
The pico RISC Processor Architecture and Assembly

Principles
• A 32-bit RISC processor architecture, extremely simplified for educational purposes

• Only the very elementary architectural elements for basic understanding, esp. for programming

low-level system software

• Load/store RISC orthogonal architecture

• 32-bit (virtual) address space, byte as the addressable unit, little-endian format

• three-address integer arithmetic only (no floating point), signed or unsigned integer comparison

and extension

• Two modes: privileged (kernel, system) and user

• The remaining specifications deals with the user mode only, i.e., with the architecture visible to

the compiler and application programmer

Registers
• 16 x 32-bit general-purpose registers: R0..R15

• 32-bit program counter: PC

• 32-bit stack pointer: SP; the stack grows towards lower addresses, SP points to the last pushed

byte

Address Modes
• Immediate: #constant-expression

• Register direct: Ri

• Memory direct: address; address is a constant-expression

• Register indirect: [Ri]

• Register indirect with displacement: [Ri + offset]; offset is a constant-expression

• Registers usable in address modes: R0..R15, PC, SP

• Address modes usage:

◦ in Control Flow instructions: all memory modes (memory direct, register indirect, register

indirect with displacement)

◦ in Load/Store instructions: all (except immediate for store)

◦ in Stack Instructions and Arithmetic & Logic Instructions: register direct

• Format of instructions:

◦ using register direct or register indirect modes:

31 23 20 15 10 5 2

Op code Addr Mode Reg0 Reg1 Reg2 Type Unused

◦ using immediate, memory direct, or register indirect with displacement modes:

▪ First double-word (first 32 bits):

31 23 20 15 10 5 2

Op code Addr Mode Reg0 Reg1 Unused Type Unused

▪ Second double-word (second 32 bits):

31

Constant/Address/Displacement

◦ Address Mode Codes:

▪ Immediate: 0b100

▪ Register direct: 0b000

▪ Memory direct: 0b110

▪ Register indirect: 0b010

▪ Register indirect with displacement: 0b111

◦ Register codes:

▪ R0..R15: 0x0..0xf

▪ SP: 0x10

▪ PC: 0x11

◦ Data type codes:

▪ double-word (32 bits): 0b000

▪ word (16 bits) – zero extend: 0b001

▪ word (16 bits) – sign extend: 0b101

▪ byte (8 bits) – zero extend: 0b011

▪ byte (8 bits) – sign extend: 0b111

Instructions

Control Flow Instructions

• The address of the target instruction is obtained as the address of the “operand” as specified in

the (memory) address mode

• Format:

◦ using register direct or register indirect modes:

31 23 20 15 10

Op code Addr Mode Reg0 Reg1/Unused Unused

◦ using memory direct or register indirect with displacement modes:

▪ First double-word (first 32 bits):

31 23 20 15 10

Op code Addr Mode Reg0 Reg1/Unused Unused

▪ Second double-word (second 32 bits):

31

Address/Displacement

• Instructions:

Instruction Op code Address Modes Comment

INT op 0x00 Register direct (exception) Software interrupt/system call;
the Reg0 code is used as the
interrupt number

JMP op 0x02 memory direct,
register indirect,
register indirect w/ displ

Absolute or relative jump

CALL op 0x03 -||- Call subroutine.
PC pushed on stack

RET 0x01 None Return from subroutine.
PC popped from the stack

JZ reg1, op 0x04 For op:
memory direct,
register indirect,
register indirect w/ displ

For reg1: register direct

If Reg1==0, jump to op

JNZ reg1, op 0x05 -||- If Reg1!=0, jump to op

JGZ reg1, op 0x06 -||- If Reg1>0 (as signed int), jump to
op

JGEZ reg1, op 0x07 -||- If Reg1>=0 (as signed int), jump to
op

JLZ reg1, op 0x08 -||- If Reg1<0 (as signed int), jump to
op

JLEZ reg1, op 0x09 -||- If Reg1<=0 (as signed int), jump to
op

Load/Store Instructions

• Load: copy the value from a memory location to a register

• Store: copy the value from a register to a memory location

• Loading from memory to a register – types of source:

◦ byte, zero-extended or sign-extended to a register; instruction mnemonic suffix: UB

(unsigned) or SB (signed)

◦ word (16 bits), zero-extended or sign-extended to a register; instruction mnemonic suffix:

UW (unsigned) or SW (signed)

◦ double-word (32 bits); no instruction mnemonic suffix

• Storing from a register to memory – types of transfer:

◦ byte (least-significant byte of register); instruction mnemonic suffix: B

◦ word (lower 16 bits of register); instruction mnemonic suffix: W

◦ double-word (entire register)

• Format:

◦ using register direct or register indirect modes:

31 23 20 15 10 5 2

Op code Addr Mode Reg0 Reg1 Unused Type Unused

◦ using memory direct or register indirect with displacement modes:

▪ First double-word (first 32 bits):

31 23 20 15 10 5 2

Op code Addr Mode Reg0/Unused Reg1 Unused Type Unused

▪ Second double-word (second 32 bits):

31

Address/Displacement

• Instructions:

Instruction Op code Address Modes Comment

LOAD reg1, op 0x20 all Load

STORE reg1, op 0x21 all except immediate Store

Stack Instructions

• Push or pop registers to/from the stack

• The stack grows towards lower addresses, SP points to the last pushed byte

• These instructions change SP implicitly

• Register direct mode only

• The entire 32-bit register is pushed always (4 bytes)

• Format:

31 23 20 15

Op code Addr Mode =
0b000

Reg0
Unused

• Instructions:

Instruction Op code Address Modes Comment

PUSH reg 0x22 Register direct Push register

POP reg 0x23 Register direct Pop register

Arithmetic and Logic Instructions

• Operations with entire 32-bit registers only

• Three-address operations, register direct mode only

• Signed integer arithmetic

• Format:

31 23 20 15 10 5

Op code Addr Mode =
0b000

Reg0 Reg1 Reg2 Unused

• Instructions:

Instruction Op code Address Modes Comment

ADD reg0, reg1, reg2 0x30 Register direct Reg0 = Reg1 + Reg2

SUB reg0, reg1, reg2 0x31 -||- Reg0 = Reg1 - Reg2

MUL reg0, reg1, reg2 0x32 -||- Reg0 = Reg1 * Reg2

DIV reg0, reg1, reg2 0x33 -||- Reg0 = Reg1 / Reg2

MOD reg0, reg1, reg2 0x34 -||- Reg0 = Reg1 % Reg2

AND reg0, reg1, reg2 0x35 -||- Reg0 = Reg1 & Reg2

OR reg0, reg1, reg2 0x36 -||- Reg0 = Reg1 | Reg2

XOR reg0, reg1, reg2 0x37 -||- Reg0 = Reg1 ^ Reg2

NOT reg0, reg1 0x38 -||- Reg0 = ˜ Reg1

ASL reg0, reg1, reg2 0x39 -||- Reg0 = Reg1 << Reg2

ASR reg0, reg1, reg2 0x3A -||- Reg0 = Reg1 >> Reg2

Assembly
• Assembly statements:

◦ instructions

◦ data definitions

◦ directives

• Format of instructions:

label: op oper1, oper2, oper3 ; comment

• label and ; comment are optional

• label can be used in constant-expressions and resolves into the absolute address of the labeled

statement (instruction or data definition)

Data definitions

• Format of definitions:

label: def data-specifier, ... ; comment

• label and ; comment are optional

• Definitions:

◦ DB: define byte (each data item is of a byte size)

◦ DW: define word (each data item is of a 16-bit word size)

◦ DD: define double-word (each data item is of a 32-bit double-word size)

• Data item specifiers:

constant-expression [DUP constant-expression | ?]

◦ constant-epxression: literals, identifiers (defined labels or symbols), integer arithmetic

operators (+, -, *, /), subexpressions (parentheses)

◦ literal: a signed integer literal in decimal, binary, or hexadecimal format (prefix specifies

the format as in C) or character (in C format)

◦ ? for undefined

◦ DUP: repeated definition of data items of the same type (size) as specified by the definition,

all initialized as specified by the second expression

Directives

• Define a symbol (a symbolic constant) that can be used in constant-expressions:

symbol DEF constant-expression ; comment

• An implicitly defined symbol $ resolves into the absolute (starting) address of the current

instruction (i.e., the address of the first byte of the instruction where $ is used)

• Define the starting absolute address of the next statement (override $):

ORG constant-expression ; comment

• Define the address of the starting instruction (program entry point):

START constant-expression ; comment

• Define a memory segment:

◦ segment begin:

SEG rwx ; comment

◦ typically immediately followed by an ORG directive to specify the segment starting

address; if ORG is not present, the segment starts at the implicitly assumed address
(following the previous statement), possibly aligned to the beginning of the memory
allocation unit (e.g. page or segment), depending on the virtual memory organization; the
size of the segment is determined by the size of its contents, possibly rounded to a unit of
allocation (e.g. page), depending on the virtual memory organization

◦ rwx: optional specification of access rights; a triplet o binary digits (0 or 1) for read (read-

only data segment), write (write-enabled data segment) and execute (read-only code
segment, readable during instruction fetch phase only)

◦ segment end:

END ; comment

Compilation, Linking, and Assembler
• The compiler compiles the picoC++ source into assembly, directly and one-to-one, without any

implicit products:

◦ no START directive; functions (including main) are translated as ordinary subroutines in

assembly;

◦ no program prologue and epilogue (the code enclosing the call of main), no implicit process

termination system call;

◦ no SEG or ORG directives; the program is translated into a linear sequence of assembly

statements, using symbolic absolute addresses (labels) and relative address modes only;

• A separate (quasi-)linker program transforms the assembly generated by the compiler into a

processed assembly with:

◦ attached program prologue and epilogue (the code enclosing the call of main), with an

implicit system call to terminate the process (configurable interrupt entry for the system
call)

◦ the START directive to point to the starting instruction of the prologue;

◦ optionally, depending on the configuration:

▪ introduces the initial ORG directive to relocate the entire program to the given

(configurable) origin (starting address);

▪ creates segments (SEG/END directives) by finding the continuous sequences of

instructions or data definitions in the source assembly, to create segments out of them; in
addition, optionally (depending on the configuration):

• aligns the segment to the beginning of the memory allocation unit (configurable

page/segment size)

• relocates and merges code segments and data segments

• creates a stack segment with a configurable size

• creates a heap (data free store) segment with a configurable size

• A separate assembler program transforms the assembly generated by the linker into the binary

code; works in two modes:

◦ generate symbolic binary with assembly: generates a textual file with the source assembly

code incorporated, along with the translation; format of a statement:

addr byte byte ... byte ; label: op oper1, oper2, oper3 ; comment

▪ addr: 8 hex digits (as ASCII characters for digits) for the absolute address

▪ byte: 2 hex digits (as ASCII characters for digits) for the binary translation of the

statement

◦ generate pure binary executable.

• The executable binary format of the file (little endian integers):

Offset Size (bytes) Field Purpose

0x00 4 0x7F followed by EXE in ASCII; these four bytes
constitute the 'magic number'

0x04 1 Identifies the target operating system ABI (type and
version)

0x05 11 Unused (reserved for future use)

0x10 4 This is the memory address of the entry point from

where the process starts executing.

0x14 4 Points to the start of the segment table; it usually
follows the file header immediately, making the offset
0x1c

0x18 4 Contains the number of entries in the segment table

0x1c End (size) of header

◦ One segment table entry:

Offset Size (bytes) Field Purpose

0x00 4 Type of segment, including rwx bits (least significant
bits)

0x04 4 Offset of the segment in the file image

0x08 4 Virtual address of the segment in memory

0x0c 4 On systems where physical address is relevant,
reserved for segment's physical address

0x10 4 Size in bytes of the segment in the file image; may be
0

0x14 4 Size in bytes of the segment in memory; may be 0

0x18 End (size) of entry

	The pico RISC Processor Architecture and Assembly
	Principles
	Registers
	Address Modes
	Instructions
	Control Flow Instructions
	Load/Store Instructions
	Stack Instructions
	Arithmetic and Logic Instructions

	Assembly
	Data definitions
	Directives

	Compilation, Linking, and Assembler

