code generation. However, they differ in their
approach to the definition of the conceptual abstractions (the metamodel). In some cases, they are
drawn from the database world (i.e., entity-relationship), enhanced with the concepts to support
the presentation and navigation requirements [14]. This might be a considerable limitation in the
quality of the resulting application. On the other side, there are approaches very ambitious in

Note: Not for distribution or attribution: for review purposes only. 13

defining the structural, navigational, and presentational metamodels as orthogonal perspectives to
the application [3].

However, the available techniques of the last category have some drawbacks. One is the
lack of an explicit compliance to the contemporary object-oriented modeling techniques,
notations (such as UML), and tools. Besides, they are always either proprietary products or very
complex, prototypic research efforts. This is sometimes accompanied with their limited
extensibility and openness to other standard and widespread software engineering and
programming techniques.

References

[11] Diaz, A., Isakowitz, T., Maiorana, V., Gilabert, G., “RMC: A Tool to Design WWW Applications,” Proc. 4th

World Wide Web Conf., December 1995
[12] Kesseler, M., “A Schema-Based Approach to HTML Authoring,” Proc. 4th World Wide Web Conf., December

1995
[13] Schwabe, D., Rossi, G., “The Object-Oriented Hypermedia Design Model,” Communications of the ACM, Vol.

38, No. 8, August 1995, pp. 45-46
[14] Designer, Oracle, http://www.oracle.com/tools/designer/index.html

