
June 2003 Copyright (C) 2003 by Dragan Milićev 1

Object-Oriented Technology

Tutorial
On object-oriented concepts, languages, and patterns
for engineers

Dr. Dragan Milićev
Assoc. Professor, University of Belgrade
dmilicev@etf.rs, www.rcub.bg.ac.rs/~dmilicev

Java Design Patterns

mailto:dmilicev@etf.rsrcub.bg.ac.yu
mailto:dmilicev@etf.rsrcub.bg.ac.yu
mailto:dmilicev@etf.rsrcub.bg.ac.yu
mailto:dmilicev@etf.rsrcub.bg.ac.yu
mailto:dmilicev@etf.rsrcub.bg.ac.yu
http://www.rcub.bg.ac.rs/~dmilicev
http://www.rcub.bg.ac.rs/~dmilicev
http://www.rcub.bg.ac.rs/~dmilicev

June 2003 Copyright (C) 2003 by Dragan Milićev 2

Outline

Part I: Introduction
Part II: Concepts
Part III: Design Patterns
Part IV: Conclusions

June 2003 Copyright (C) 2003 by Dragan Milićev 3

Part I: Introduction

About this Tutorial
Introduction to OO Technology
Introduction to Modeling

June 2003 Copyright (C) 2003 by Dragan Milićev 4

Chapter 1: About this Tutorial

Subject
Objectives
Prerequisites
Resources

June 2003 Copyright (C) 2003 by Dragan Milićev 5/187

Subject
Fundamental OO concepts
Basic principles of OO software design
OO languages, techniques, and tools
 OO programming languages (C++ and Java)
 OO modeling language UML
 Design patterns

OO programming paradigm and its application to
engineering domains

June 2003 Copyright (C) 2003 by Dragan Milićev 6/187

Objectives
Get familiar with the basic concepts and principles
of the OO paradigm
Get introduced to the most popular OO
programming and modeling languages
Get convinced in benefits of using OO technology
Get ready to understand the design of complex
OO software systems

June 2003 Copyright (C) 2003 by Dragan Milićev 7/187

Prerequisites
Experience in developing software in some
engineering domains:
 Modeling, simulation, and optimization
 Embedded and real-time systems
 Domain-specific modeling languages, computer-aided

design tools

Understanding of fundamental concepts of the
procedural programming paradigm:
 Type and variable
 Declaration, expression, statement, condition, loop
 Subprogram (procedure and function), argument

(formal and actual), invocation, recursion

June 2003 Copyright (C) 2003 by Dragan Milićev 8/187

Resources
Books on OO programming languages C++ and
Java (many good available)
Books on UML, OO modeling, and design patterns:
 G. Booch, J. Rumbaugh, I. Jacobson, “The Unified

Modeling Language User Guide”, Addison-Wesley, 1999
 E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design

Patterns”, Addison-Wesley, 1995
Discussion with Dr. Milićev:
dmilicev@rcub.bg.ac.yu
www.rcub.bg.ac.yu/~dmilicev

Other books on OO technology, programming
languages, UML, and design patterns

mailto:dmilicev@rcub.bg.ac.yu
http://www.rcub.bg.ac.yu/~dmilicev

June 2003 Copyright (C) 2003 by Dragan Milićev 9

Chapter 2: Introduction to OO
Technology

Why OO Technology?
What Makes OO Technology?

June 2003 Copyright (C) 2003 by Dragan Milićev 10/187

Why OO Technology?
The most demanding problems of software
development:
 Complexity: all non-trivial software systems nowadays

are complex; the users keep requiring more ambitious
features; the development is long and costly

 Maintenance: the cost of error correction and
responding to modified or extended requirements is
long, risky, and costly

The traditional (procedural) paradigm could not
meet these needs successfully enough!

June 2003 Copyright (C) 2003 by Dragan Milićev 11/187

Why OO Technology?
How to cope with complexity, ever increasing users’ needs,
and demanding software maintenance?
 Abstraction: use of highly abstract concepts, conceptually close to

the problem domain, and with a lot of implicit executable semantics
 Decomposition: clear separation of concerns, cohesive and loosely

coupled modules with weak and well-controlled interfaces, localized
design decisions, clear and stable software architecture

 Intensive software reuse at various levels of granularity: code
excerpts, idioms, templates, libraries, patterns, frameworks,
designs, artifacts, …

These are prerequisites for improved development
productivity and less risky maintenance
OO technology tries to overcome the drawbacks of more
traditional approaches to meet these goals

June 2003 Copyright (C) 2003 by Dragan Milićev 12/187

What Makes OO Technology?

Object orientation is a different way of thinking about
designing software!

Concepts
and

Principles

Programming Languages

C++ Java

Smalltalk Eiffel

C#

Others…

UML
Patterns

Libraries
Frameworks

Tools and
Environments

June 2003 Copyright (C) 2003 by Dragan Milićev 13

Chapter 3: Introduction to Modeling

Models and Modeling
Sample Application
Abstractions and Conceptualization

June 2003 Copyright (C) 2003 by Dragan Milićev 14/187

Models and Modeling
A model is a simplification of reality
We build models so that we can better understand the
system we are developing
We build models of complex systems because we cannot
comprehend such a system in its entirety
Models:
 help us to visualize a system as it is or as we want it to be
 permit us to specify the structure or behavior of a system
 give us a template that guides us in constructing a system
 document the decisions we have made

Modeling is a central part of all the activities that lead up
to the deployment of good software

June 2003 Copyright (C) 2003 by Dragan Milićev 15/187

Sample Application
Traffic Simulation System (TSS)
Task: find a proper timing of
traffic lights, so there is no
congestion at crossroads
Requirements:
 Random occurrences of vehicles at

streets
 Vehicles pass the streets and

squares with random delay
 Vehicles turn left and right

randomly

N
or

th
 s

tr
.

S
ou

th
 s

tr
.

West str. North sq.

South sq.

June 2003 Copyright (C) 2003 by Dragan Milićev 16/187

Abstraction and Conceptualization
An abstraction is the essential characteristics of an entity
that distinguish it from all other kinds of entities. It is a
simplified representation of an entity from the problem
domain
Proposed abstractions in TSS:

Flow Source: generates a random traffic flow at street
entrances

Flow Sink: sinks the input traffic flow at streets that are of
no interest

Pipe: models a random delay of traffic through a street

Queued Server: models a line at a traffic light and passage
through a crossroad

Switch 1 to 3: models random turns of vehicles

Cross Semaphore: models a traffic light with two controlled
directions

June 2003 Copyright (C) 2003 by Dragan Milićev 17/187

Abstraction and Conceptualization
An abstraction defines a boundary relative
to the perspective of the viewer
An abstraction neglects some differences
from entities in real world, in favor of
generalizing their commonalities
Abstractions are characterized with their
semantics, properties, relationships, and
behavior
A key abstraction is an abstraction that is
important enough to be incorporated into
the system's conceptual model regardless to
its concrete implementation

June 2003 Copyright (C) 2003 by Dragan Milićev 18/187

Abstraction and Conceptualization
An abstraction defines a
set of instances.
For example, North sq.,
South sq., or West sq. are
all instances of the
queued server key
abstraction. Similarly,
East str. and South str.
are instances of the flow
sink abstraction

N
or

th
 s

tr
.

S
ou

th
 s

tr
.

West str. North sq.

South sq.

West str. : Queued Server

North sq. : Queued Server

East str. : Flow Sink

South str. : Flow Sink

June 2003 Copyright (C) 2003 by Dragan Milićev 19/187

Abstraction and Conceptualization
An abstraction is characterized with its properties.
For example, the properties for the flow source
abstraction are name, description, and mean
frequency of vehicle occurrences, and for the pipe
abstraction are name, description, and mean delay
of vehicles, etc.
Each instance of an abstraction will have its own
value of each property.
For example, the West str. flow source will have the
number 1/5 as the value of its mean frequency
property, and the North str. pipe will have 4 as the
value of its mean delay property

June 2003 Copyright (C) 2003 by Dragan Milićev 20/187

Abstraction and Conceptualization
Abstractions have their relationships.
For example, the flow target of the West str. flow
source is the West str. Pipe, and the South sq.
cross semaphore controls the South sq. queued
server

West : Flow Source

West st. : Pipe

South sq. : Queued Server

South str. : Flow Sink

South sq. : Cross Semaphore

June 2003 Copyright (C) 2003 by Dragan Milićev 21/187

Abstraction and Conceptualization
Abstractions have their behavior, meaning that
their instances react on certain stimuli.
For example, a queued server stops serving
vehicle occurrences when it is closed by a cross
semaphore, or a switch transfers a vehicle
occurrence to one of its targets randomly

South sq. : Queued Server

South str. : Flow Sink

South sq. : Cross Semaphore

West str. : Switch 1 to 3

North str. : Flow Sink

East str. : Flow Sink

June 2003 Copyright (C) 2003 by Dragan Milićev 22/187

Abstraction and Conceptualization
The process of discovering and inventing the proper
abstractions is called conceptualization
The model that comprises of key abstractions and their
properties and relationships is called the conceptual
model of the problem domain
OO modeling is the process of modeling using OO
concepts
Principles of OO decomposition drive this process:
 Proper separation of concerns and assignment of

responsibilities
 Generalization/specialization hierarchies
 Designing interactions among objects
 Programming by interfaces

OO design patterns help us to find elegant solutions to
frequent problems in different contexts

June 2003 Copyright (C) 2003 by Dragan Milićev 23/187

Abstraction and Conceptualization

N
or

th
 s

tr
.

S
ou

th
 s

tr
.

West str. North sq.

South sq.

Real world

North : Flow Source

North str. : Pipe

North sq. : Queued Server

South sq. : Queued Server

South str. : Flow Sink

North sq. : Cross Semaphore

West : Flow Source

South sq. : Cross Semaphore

West st. : Pipe

West str. : Queued Server West str. : Switch 1 to 3

North str. : Flow Sink

East str. : Flow Sink

Model

June 2003 Copyright (C) 2003 by Dragan Milićev 24

Part II: Concepts

Classes
Attributes
Structural Relationships
Generalization/Specialization
Operations
Polymorphism
Encapsulation
Interfaces
Interactions

June 2003 Copyright (C) 2003 by Dragan Milićev 25

Chapter 4: Classes

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts

June 2003 Copyright (C) 2003 by Dragan Milićev 26/187

Motivation
In TSS, we have identified the key abstractions,

like flow source, pipe, queued server, etc. They
represent sets of instances that exist in the
system at runtime.

The instances from the same set (of the same
abstraction) share the common semantics,
structure, relationships, and behavior.

June 2003 Copyright (C) 2003 by Dragan Milićev 27/187

Concepts
In OO software engineering, abstractions are
modeled with classes
Class is a description of a set of objects that share
the same properties, behavior, relationships, and
semantics
Object is an instance of a class - a concrete
manifestation of an abstraction. It is an entity with
well-defined boundary and identity, which
encapsulates state and behavior
FlowSink, CrossSemaphore, etc. are classes in the
model, and “South str.” and “North sq.” are objects
of these classes in the executing system

June 2003 Copyright (C) 2003 by Dragan Milićev 28/187

Concepts

Conceptual Model/Design Time

QueuedServer CrossSemaphore

Object Space/Runtime

West sq.
: QueuedServer

North sq.
: QueuedServer

North sq.
: CrossSemaphore

South sq.
: CrossSemaphore

South sq.
: QueuedServer

June 2003 Copyright (C) 2003 by Dragan Milićev 29/187

Concepts
A class is an element of the conceptual
model of a domain
Classes reside:
 in the conceptual space (model)
 at design time

Classes describe sets of objects that share
the same structure and behavior. A class
describes that structure and behavior, and
represents a template for creating objects

June 2003 Copyright (C) 2003 by Dragan Milićev 30/187

Concepts
Objects are instances of classes
Objects:
 reside in the system's object space
 live at runtime

Each object has its:
 identity
 type
 internal state that is defined by the dynamic value of the

structure defined in its class
 capability to provide behavior as defined in its class, when

this is requested from it

The set of all objects of one class in the system's
object space is called the extent of that class

June 2003 Copyright (C) 2003 by Dragan Milićev 31/187

Concepts
A class and its objects are related by the type-
instance dichotomy (objects are instances of
classes)
A class is an abstract, conceptual thing. Objects are
concrete, physical things
A class is only a description of a set of objects, i.e.,
the structure and behavior that objects share
Classes live in the developers' and users' minds.
Objects live in time and space
Classes reside at the design side, and objects at the
execution side of the dichotomy

June 2003 Copyright (C) 2003 by Dragan Milićev 32/187

Concepts
When a class is defined in the conceptual
model, it has the following semantics:
 Objects of that class can exist in the system's

object space at runtime. These objects can be
created and destroyed

 These objects will share the same structure,
behavior, and relationships

 The objects will have the same semantics, i.e.,
they represent instances of an abstraction that
has a particular important meaning in the
domain's conceptual space

June 2003 Copyright (C) 2003 by Dragan Milićev 33/187

Concepts
An object has the following characteristics:
 An object is an instance of its class. An object of

a class can be distinguished from all other
objects of the same and other classes

 An object has its lifetime, meaning that it lives
since its creation, until its destruction. An object
can be accessed only during its lifetime. Besides,
an object takes some space in the computer
system's memory. Therefore, objects live in time
and space

June 2003 Copyright (C) 2003 by Dragan Milićev 34/187

Support in UML
In UML, an object can be an instance of several
classes at the same time
Notation for a class:

Models a random
delay of traffic
through a street

Pipe

Responsibility (optional)

Notation for an element of the model that
represents a particular or prototype object:

West str. : Pipe

June 2003 Copyright (C) 2003 by Dragan Milićev 35/187

Support in UML
The action semantics of UML defines two basic
actions:
 Create a new object of a certain class
 Destroy an object

The notation for these actions is not specified, but
it is left to the implementations to define the
surface language for specifying actions in the
program

June 2003 Copyright (C) 2003 by Dragan Milićev 36/187

Support in C++
Definition of a class:
class Pipe {
 //...Definition of structure and behavior
};

Creation of a new object (the operator new returns a
pointer to the created object):
new Pipe

Destruction of an object over a pointer to it:
Pipe* aPipe = new Pipe; // aPipe is a pointer
 // to the created object
//... Usage of the object over the pointer aPipe
delete aPipe; // Destroy the object over the pointer

In C++, there are other types of lifetimes of objects with
implicit construction and destruction

June 2003 Copyright (C) 2003 by Dragan Milićev 37/187

Support in Java
Definition of a class:
class Pipe {
 //...Definition of structure and behavior
}

Creation of a new object (the operator new returns a
reference to the created object):
Pipe aPipe = new Pipe; // aPipe is a reference
 // to the created object

In Java, an object is destroyed implicitly by the built-in
garbage collector, once there are no more references
linked to it

June 2003 Copyright (C) 2003 by Dragan Milićev 38/187

Advanced Concepts
A class is persistent if its objects can survive the
termination of the execution context of their creation.
Examples:
 A TSS model should be stored into a file to be restored for a new

execution of the simulation application
 Database applications

A class is active if its objects encapsulate separate threads
of control (processes). For example, the elements of a TSS
model (e.g. flow sources, semaphores, etc.) can be
implemented by concurrent threads in the underlying
runtime environment
C++ and Java do not support persistency explicitly
(objects are stored in volatile computer memory). Java
supports active classes, but C++ does not

June 2003 Copyright (C) 2003 by Dragan Milićev 39/187

Advanced Concepts
An abstract data type is a set of instances that share the
same semantics, properties, relationships, and behavior,
but that are pure values that do not have their identities,
meaning that two instances with the same values cannot
be distinguished
Instances of data types are predominantly used as
attribute values of objects or arguments of operations that
may be arbitrarily copied (they usually have meaningful
copy semantics)
Examples: Integer, Complex, String, Date, Time, Currency,
etc.
C++ and Java do not distinguish classes and data types,
while UML does

June 2003 Copyright (C) 2003 by Dragan Milićev 40

Chapter 5: Attributes

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts

June 2003 Copyright (C) 2003 by Dragan Milićev 41/187

Motivation
In TSS, although instances of the same class share the same

set of properties, each of it has a different value of a
property.

For example, the properties for the flow source
abstraction are name, description, and mean
frequency of vehicle occurrences, and for the pipe
abstraction are name, description, and mean delay
of vehicles, etc.

For example, the West str. flow source will have the
number 1/5 as the value of its mean frequency
property, and the North str. pipe will have 4 as the
value of its mean delay property.

June 2003 Copyright (C) 2003 by Dragan Milićev 42/187

Concepts
Properties of abstractions are modeled with
attributes
Attribute is a named property of a class that
describes a range of values that instances of the
property can hold
An attribute is a member of a class
For example, the attributes of the class Pipe may
be:
 name: represents a short title of the element
 description: allows a longer textual description of the

element
 mean delay: mean value of a random delay of vehicles

through the pipe

June 2003 Copyright (C) 2003 by Dragan Milićev 43/187

Concepts
An attribute is defined by its:
 name: a string that uniquely identifies the attribute in the

scope of its class (e.g. name, descr, and meanDelay are
names of the attributes of the Pipe class)

 type: defines the range of values that the instances of that
property can hold, along with the operations applicable on
these values (e.g. the type of the meanDelay attribute is
Real)

 default value: the initial value that an instance of the
attribute has when an object is created (e.g. the attribute
meanDelay of the class Pipe can have the default value set
to zero)

The values of the attributes can be accessed and
modified according to the specification of their
types

June 2003 Copyright (C) 2003 by Dragan Milićev 44/187

Concepts
Attribute is a conceptual thing and lives at
the “design” side of the dichotomy. It is a
member of a class
Objects have values of the attributes
The values of the attributes are instances of
these attributes. Each object of the class
has its own value of the attribute, which is
independent of the other objects' values
In some languages, the lifetime of attribute
instances are tied to the lifetimes of their
enclosing objects

June 2003 Copyright (C) 2003 by Dragan Milićev 45/187

Concepts
Objects change their states, which are
defined by the values of their attributes,
throughout their lifetimes
The attributes define a static structure of
the objects of a class, which is shared by
these objects, and the attribute values
define the current states of the objects,
which are proprietary to the objects

June 2003 Copyright (C) 2003 by Dragan Milićev 46/187

Support in UML
In UML, the type of attributes can be a class or a
data type
In UML, an attribute may have multiple values,
with the specified cardinality
UML does not specify the dependency of the
lifetime of attribute values on the lifetime of the
enclosing object
In UML, an attribute is a reference to an instance
of a class or a data type. The reference’s lifetime
is bound to the enclosing object’s lifetime, but the
lifetime of the referenced instance is not

June 2003 Copyright (C) 2003 by Dragan Milićev 47/187

Support in UML
Notation for attributes:

name : String = “New pipe”
descr : String
meanValue : Real = 0.0

Pipe

Attributes (optional)

: Pipe
name = “West str.”
meanDelay = 4.0

Notation for an element of the model that
represents a particular or prototype object at
runtime, with a specific set of attribute values:

June 2003 Copyright (C) 2003 by Dragan Milićev 48/187

Support in UML
The action semantics of UML defines two basic
actions:
 Read the value of an attribute of a certain object
 Write the given value of an attribute of a certain object

The notation for these actions is not specified, but
it is left to the implementations to define the
surface language for specifying actions in the
program

June 2003 Copyright (C) 2003 by Dragan Milićev 49/187

Support in C++
In C++, attributes can be instances of:
 Built-in data types (e.g., int, char, float, etc.), including

pointers/references to other objects
 Classes (object incorporated by value)

The lifetime of an attribute value is bound to the lifetime of
the enclosing object: the attribute value is created and
destroyed along with the object
However, if the attribute is a pointer/reference to another
object, the destruction is not implicitly propagated to the
referred object
Default (initial) values of attributes are supported indirectly
(through constructors, to be explained later)

June 2003 Copyright (C) 2003 by Dragan Milićev 50/187

Support in C++
Specification of attributes embodied by value
(their lifetime is bound to the enclosing object):
class Pipe {
 String name; // Attribute embodied by value
 String descr;
 double meanDelay;
};

Specification of attributes embodied by
pointer/reference (their lifetime is not implicitly
bound to the enclosing object):
class Pipe {
 String* name; // Attribute embodied by pointer.
 // No initial value for the pointer
 ... // is assumed
 };

June 2003 Copyright (C) 2003 by Dragan Milićev 51/187

Support in C++
Access to attribute values:
 If the attribute is embodied by value:

Pipe* aPipe = new Pipe;
aPipe->meanDelay = 4.0; // Write attribute value
double temp = aPipe->meanDelay; // Read attr. value
// Access the embodied object of the class String:
aPipe->name.setValue(“West str.”);
...
delete aPipe; // Destroy the object

 If the attribute is embodied by pointer:
Pipe* aPipe = new Pipe;
// Create the pointed object of the class String:
aPipe->name = new String;
// Access the pointed object over the pointer attr.:
aPipe->name->setValue(“West str.”);
...
delete aPipe->name; // Destroy the pointed object
delete aPipe; // Destroy the object

June 2003 Copyright (C) 2003 by Dragan Milićev 52/187

Support in Java
In Java, attributes can be instances of built-in data types
only (e.g., int, char, float, etc.), including references to
other objects of classes
The lifetime of an attribute value is bound to the lifetime of
the enclosing object: the attribute value is created and
destroyed along with the object
However, if the attribute is a reference to another object,
the destruction of the referenced object is determined by
other references that refer to it (it is destroyed implicitly
when no references refer to it any more)
Default (initial) values of attributes are supported directly

June 2003 Copyright (C) 2003 by Dragan Milićev 53/187

Support in Java
Specification of attributes:
class Pipe {
 // References to objects of type String:
 String name = new String(“New pipe”);
 String descr = new String;

 // Attribute of a built-in type:
 double meanDelay = 0.0;
}

Access to attribute values:
Pipe aPipe = new Pipe;
Pipe.meanDelay = 4.0; // Write attribute value
double temp = aPipe.meanDelay; // Read attr. value
// Access the embodied object of the class String:
aPipe.name.setValue(“West str.”);
...

June 2003 Copyright (C) 2003 by Dragan Milićev 54/187

Advanced Concepts
An attribute can be of class scope (instead of
instance scope), meaning that all objects of the
attribute’s class share the same value
UML, C++, and Java support attributes of class
scope directly (called static attributes in C++ and
Java)
An attribute can be read-only, meaning that its
value cannot be modified
UML, C++, and Java support read-only attributes
(through const types in C++ and final specifier
in Java)

June 2003 Copyright (C) 2003 by Dragan Milićev 55

Chapter 6: Structural Relationships

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts

June 2003 Copyright (C) 2003 by Dragan Milićev 56/187

Motivation
In TSS, objects do not exist unrelated. On the

contrary, they are connected to form a complex
structure, whereby the interconnections
conceptualize different aspects.

For example, the flow target of the West str. flow
source is the West str. Pipe, and the South sq.
cross semaphore controls the South sq. queued
server.

West : Flow Source

West st. : Pipe

South sq. : Queued Server

South str. : Flow Sink

South sq. : Cross Semaphore

June 2003 Copyright (C) 2003 by Dragan Milićev 57/187

Concepts
Different OO languages support different structural
relationships, but ultimately they all allow interconnections
of objects in graph-like structures, whereby the objects are
interconnected by links that conceptualize relationships
from the problem domain and allow navigation between
objects
Association is a structural relationship among
classes that describes a set of links, in which a link
is a connection among objects
Association is a semantic relationship between two
classes that involves connections among their
instances

June 2003 Copyright (C) 2003 by Dragan Milićev 58/187

Conceptual Model/Design Time

QueuedServer CrossSemaphore

Concepts

Object Space/Runtime

North str.
: QueuedServer

West str.
: QueuedServer

North sq.
: CrossSemaphore

South sq.
: CrossSemaphore

South str.
: QueuedServer

controls

controls

controls

controls

June 2003 Copyright (C) 2003 by Dragan Milićev 59/187

Concepts
Links exist at runtime, in the system's object space
Links are structural connections between objects
A link does not have its identity – it is identified by
the objects it connects
A link does not have its independent life – a link
dies when an object on any side is destroyed. In
general, a link cannot exist without the objects on
both sides
In general, a link either exists or not – there can be
no more than one link of the same association
between the same two objects (unless the link has
other specifiers)

June 2003 Copyright (C) 2003 by Dragan Milićev 60/187

Concepts
Links are structural connections between objects,
meaning that the system can navigate through the
object structure, by accessing the objects linked to
one object over the links of a certain association
Links are instances of associations
Association is a relationship between classes, while
links are connections between instances of classes
Association is a description of a set of links
Association is a conceptual thing that exists in the
conceptual model, at design time – type/design side
of the dichotomy
Links are physical things that exist in the object
space, at runtime – instance/execution side of the
dichotomy

June 2003 Copyright (C) 2003 by Dragan Milićev 61/187

Concepts
The object structure of the system can be regarded
as a typed graph, whereby objects are the nodes,
and links are the edges of the graph
The graph is typed, because each node (object) has
its type – that is the class of which the object is an
instance, and each edge (link) has its type – that is
the association of which the link is an instance
The system manipulates with the graph by creating
and destroying the objects, reading and modifying
their attribute values, creating and destroying its
links, and traversing the objects over the links

June 2003 Copyright (C) 2003 by Dragan Milićev 62/187

Concepts
Multiplicity is an adornment of an
association end
Multiplicity is a specification of the range of
allowable cardinalities of the links at the
opposite side of the association

CrossSemaphore QueuedServer
controls

1 4

FlowSource Pipe
flow

* 1

June 2003 Copyright (C) 2003 by Dragan Milićev 63/187

Concepts
Multiplicity specifications can be:
 0..1 (zero or one)
 1 (exactly one)
 * (zero to arbitrary many)
 1..* (one to arbitrary many)
 a specific range m..n (m to n, where n can be *

– arbitrary many)

The multiplicity m at the side B of an
association means that one object at the
side A can be linked with m objects of the
side B by links of this association

June 2003 Copyright (C) 2003 by Dragan Milićev 64/187

Concepts
Each association end can be adorned with a role
In all objects of the class at side A, there will exist a
property named as the role at side B
This property represents a “hook” on which the links
of the corresponding association are “hanged,” and
designates a set of linked objects

CrossSemaphore QueuedServer
controls

serverssemaphore

North sq.
: CrossSemaphore

servers
: QueuedServer

: QueuedServer
: QueuedServer

: QueuedServer

June 2003 Copyright (C) 2003 by Dragan Milićev 65/187

Concepts
Navigability is the specification of the capability to
navigate to the linked objects in the set
designated by the property that is the
consequence of the assoc. role
If the association is not navigable at one side,
there will be no property that results in the object
set in the objects of the opposite class
An association can be bidirectional or
unidirectional (navigable at one side only)

FlowSource Pipe
targetsource

June 2003 Copyright (C) 2003 by Dragan Milićev 66/187

Support in UML
UML supports associations as described so far, with the
given notation, along with some advanced concepts like:
 N-ary association (association between many classes)
 Association class (a class that is also an association)
 Qualifiers of association ends
 Other specifiers of association ends (ordered, unique, read-only,

derived, subsets, unions, etc.) that specify the characteristics of the
object set designated by the property

UML action semantics define actions for manipulating links:
 Create link of an association between a set of objects
 Destroy a link
 Navigate over links (access the object set of a property)

UML 2.0 will equalize attributes (possibly multivalued) and
association ends: both designate properties of objects that
result in sets of instances of classes or data types

June 2003 Copyright (C) 2003 by Dragan Milićev 67/187

Support in C++
C++ supports unidirectional associations through pointers
to objects:

class FlowSource {
 ...
 Pipe* target;
};

Associations with multiplicity * must be implemented by
collections of pointers – data types implemented with
classes (no built-in data structure for this):

class Model {
 ...
 CollectionOfSemaphores allSemaphores;
};

June 2003 Copyright (C) 2003 by Dragan Milićev 68/187

Support in C++
Creation of links is done by setting the values of pointers:

class FlowSource {
 ...
 Pipe* target;
};
...
FlowSource* aFS = new FlowSource;
Pipe* aPipe = new Pipe;
aFS->target = aPipe;

Destruction of links is done by setting the value of a
pointer to null:
aFS->target = 0;

C++ pointers are unsafe: there is no runtime checking of
pointer validity (against null and dangling pointers)!

June 2003 Copyright (C) 2003 by Dragan Milićev 69/187

Support in Java
Java supports object links in a very similar manner as C+
+, except for the notation (no operators needed):

class FlowSource {
 ...
 Pipe target;
}
...
FlowSource aFS = new FlowSource;
Pipe aPipe = new Pipe;
aFS.target = aPipe;
...
aFS.target = null;

Java references are more safe than C++ pointers: there
are no dangling references, because an object cannot be
deleted if a reference refers to it!

June 2003 Copyright (C) 2003 by Dragan Milićev 70/187

Advanced Concepts
Association class is an association that is also a class
An association class can participate in relationships and
have members as any other class
Instances of association classes are link-objects
A link-object is a link that is also an object
Supported in UML, but not in C++ and Java

Company Person

Employment

dateHired : Date
salary : Real

June 2003 Copyright (C) 2003 by Dragan Milićev 71

Chapter 7:
Generalization/Specialization

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts

June 2003 Copyright (C) 2003 by Dragan Milićev 72/187

Motivation
The discovered abstractions in TSS have

some things in common:
 they all have name and description attributes
 apart from semaphores, the target of a traffic

flow element may be any other flow element
 a traffic flow element should count the number

of vehicle occurrences it has transported, for the
simulation report purposes.

Unless there is a proper generalization of
these abstractions,
 the software model will contain a lot of

redundancy and
 there will be no easy way to connect flow

elements arbitrarily and interchangeably.

North sq. : Queued Server

South sq. : Queued Server

West str. : Queued Server West str. : Switch 1 to 3

East str. : Flow Sink

June 2003 Copyright (C) 2003 by Dragan Milićev 73/187

Motivation
Suppose there is a new requirement for TSS to introduce

another abstraction of adaptable cross semaphore.
Adaptable semaphore is a kind of a cross semaphore,

because it also controls two directions and opens their flow
alternatively with a predefined time intervals.

However, adaptable semaphore is a special kind of a cross
semaphore, because it adapts its timing according to the
traffic congestion at queued servers (i.e., their maximal
recorded queue size). If the maximal recorded queue size
of an associated queued server is greater than a defined
value, the semaphore will increment the green-light
duration for the corresponding direction.

June 2003 Copyright (C) 2003 by Dragan Milićev 74/187

Concepts
In OO paradigm, one of the most important kinds
of relationships is the generalization/specialization
relationship
Generalization/specialization is a relationship
between classes, in which objects of the specialized
class are substitutable for objects of the
generalized class
The specialized class is also called the subclass, the
derived class, the child, or the descendent. The
generalized class is also called the superclass, the
base class, the parent, or the ancestor
This relationship is sometimes also called
inheritance

June 2003 Copyright (C) 2003 by Dragan Milićev 75/187

Concepts
ModelElement

name : String
descr : String

FlowElement

counter : Integer=0

Pipe QueuedServerSwitch1to3

CrossSemaphore

tHor, tVer : Time
curDir : {hor, ver}

flow

target

sources

0..1

*

 controls

0..4

AdaptableSemaphore

maxHor, maxVer : Integer
incTime : Time

June 2003 Copyright (C) 2003 by Dragan Milićev 76/187

Concepts
Generalization/specialization relationship
has two significant semantic manifestations:
 (Inheritance) The derived class inherits all the

attributes, operations, relationships, and semantics from
the base class (transitively)

 (Substitution) Whenever and wherever an object of the
base class is expected, an object of the derived class
can occur

If an object is a direct instance of a certain
class D, it is said that this object is of type
D, and also of type B, where B is a base
class of D (transitively), and it is an
(indirect) instance of B

June 2003 Copyright (C) 2003 by Dragan Milićev 77/187

Concepts
A class can be abstract, meaning that it cannot
have direct instances. Such a class is aimed as a
generalization of other, concrete classes that can
have instances. Example: ModelElement,
FlowElement (names written in italic)
A class can be derived from several base classes
(multiple inheritance)
Generalization/specialization is a conceptual
relationship that exists in the conceptual model, at
design time. It has the described semantic
manifestation in the object space, at runtime, but
does not have an explicit "instance" counterpart

June 2003 Copyright (C) 2003 by Dragan Milićev 78/187

Conceptual Model/Design Time

Object Space/Runtime

North str.
: QueuedServer

West str.
: QueuedServer

North sq.
: AdaptableSemaphore

South sq.
: CrossSemaphore

South str.
: QueuedServer

controls

controls

controls

controls

QueuedServer CrossSemaphore

AdaptableSemaphore

Concepts

June 2003 Copyright (C) 2003 by Dragan Milićev 79/187

Support in UML
UML supports generalization/specialization directly,
with the semantics and notation described so far
UML supports multiple inheritance
UML supports the substitution rule directly and
consistently, because all instances (of classes and
data types) are accessed indirectly, over
references (also referred to as object IDs in UML):
 properties of objects (designated by attributes or

association ends) result in (sets of) references
 operation parameters are references
 actions access objects through references

June 2003 Copyright (C) 2003 by Dragan Milićev 80/187

Support in C++
Definition of a derived class:
class AdaptableSemaphore : public CrossSemaphore {
 int maxHor, maxVer;
 Time incTime;
};

Support of inheritance:
AdaptableSemaphore* sem = new AdaptableSemaphore;
sem->tHor = 5; // Access to an inherited attribute
sem->maxHor = 30; // Access to an owned attribute

Support of the substitution rule: conversion of
pointers/references (upcasting), including when passing
parameters
Derived*  Base*
AdaptableSemaphore*  CrossSemaphore*

CrossSemaphore* sem = new AdaptableSemaphore; //Conversion
sem->tHor = 5; // Access to an attribute of the base class
sem->maxHor = 30; // Incorrect!

June 2003 Copyright (C) 2003 by Dragan Milićev 81/187

Support in C++
The substitution rule is not supported when objects are
embodied by value:

class Model {
 ...
 CrossSemaphore sem;
 // sem is always and nothing but a direct
 // instance of CrossSemaphore,
 // and no substitution is possible!
 ...
};

Consequence: if substitution is needed (and it is generally in
OO systems), do not use objects by values, but only by
intermediaries (pointers/references)!
C++ supports multiple inheritance, but with some subtle
consequences and problems

June 2003 Copyright (C) 2003 by Dragan Milićev 82/187

Support in Java
Definition of a derived class:
class AdaptableSemaphore extends CrossSemaphore {
 int maxHor, maxVer;
 ...
}

Support of inheritance:
AdaptableSemaphore sem = new AdaptableSemaphore;
sem.tHor = 5; // Access to an inherited attribute
sem.maxHor = 30; // Access to an owned attribute

Support of the substitution rule: conversion of references
(upcasting), including when passing parameters
Ref to Derived  Ref to Base
Ref to AdaptableSemaphore  Ref to CrossSemaphore

CrossSemaphore sem = new AdaptableSemaphore; //Conversion
sem.tHor = 5; // Access to an attribute of the base class
sem.maxHor = 30; // Incorrect!

June 2003 Copyright (C) 2003 by Dragan Milićev 83/187

Support in Java
The substitution rule is supported directly and consistently,
without exceptions, because only references to objects and
instances of built-in types can be named (objects of
classes are always unnamed):

class Model {
 ...
 CrossSemaphore sem;
 // sem is always and nothing but a reference
 // to a (possibly indirect) instance of CrossSemaphore,
 // and substitution is always possible!
 ...
};

Java does not support multiple inheritance

June 2003 Copyright (C) 2003 by Dragan Milićev 84/187

Advanced Concepts
OO theory recognizes two kinds of inheritance:
 Inheritance of interfaces, which implies substitution: the derived

abstraction inherits the interface of the base abstraction, thus
being capable of satisfying the same clients and substituting the
generalized instances

 Inheritance of implementations, which reduces redundancies (but
does not necessarily implies substitution): the derived abstraction
takes all pieces of structure and behavior from the base
abstraction, but does not necessarily satisfies the same interface

Different OO languages support different combinations of
these kinds, but a commonly accepted approach nowadays
(in most popular languages) is the described one with
generalization/specialization, which includes both kinds
C++ supports both kinds separately or together

June 2003 Copyright (C) 2003 by Dragan Milićev 85

Chapter 8: Operations

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts

June 2003 Copyright (C) 2003 by Dragan Milićev 86/187

Motivation
The structure of TSS created so far is not sufficient

to perform the main system’s task – simulation of
traffic. It is only a basis for the system’s behavior
that is built upon it.

For example, a pipe must react on a traffic
occurrence on its entrance by generating a
delayed occurrence on its exit.

A cross semaphore must change the open direction
on the notification of the passage of a time
interval.

Similarly, other objects in the system must provide
various services to other objects.

June 2003 Copyright (C) 2003 by Dragan Milićev 87/187

Concepts
Operation is the specification of a service
that can be requested from any object of
the class in order to affect behavior
Method is an implementation of an
operation
An operation is an element of the
conceptual model, i.e., a member of a class
An operation specifies that a service may be
requested from any direct or indirect
instance of that class

June 2003 Copyright (C) 2003 by Dragan Milićev 88/187

Concepts
An operation has its name, may have its formal
arguments (parameters), and possibly its return
type
At runtime, an operation of an object may be
invoked. The actual arguments are then supplied
The invocation of the operation is manifested by
the behavior specified by the corresponding method
of the class the object belongs to, no way how the
object was accessed (i.e., possibly as an instance of
a base class)

Pipe

acceptFlow()
notify()

CrossSemaphore

notify()

June 2003 Copyright (C) 2003 by Dragan Milićev 89/187

Support in UML
UML supports operations and methods as
described, with the following notation of operation
specification:
operationName (argumentList) : returnType

where argumentList and returnType are
optional, and argumentList is a comma-
separated list of argument specifications:
argName : argType = defaultValue

Actual arguments are always references to objects
(of classes or data types)
Methods are defined in terms of actions

June 2003 Copyright (C) 2003 by Dragan Milićev 90/187

Support in UML
Action is a unit of behavior used to
construct methods
An action can read and/or modify a part of
the object space in a consistent manner
A method is a complex mesh of actions,
connected by control and object flow to
provide a complex execution of the actions

June 2003 Copyright (C) 2003 by Dragan Milićev 91/187

Support in UML
A read/write action is an atomic action that
represents a request to perform an atomic
access to or modification of the object space
There are read/write actions of different
kinds, such as "Create object," "Delete
object," "Modify attribute value," "Create
link," “Read links,” or "Delete link"
Each action can have its pins. Pins represent
the parameters of an action
UML action semantics uses the combined
data-flow and control-flow paradigms of
action execution

June 2003 Copyright (C) 2003 by Dragan Milićev 92/187

Support in UML

Action 1

Action 3

Action 2

Action 4

Legend:

Input Pin

Output Pin

Data flow
Control
flow

June 2003 Copyright (C) 2003 by Dragan Milićev 93/187

Support in UML
UML action semantics defines actions for invoking
an operation of an object over a reference:
 with synchronous invocation (the caller action does not

complete until the invoked method is completed)
 with asynchronous invocation (the caller action

completes without waiting for the invoked method to
complete)

June 2003 Copyright (C) 2003 by Dragan Milićev 94/187

Support in C++
Operation specification:

class Pipe {
 ...
 void acceptFlow(); // Accepts a vehicle occurrence
 void notify(); // Notifies that the delay has elapsed
 ...
};

Method definition uses the traditional procedural
programming style (as in the C language):
void Pipe::acceptFlow () {
 // Access to an (inherited) attribute
 // of the object of which the method is invoked:
 counter = counter+1;
 // Request notification after the delay
 // by calling an operation of the same object:
 raiseEvent();
}

June 2003 Copyright (C) 2003 by Dragan Milićev 95/187

Support in C++
Method invocation:
void Pipe::notify () {
 // If there is a target, send the vehicle to it:
 if (target!=0) target->acceptFlow();
}

Method bodies may contain expressions and statements in
a usual procedural style (sequences, conditions, loops, etc.)
C and C++ recognize functions only; procedures are a
special case of functions with no return value (void as the
return type)
Arguments can be passed by value or by reference
Only synchronous call is supported
C++ allows ordinary non-member (global) subprograms
(vertical compatibility with C)

June 2003 Copyright (C) 2003 by Dragan Milićev 96/187

Support in Java
Very similar to C++ (except for some slight
notational differences)
The language for programming methods is almost
equal to C/C++
Arguments of built-in types are passed by value,
and objects of classes by reference (substitution is
implied)
Calls are always synchronous
No non-member (global) functions are allowed

June 2003 Copyright (C) 2003 by Dragan Milićev 97/187

Advanced Concepts
Problem: how to ensure that an object has a proper initial
state when it is created, e.g., its attribute values are properly
initialized?
Possible solution:
class Pipe {
 ...
 void init();
 ...
};

void Pipe::init() {
 counter = 0;
 ... // Other necessary initializations
}

// When an object is created,
// init() must be called immediately:
Pipe* aPipe = new Pipe;
aPipe->init();

June 2003 Copyright (C) 2003 by Dragan Milićev 98/187

Advanced Concepts
This approach is error-prone, because programmers can easily
miss to invoke the init() operation!
C++ and Java support constructors. A constructor is a
member function (named the same as its class) that is
implicitly invoked every time an object is created. The
compiler ensures constructor invocation at all places of object
creation, so that no errors can occur:
class Pipe {
 Pipe(); // Constructor
 ...
};

Pipe::Pipe() {
 counter = 0;
 ... // Other necessary initializations
}

Pipe* aPipe = new Pipe; //Constructor is called implicitly

June 2003 Copyright (C) 2003 by Dragan Milićev 99/187

Advanced Concepts
Constructors are alike other member operations in many
aspects:
 they have this/self reference (to be explained soon)
 they may have arguments as any other operation (to provide

parameterized construction)
 a class may have several constructors, provided they differ in

number and types of arguments

When an object is constructed, the constructor of the base
class is invoked before the constructor of the derived class
is executed (and so on transitively)
C++ and Java support destructors also: these are
operations that are implicitly called on object destruction

June 2003 Copyright (C) 2003 by Dragan Milićev 100/187

Advanced Concepts
In the scope of a method of a class, there is an
implicitly defined reference to the object for which
the method is invoked:
 called self in UML
 called this in C++ (pointer to the object) and Java

Every direct access to a member of the object
(property or operation) is actually an indirect
access over this reference:
void Pipe::acceptFlow () {
 counter = counter+1; // implicitly this->counter
 raiseEvent(); // implicitly this->raiseEvent()
}

June 2003 Copyright (C) 2003 by Dragan Milićev 101/187

Advanced Concepts
The self/this reference may be used to pass the
reference to the server object to other objects, in order to
create links to it:
Pipe::Pipe () {
 // Sign this newly created pipe
 // to the entire model;
 // Model::add() accepts an argument
 // of type ModelElement*;
 // theModel is a globally accessible reference
 // to an object of Model:
 theModel->add(this);
}

Model

add(ModelElement)
remove(ModelElement)

ModelElement
elements

*

June 2003 Copyright (C) 2003 by Dragan Milićev 102/187

Advanced Concepts
An operation can be of class scope (instead of
instance scope), meaning that it is a service of the
class, not of a particular object, and it can be
called without specifying the server object
UML, C++, and Java support operations of class
scope directly (called static operations in C++ and
Java)
An operation can be query, meaning that it does
not modify the state of the server object
UML and C++ support query operations (called
constant member functions in C++)

June 2003 Copyright (C) 2003 by Dragan Milićev 103

Chapter 9: Polymorphism

Motivation
Concepts
Support in UML
Support in C++
Support in Java

June 2003 Copyright (C) 2003 by Dragan Milićev 104/187

Motivation
In TSS, any flow element (e.g. a pipe or a flow source), can have any

other flow element (e.g. a switch or a flow sink) as its flow target.
When the former generates a vehicle occurrence at its output, the
target flow element must accept that flow occurrence through its
corresponding service (operation).

However, different kinds of flow elements process the accepted flow in
completely different ways. For example, a flow sink simply counts the
occurrence and does not propagate it, while a pipe propagates it after
a certain delay.

How to provide different behavior of different kinds of flow elements for
the same service “accept a flow occurrence,” so that the client
(source) elements do not depend on the type of the server (target)
elements and that the targets can be attached to sources
interchangeably?

June 2003 Copyright (C) 2003 by Dragan Milićev 105/187

Concepts
A derived class may redefine (or override)
an operation of its base class
This means that the derived class provides
another implementation (i.e., method) for
the same operation, offering different
behavior for the same service
If a class does not override an operation, it
inherits the method of that operation from
its base class (transitively)
An operation may be abstract, meaning that
its implementation is not provided in the
class. Such a class is then also abstract

June 2003 Copyright (C) 2003 by Dragan Milićev 106/187

Concepts
At runtime, an operation of an object may be
invoked. The invocation of the operation is
manifested by the behavior specified in the
corresponding method of the class to which the
object belongs, regardless to how the object was
accessed (i.e., possibly as a kind of an object of a
base class)
In other words, a client that invokes an operation
of a server object can access the server object as a
generalized entity (i.e., as an object of the base
class). In that case, the method of the derived
class will be invoked. This mechanism is called
polymorphism

June 2003 Copyright (C) 2003 by Dragan Milićev 107/187

Concepts

FlowElement

acceptFlow()

Pipe QueuedServerSwitch1to3

flow

target

sources

0..1

*

acceptFlow()
notify()

acceptFlow()

Redefined operation:
void Pipe::acceptFlow () {
 counter = counter+1;
 raiseEvent();
}

Polymorphism at invocation place:
 void Pipe::notify() {

 if (target!=0)
 target->acceptFlow();
}

acceptFlow()

June 2003 Copyright (C) 2003 by Dragan Milićev 108/187

Concepts
The purpose of polymorphism is to make the clients
that invoke an operation independent of the
variation of the operation's implementation
The client is spared from knowing the specialties
about the server–the client tends to regard the
server as a generalized thing and to access it
through its generalized interface
The specialties of different kinds of servers are
incorporated in the polymorphic operations and
their overridden derivatives
This way, the interfaces between clients and
servers become looser, and therefore more
controllable
This is a key point to constructing flexible software

June 2003 Copyright (C) 2003 by Dragan Milićev 109/187

Concepts
This is because a modification of the behavior of
the client side can be achieved by adding parts of
software (i.e., overriding operations in derived
classes), and not modifying parts of software,
which is always error-prone and risky
The client does not experience any modification if a
new class at the server side is added in the
hierarchy or a polymorphic operation is overridden
in a derived class in the server-side hierarchy, and
yet the software behaves differently
This mechanism is one of the most important
contributions of the object-oriented programming
paradigm

June 2003 Copyright (C) 2003 by Dragan Milićev 110/187

Support in UML
UML directly supports polymorphism, but does not
specify the rule for method resolution, because it
is done differently in different implementation
languages
To override an operation, the same operation
(with the same name, arguments, and return
type) is specified in the derived class, with its own
method, and with the “redefine” relationship to
the overridden operation
Operations are polymorphic by default. If an
operation should not be polymorphic, it is tagged
as leaf. All operation invocations are polymorphic

June 2003 Copyright (C) 2003 by Dragan Milićev 111/187

Support in C++
In C++, operations are non-polymorphic by default. To be
polymorphic, an operation must be specified as virtual at
least in the base class:
class ModelElement {
 ...
 virtual void acceptFlow();
};

An operation call is polymorphic if the server object is
accessed over a pointer/reference:
 void Pipe::notify() {
 if (target!=0) target->acceptFlow();
}

Abstract operations are specified with =0:
class ModelElement {
 ...
 virtual void acceptFlow() = 0;
};

June 2003 Copyright (C) 2003 by Dragan Milićev 112/187

Support in Java
In Java, operations are polymorphic by default. To be non-
polymorphic, an operation must be specified as final :
class ModelElement {
 ...
 final void acceptFlow() {...}
}

Operation calls are always polymorphic, since a server
object is always accessed over a reference:
if (target!=null) target.acceptFlow();

Abstract operations are specified with abstract:
class ModelElement {
 ...
 abstract void acceptFlow();
}

June 2003 Copyright (C) 2003 by Dragan Milićev 113

Chapter 10: Encapsulation

Motivation
Concepts
Support in UML
Support in C++
Support in Java

June 2003 Copyright (C) 2003 by Dragan Milićev 114/187

Motivation
It has been assumed so far that all members of classes are

freely accessible from anywhere in the program. However,
this can be error prone, because there is no protection
from accidental or intentional corruption of object states.
For example, a client can modify the counter of
transported vehicles of a pipe incorrectly.

Besides, such software is very likely to be inflexible. If a client
relies on a part of the server’s implementation, the server’s
implementation cannot be modified without affecting the
client (the domino effect is very likely).

These issues are caused by the fact that the interactions
between objects are not specified in a controlled manner,
so that violations of defined interactions cannot occur.

June 2003 Copyright (C) 2003 by Dragan Milićev 115/187

Concepts
One of the fundamental principles of software engineering
adopted by OO technology through first-class concepts is
encapsulation
Encapsulation encompasses the following assumptions:
 For a software component (class, module, package, or whatever

piece of software for which encapsulation is available), two parts
can be distinguished: interface and implementation

 Other software components can access only the interface of the
component; its implementation is encapsulated, hidden, and
inaccessible to the clients

June 2003 Copyright (C) 2003 by Dragan Milićev 116/187

Concepts
Different languages support encapsulation in
different ways and at different levels of granularity
Most of them support encapsulation at class level,
whereby each member of a class can be:
 public: available from anywhere (constitutes the public

interface of the class)
 protected: available from the scope of the same class

and derived classes only (constitutes a restricted
interface to derived classes as “privileged” clients)

 private: available only from the scope of the same class
(constitutes the implementation of the class)

June 2003 Copyright (C) 2003 by Dragan Milićev 117/187

Support in UML
UML supports the described levels of visibility
(accessibility) of class members, including
properties (attributes and association ends) and
operations. Notation:
 public: +
 protected: #
 private: - FlowElement

+ acceptFlow()
getCounter() : Integer

flow

+target

sources

0..1

*

- counter : Integer = 0

June 2003 Copyright (C) 2003 by Dragan Milićev 118/187

Support in UML
Package is a general grouping mechanism in UML.
A package owns model elements, such as classes,
associations, and other packages, too. This way,
packages are used to organize the model
hierarchically
UML supports encapsulation of package elements,
too, whereby an element of a package can be (the
same notation as for class members):
 public: accessible from anywhere
 private: accessible from the same package only

June 2003 Copyright (C) 2003 by Dragan Milićev 119/187

Support in C++
C++ supports accessibility levels of class members as
described (public, private, protected):
class FlowElement : public ModelElement {
public:
 virtual void acceptFlow();
protected:
 FlowElement();
 // A protected constructor implies that the class
 // is abstract, because direct instances of it
 // cannot be created!
 int getCounter(); // Returns the value of counter
private:
 int counter;
};

From outside the class, it is no more possible:
Pipe* aPipe = new Pipe;
aPipe->counter = 5; // Compilation error!

June 2003 Copyright (C) 2003 by Dragan Milićev 120/187

Support in Java
Java supports accessibility levels of class members as
described (public, private, protected). Each class member
must have the accessibility specifier in front of its
declaration
Java supports packages and accessibility of their elements
(classes and nested packages):
public abstract class FlowElement
 extends ModelElement
{
 public void acceptFlow() {...}
 protected FlowElement() {...}
 public int getCounter() { return counter; }
 private int counter = 0;
}

June 2003 Copyright (C) 2003 by Dragan Milićev 121

Chapter 11: Interfaces

Motivation
Concepts
Support in UML
Support in C
Support in Java
Advanced Concepts

June 2003 Copyright (C) 2003 by Dragan Milićev 122/187

Motivation
In TSS, we can generally allow other kinds of flow elements

(but not all) to be controlled by semaphores. For example,
besides queued servers, why shouldn’t we allow
semaphores to control flow sources, too. In general,
semaphores only require that the controlled elements
provide the “switch on” and “switch off” services.

Similarly, a scheduler of timed events must notify different
kinds of model elements at proper moments (e.g., delay of
vehicles in pipes, change of direction in semaphores, etc.).
All that the scheduler needs is that the servers respond to
the “notification” message.

In general, we need a concept that allows loose coupling of
classes, whereby the client class relies only on the
assumption that the server provides a set of services.

June 2003 Copyright (C) 2003 by Dragan Milićev 123/187

Concepts
Interface is a collection of operations that are used to
specify a service of a class or component

<<interface>>
IFlowSource

+switchOn()
+switchOff()
+isOn() : Boolean

Interface is a specification of obligations that the server
side fulfills, and the client side requires for a successful
collaboration. Therefore, an interface defines a contract
between two interested parties
Interface consists of abstract operations only and has no
structure and no methods

June 2003 Copyright (C) 2003 by Dragan Milićev 124/187

Concepts
A class or a component may realize a set of interfaces,
offering the specified services to the clients, meaning that
it implements the operations of the interfaces providing
the methods for them

<<interface>>
IFlowSource

+switchOn()
+switchOff()
+isOn() : Boolean

CrossSemaphore

A class or a component may depend on a set of interfaces,
meaning that it requires from its clients to realize those
interfaces (provide methods for the operations)

QueuedServer

FlowSource

June 2003 Copyright (C) 2003 by Dragan Milićev 125/187

Concepts
Interface realization (implementation) implies
substitutability: any object whose class realizes the
required interface can be the server of an object that
depends on the interface

Interface consists of abstract operations only, thus
allowing extremely loose coupling between software
components
Interfaces can be specialized, meaning that the specialized
interface inherits and extends the generalized interface
(interface inheritance)

: QueuedServer: FlowSource: CrossSemaphore

switchOn()

: IFlowSource

June 2003 Copyright (C) 2003 by Dragan Milićev 126/187

Support in UML
UML fully supports interfaces. All classifiers may
realize interfaces (class, data type, component,
node)
Alternative notations:

<<interface>>
IFlowSource

+switchOn()
+switchOff()
+isOn() : Boolean

CrossSemaphore
QueuedServer

CrossSemaphore QueuedServer

IFlowSource

Or:

June 2003 Copyright (C) 2003 by Dragan Milićev 127/187

Support in C++
C++ does not support interfaces directly
An interface can be specified by an abstract class with nothing but
abstract operations:
class IFlowSource {
public:
 virtual void switchOn() = 0;
 virtual void switchOff() = 0;
 virtual void isOn() = 0;
};

Implementation of interfaces is done by derivation of classes:
class QueuedServer : public FlowElement,
 public IFlowSource {
public:
 virtual void switchOn();
 virtual void switchOff();
 virtual void isOn();
 ...
};

June 2003 Copyright (C) 2003 by Dragan Milićev 128/187

Support in Java
Java supports interfaces directly and completely. Although a
class may extend (specialize) only one base class, it can
implement (realize) many interfaces
Specification of an interface:
interface IFlowSource {
 void switchOn();
 void switchOff();
 void isOn();
}

Implementation of interfaces:
public class QueuedServer extends FlowElement
 implements IFlowSource {
 public void switchOn() {...}
 public void switchOff() {...}
 public void isOn() {...}
 ...
}

June 2003 Copyright (C) 2003 by Dragan Milićev 129/187

Advanced Concepts
Similarities between interfaces and (possibly abstract)
classes:
 both are classifiers, because they designate sets of instances
 both have operations as specifications of services that may be

requested from the instances
 both can be specialized and generalized

Differences between interfaces and classes:
 unless it is abstract, a class may have direct instances; instances of

interfaces are always indirect
 even when it is abstract, a class may have properties (attributes

and association ends) and methods; interfaces consist of abstract
operations only

 a class specifies a contract in a concrete way, with (most often)
some implementation of the contract; interfaces specify contracts
in a pure, abstract way

June 2003 Copyright (C) 2003 by Dragan Milićev 130

Chapter 12: Interactions

Motivation
Concepts
Support in UML
Support in C++ and Java

June 2003 Copyright (C) 2003 by Dragan Milićev 131/187

Motivation
The behavior of TSS is provided by interactions between

objects, whereby objects invoke operations in a complex
manner. Some of these interactions lay in the core of the
system’s behavior, making its key mechanisms.

One of the key mechanisms in TSS is the simulation of
discrete events in time. Some model elements, e.g. flow
sources, pipes, queued servers, and semaphores, generate
timed events, which carry the information about the time
at which they should be notified to react in some way. A
centralized scheduler holds a list of raised events, sorted
chronologically, simulates the passage of time, and notifies
the corresponding model elements by handling the events
in the chronological order.

June 2003 Copyright (C) 2003 by Dragan Milićev 132/187

Motivation
For example, when a flow source is notified of an event, it

generates a vehicle occurrence, transports it to its target,
and then raises another event scheduled at a future
moment after a random delay relative to the previous
event, in order to be notified to generate a new vehicle
occurrence and repeat the same procedure.

Similarly, when a pipe accepts a flow occurrence, it raises an
event with a random delay. When it is notified about the
passing of the delay, it generates a vehicle occurrence to
its target, thus simulating the transportation delay of
vehicles.

Generally, it would be useful to have a means to visualize,
specify, construct, and document the scenarios of
interactions between objects in the software system.

June 2003 Copyright (C) 2003 by Dragan Milićev 133/187

Concepts
Interaction is a behavior that comprises a set of messages that
are exchanged among a set of objects within a particular
context to accomplish a purpose
Objects interact according to the designed scenarios, which are
specific sequences of actions that illustrate behavior
Interactions are used to model dynamic aspects of
collaborations, representing societies of objects playing specific
roles, all working together to carry out some behavior that is
bigger than the sum of the elements
Those roles represent prototypical instances of classes,
interfaces, or other classifiers, and their dynamic aspects are
visualized, specified, constructed, and documented as flows of
controls that may encompass simple, sequential threads
through a system, as well as more complex flows that involve
branching, looping, recursion, and concurrency

June 2003 Copyright (C) 2003 by Dragan Milićev 134/187

Concepts
An interaction has its context:
 a collaboration of objects in a part of the system (e.g., a key

mechanism of the system)
 a method, where objects local to the method and globally

accessible to the method collaborate to provide the implementation
of an operation

 behavior of a class, where attributes of a class and other globally
accessible objects collaborate to provide the behavior of the class

Interactions consist of:
 objects and roles that take part in the interaction
 links between objects
 messages (e.g. operation calls) that flow over links between

objects

June 2003 Copyright (C) 2003 by Dragan Milićev 135/187

Support in UML
UML supports interactions in a very complex and flexible
way. Interactions are depicted in interaction diagrams
There are two kinds of interaction diagrams, which depict
the same interaction from two different viewpoints:
 collaboration diagram has a shape of a graph of objects and links

with flow of messages over the links, thus emphasizing the
structural connections between participants

 sequence diagram has a shape of a timeline, where objects are
placed across the x axis and messages are placed along the y axis,
thus emphasizing the time ordering and focus of control

Collaboration and sequence diagrams are semantically
equivalent, because they rely on the same information and
depict the same interaction, emphasizing its different
details

June 2003 Copyright (C) 2003 by Dragan Milićev 136/187

Support in UML
Collaboration diagram for raising an event

e : RandomTimed
FlowElement

{self}

1: raiseEvent()

: RandomGenerator

{association}rndGen

1.1: getRndNum()
r

ev : Event

1.2: <<create>> (e,r)

1.2.1: put(ev)

: Scheduler

{global}

: Event
: Event

: Event

{association}

June 2003 Copyright (C) 2003 by Dragan Milićev 137/187

Support in UML
Sequence diagram for raising an event

r

put(ev)

e : RandomTimed
FlowElement : RandomGenerator : Scheduler

raiseEvent()

getRndNum()

ev : Event
<<create>> (e,r)

June 2003 Copyright (C) 2003 by Dragan Milićev 138/187

Support in UML
UML interaction diagrams allow specifications of
many other details:
 creation and deletion of objects and links
 different flow of control issues (branching, looping,

recursion)
 threads of control

Although very rich in concepts, UML interaction
diagrams do not have fully formal semantics, so
they cannot be executable in a general case
A modeling tool may help in generating
implementation code from interaction diagrams in
some special cases

June 2003 Copyright (C) 2003 by Dragan Milićev 139/187

Support in C++ and Java
C++ and Java do not support specification of interactions
directly, but interactions are spread across the
implementations of many operations:
void RandomTimedFlowElement::raiseEvent () {
 Time tm = 0;
 if (rndGen) tm = rndGen->getRandom(); else return;
 new Event(this,tm);
}

Event::Event (ITimedElement* targetElement, Time tm)
 : time(tm), target(targetElement) {
 theScheduler->put(this);
}

This is one of the most important disadvantages and
restrictions of OO programming in languages like C++ and
Java – poor readability of scenarios and key mechanisms

June 2003 Copyright (C) 2003 by Dragan Milićev 140

Part III: Design Patterns

About Design Patterns
Singleton
Strategy
Template Method
Visitor
Composite

June 2003 Copyright (C) 2003 by Dragan Milićev 141

Chapter 13: About Design Patterns

What are Design Patterns?
Pattern Description
Pattern Classification

June 2003 Copyright (C) 2003 by Dragan Milićev 142/187

What are Design Patterns?
Design patterns are simple and elegant solutions to
specific, commonly recognized problems in OO software
design
DPs are not concrete, physical artifacts of software
development. Instead, they are ideas and directions to
solve a design problem
DPs are expressed in terms of collaborations, which consist
of the structure, expressed in terms of abstract roles that
take part in collaborations to accomplish a purpose, and
the interactions of those participants
In every concrete problem, the developer must concretize
the roles to specific participants in the system

June 2003 Copyright (C) 2003 by Dragan Milićev 143/187

What are Design Patterns?
DPs cannot be taken as ready-to-use pieces of code,
model, or any other artifact. They are reused as solutions
and ideas instead to help developers to make clear and
stable OO design
DPs are crucial for software reuse
However, DPs are not like other means of reusability:
 algorithms: known procedures to solve some problems
 libraries: units of code ready to be used as parts of the system,

consisting of subprograms, types, etc.
 frameworks: ready-to-use collaborations of classes and objects that

provide certain mechanisms in a specific problem domain

June 2003 Copyright (C) 2003 by Dragan Milićev 144/187

Pattern Description
A design pattern has four essential elements:
 Name: an identifier of a pattern; a handle we can use to

describe a design problem, its solution, and its
consequences; used to increase the understandability
among developers

 Problem: describes when to apply the pattern, i.e., a
commonly recognized problem and its context

 Solution: describes the elements that make up the
design, i.e., a collaboration, consisting of the structure
(roles, responsibilities, relationships) and behavior
(interactions)

 Consequences: the results and trade-offs of applying
the pattern

June 2003 Copyright (C) 2003 by Dragan Milićev 145/187

Pattern Classification
According to their purpose, DPs can be:
 creational: concern the process of object creation
 structural: deal with the composition of classes and objects
 behavioral: characterize the ways in which classes or objects

interact and distribute responsibility

According to their scope, DPs can be:
 class: deal primarily with classes and their relationships
 object: deal with dynamic connections and interactions between

objects

The rest of the Tutorial presents a small set of selected
DPs from the referential book of “the gang of four”
(Gamma et al.), explained using the TSS example

June 2003 Copyright (C) 2003 by Dragan Milićev 146

Chapter 14: Singleton

Motivation
Intent and Applicability
Structure and Collaborations
Implementation
Consequences

June 2003 Copyright (C) 2003 by Dragan Milićev 147/187

Motivation
In TSS, the class Scheduler should have exactly one

instance, because we want to have a centralized, globally
accessible object of that class to accept and handle events.

This requirement can be refined as follows:
 the class has one instance that is properly initialized and certain to

exist when it is accessed
 there is no way to create more instances accidentally or on purpose
 the sole instance is easily and globally accessible.

A global reference variable makes an object accessible, but it
does not keep from creating multiple objects.

A better solution is to make the class itself responsible for
keeping track of its sole instance. The class can ensure
that no other instance can be created.

June 2003 Copyright (C) 2003 by Dragan Milićev 148/187

Intent and Applicability
Intent (object/creational) :
Ensure a class has exactly one instance, and
provide a global point of access to it
Applicability: use the Singleton DP when
 there must be exactly one instance of a class, and it

must be accessible to clients from a well-known access
point

 when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code

June 2003 Copyright (C) 2003 by Dragan Milićev 149/187

Structure and Collaborations

Participants:
 Singleton (Scheduler):

 defines an Instance operation that lets clients access its unique
instance; Instance is a class-scope operation (static)

 may be responsible for creating its own instance
 is responsible for keeping from creating more instances

Collaborations:
 Clients access a Singleton instance solely thought Singleton’s

Instance operation

Singleton

+Instance():Singleton
#Singleton()

- instance:Singleton

return instance

June 2003 Copyright (C) 2003 by Dragan Milićev 150/187

Implementation
Class definition (Java):
class Scheduler {
 // The sole access point:
 public static Scheduler Instance() {
 return instance;
 }
 //... Other operations are possible:
 public void put(Event) {...}
 //...
 // Protected constructor prevents from
 // creating more objects, but allows subclassing
 protected Scheduler() {...}
 // The sole instance of the class:
 private static instance = new Scheduler;
}

Access to the singleton object (Java):
Scheduler.Instance().put(this);

June 2003 Copyright (C) 2003 by Dragan Milićev 151/187

Consequences
Controlled access to sole instance: because the Singleton
class encapsulates its sole instance, it can have strict
control over how and when clients access it
Reduced name space: it is an improvement over global
variables that pollute the global namespace
Permits refinement of operations: the Singleton class may
be subclassed, and it is easy to configure an application
with an instance of a derived class, even at runtime
Permits variable number of instances: it is easy to have
more than one, but a controlled number of instances
More flexible than class-scope operations that can be also
used to package a singleton’s functionality; however, class-
scope operations cannot be polymorphic and it is not
possible to have more than one instance

June 2003 Copyright (C) 2003 by Dragan Milićev 152

Chapter 15: Strategy

Motivation
Intent and Applicability
Structure and Collaborations
Consequences

June 2003 Copyright (C) 2003 by Dragan Milićev 153/187

Motivation
In TSS, many flow elements generate events at random time

intervals. They all need generation of random numbers.
However, in a general case, they may need random numbers

of different distribution (uniform, exponential, etc.), which
are generated using different algorithms.

Hard-wiring all such algorithms into the classes that require
them is not desirable for several reasons:
 clients that need random numbers get more complex if they

include the random number generation code; they become bigger
and harder to maintain

 different algorithms will be appropriate at different times; we don’t
want to support multiple algorithms if we don’t use them at all

 it’s difficult to add new algorithms and vary existing ones when
random number generation is part of a client.

June 2003 Copyright (C) 2003 by Dragan Milićev 154/187

Motivation
These problems can be avoided if we define classes that

encapsulate different random number generation
algorithms. An algorithm that is encapsulated in this way is
called a strategy.

RandomTimed
FlowElement

#raiseEvent()

RandomGenerator

+ getRndNum() : Time

UniformGenerator

+ getRndNum() : Time

ExpGenerator

+ getRndNum() : Time

rndGen

1

Time tm = rndGen.getRndNum();
...

June 2003 Copyright (C) 2003 by Dragan Milićev 155/187

Intent and Applicability
Intent (object/behavioral):
Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm
vary independently from the clients that use it.
Also known as Policy
Applicability: use the Strategy DP when:
 many related classes differ only in their behavior; Strategies

provide a way to configure a class with one of many behaviors
 you need different variants of an algorithm, e.g. reflecting different

time/space trade-offs
 an algorithm uses data that clients should not know about; use the

Strategy DP to avoiding complex, algorithm-specific data structures
 a class defines many behaviors, and these appear as multiple

conditional statements in its operations; instead of many
conditionals, move related branches into their own Strategy class

June 2003 Copyright (C) 2003 by Dragan Milićev 156/187

Structure and Collaborations

Participants:
 Strategy (RandomGenerator)

 declares an interface common to all supported algorithms; Context uses
this interface to call the algorithm defined by ConcreteStrategy

 ConcreteStrategy (UniformGenerator, ExpGenerator)
 implements the algorithm using the Strategy interface

 Context (RandomTimedFlowElement)
 is configured with a ConcreteStrategy object
 maintains a reference to a Strategy object
 may define an interface that lets Strategy access its data

Context

contextInterface()

Strategy

algorithmInterface()

ConcreteStrategy1

algorithmInterface()

ConcreteStrategyN

algorithmInterface()...

June 2003 Copyright (C) 2003 by Dragan Milićev 157/187

Structure and Collaborations
Collaborations:
 Strategy and Context interact to implement the chosen

algorithm. A context may pass all data required by the
algorithm to the strategy when the algorithm is called.
Alternatively, the context can pass a reference to itself
as an argument to Strategy operations. That lets the
strategy call back on the context as required

 A context forwards requests from its clients to its
strategy. Clients usually create and pass a
ConcreteStrategy object to the context; thereafter,
clients interact with the context exclusively. There is
often a family of ConcreteStrategy classes for a client to
choose from

June 2003 Copyright (C) 2003 by Dragan Milićev 158/187

Consequences
Benefits:
 Reusable families of related algorithms, factored by inheritance
 An alternative to subclassing the Context class directly to give it

different behavior, by hard-wiring the behavior into Context, thus
making Context harder to understand, maintain, and extend

 Strategies eliminate conditional statements
 A choice of implementation among different implementations of the

same behavior

Drawbacks:
 Communication overhead between Strategy and Context
 Increased number of objects, especially if strategies are non-

shareable (encapsulate some state); shareable strategies can
reduce the problem, but they should not maintain state across
invocations

June 2003 Copyright (C) 2003 by Dragan Milićev 159

Chapter 16: Template Method

Motivation
Intent and Applicability
Structure and Collaborations
Consequences

June 2003 Copyright (C) 2003 by Dragan Milićev 160/187

Motivation
A random number r with the distribution function F(r) is

generated from a random number u with the uniform
distribution by the following mapping function:
r = F -1(u)

Therefore, the algorithm for generating random numbers of
arbitrary distribution is:
double RandomGenerator::getRndNum () {
 double u = urnd();
 double r = convert(u);
 return r;
}

where urnd() is a function that generates a uniform
random number, and convert() is a polymorphic
member function that implements F -1(u).

June 2003 Copyright (C) 2003 by Dragan Milićev 161/187

Motivation
Consequently, the abstract class RandomGenerator can

implement the operation getRndNum() by defining a
fixed algorithm for generating random numbers of
arbitrary distribution, while the derived concrete classes
will define the step convert().

Such a method in a base class is called a template method. It
defines a fixed algorithm in terms of some concrete and
some abstract steps that will be specified by derived
classes. In other words, a template method fixes the
ordering of the steps of an algorithm, while leaving the
derived classes to specify some of them.

June 2003 Copyright (C) 2003 by Dragan Milićev 162/187

Intent and Applicability
Intent (class/behavioral):
Define the skeleton of an algorithm in a method, deferring
some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the
algorithm’s structure.
Applicability: the Template Method DP should be used:
 to implement the invariant parts of an algorithm once and leave it up

to subclasses to implement the behavior that can vary
 when common behavior among subclasses should be factored and

localized in a common class to avoid code duplication (“refactoring to
generalize” or “algorithmic generalization”); first identify the
differences in the existing code of subclasses’ methods, then separate
the differences into new operations, and finally gather the common
parts into a template method that calls these operations

 to control subclasses extensions; a template method allows
subclasses to provide behavior only at specific points

June 2003 Copyright (C) 2003 by Dragan Milićev 163/187

Structure and Collaborations

Participants:
 AbstractClass (RandomGenerator)

 defines abstract primitive operations that concrete subclasses redefine
to implement steps of an algorithm

 implements a template method defining the skeleton of an algorithm;
the template method calls primitive operations as well as operations
defined in AbstractClass or those of other objects

 ConcreteClass (UniformGenerator, ExpGenerator)
 implements the primitive operations to carry out specific steps

Collaborations:
 ConcreteClass relies on AbstractClass to implement the invariant

steps of the algorithm

AbstractClass

templateMethod()
primitiveOp1()
primitiveOp2()...

primitiveOp1()
...
primitiveOp2()
... ConcreteClass

primitiveOp1()
primitiveOp2()

June 2003 Copyright (C) 2003 by Dragan Milićev 164/187

Consequences
Template methods are a fundamental technique for code reuse. They
are particularly important in class libraries and frameworks, because
they are the means for factoring out common behavior in library
classes
A parent class calls the operations of a subclass, not the other way
around (“the Hollywood principle: Don’t call us, we’ll call you”)
Template methods call the following kinds of operations:
 concrete operations (of AbstractClass or client classes), which cannot be

redefined in subclasses
 abstract operations, which must be redefined in subclasses
 “hook operations,” which are polymorphic operations with a default

behavior in the base class (often empty), which can but need not be
redefined in subclasses

It is important for the designers of subclasses to know which
operations are of which of these kinds

June 2003 Copyright (C) 2003 by Dragan Milićev 165/187

Consequences
A subclass can extend a parent class operation’s behavior by
overriding the operation and calling the parent operation
explicitly:
void DerivedClass::anOperation () {
 // Extended behavior...
 BaseClass::anOperation();
 // Extended behavior...
}

Unfortunately, it is easy to forget to call the inherited
operation. It is better to transform such an operation into a
template method and then let subclasses override a hook:
void BaseClass::anOperation () {
 // Base class behavior...
 hookOperation(); // does nothing in BaseClass
 // Base class behavior...
}

June 2003 Copyright (C) 2003 by Dragan Milićev 166

Chapter 17: Visitor

Motivation
Intent and Applicability
Structure and Collaborations
Consequences

June 2003 Copyright (C) 2003 by Dragan Milićev 167/187

Motivation
In TSS, we need to perform different operations on the

defined structure of model elements. We want to check
the model against violations (e.g., a target assigned to a
flow sink or a semaphore without controlled sources), to
generate a documentation (a list of model elements with
their properties), or to generate a simulation report (with
the details about transported vehicles and sizes of
queues). Most of these operations will need to treat
objects differently, according to their class.

One approach assumes incorporation of these operations into
the existing class hierarchy.

June 2003 Copyright (C) 2003 by Dragan Milićev 168/187

Motivation

This leads to a system that is hard to understand and maintain,
because the main class hierarchy is “spoiled” with the
operations and code for different unrelated activities. Adding
a new operation usually requires recompilation of the entire
hierarchy. It would be better if each new operation could be
added separately, and the main hierarchy were independent
of the applied operations.

ModelElement

checkValidity()
generateDoc()
simulReport()

Pipe

checkValidity()
generateDoc()
simulReport()

FlowSource

checkValidity()
generateDoc()
simulReport()

QueuedServer

checkValidity()
generateDoc()
simulReport()

June 2003 Copyright (C) 2003 by Dragan Milićev 169/187

Motivation

This can be achieved by packing related operations from
each class in a separate object, called visitor, and passing
it to elements of the model structure as it is traversed.
When an element “accepts” the visitor, it sends a request
to the visitor that encodes the element’s class (call-back).
It also includes the element as an argument. The visitor
will then execute the operation for that element.

Visitor

visitFlowSource()
visitPipe()
visitQueuedServer()

Documenter

visitFlowSource()
visitPipe()
visitQueuedServer()

ModelChecker

visitFlowSource()
visitPipe()
visitQueuedServer()

SimulReporter

visitFlowSource()
visitPipe()
visitQueuedServer()

June 2003 Copyright (C) 2003 by Dragan Milićev 170/187

Motivation

Ultimately, there will be two class hierarchies: one for the
elements being operated on (the ModelElement hierarchy)
and one for the visitors that define operations on the
elements (the Visitor hierarchy). A new operation is created
by adding a new subclass to the visitor hierarchy, without
affecting the main hierarchy.

ModelElement

accept(Visitor)

Pipe

accept(Visitor v)

FlowSource

accept(Visitor v)

v.visitFlowSource(this)

v.visitPipe(this)

June 2003 Copyright (C) 2003 by Dragan Milićev 171/187

Intent and Applicability
Intent (object/behavioral):
Represent an operation to be performed on the elements of
an object structure. Visitors lets you define a new operation
without changing the classes of the elements on which it
operates.
Applicability: use the Visitor DP when:
 an object structure contains many classes of objects with different

interfaces, and you want to perform operations on these objects that
depend on their concrete classes

 many distinct and unrelated operations need to be performed on
objects in a structure, and you want to avoid “polluting” their classes
with these operations; Visitor lets you keep related operations
together in one class

 the classes defining the object structure rarely change, but you often
want to define new operations over the structure; changing the
object structure requires changing interfaces of all visitors

June 2003 Copyright (C) 2003 by Dragan Milićev 172/187

Structure and Collaborations
Visitor

visitConcreteElementA(ConcreteElementA)
visitConcreteElementB(ConcreteElementB)

Element

accept(Visitor)

ConcreteElementA

accept(Visitor v)
operationA()

v.visitConcreteElementA(this)

ConcreteVisitor1

visitConcreteElementA(ConcreteElementA)
visitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

visitConcreteElementA(ConcreteElementA)
visitConcreteElementB(ConcreteElementB)

ConcreteElementB

accept(Visitor v)
operationB()

v.visitConcreteElementB(this)

ObjectStructure

Client

June 2003 Copyright (C) 2003 by Dragan Milićev 173/187

Structure and Collaborations
Participants:
 Visitor (Visitor)

 declares a visit operation for each class of ConcreteElement in the
object structure; the operation’s name and signature identifies the class
that sends the visit request to the visitor; that lets the visitor determine
the concrete class of the element being visited; then the visitor can
access the element directly through its particular interface

 ConcreteVisitor (ModelChecker, Documenter, SimulReporter)
 implements each operation declared by Visitor; each operation

implements a fragment of the algorithm defined for the corresponding
class of object in the structure; ConcreteVisitor provides the context for
the algorithm and stores its local state; this state often accumulates
results during the traversal of the structure

 Element (ModelElement)
 defines an accept operation that takes a Visitor as an argument

 ConcreteElement (FlowSource, Pipe, QueuedServer, etc.)
 implements an accept operation that takes a Visitor as an argument and

calls back the operation of the visitor that corresponds to its class

June 2003 Copyright (C) 2003 by Dragan Milićev 174/187

Structure and Collaborations
: ObjectStructure a : ConcreteElementA

accept(v)

b : ConcreteElementB v : ConcreteVisitor

visitConcreteElementA(a)

Collaborations:
 A client must create a ConcreteVisitor object and then traverse the object

structure, visiting each element with the visitor
 When an element is visited, it calls the Visitor operation that corresponds to its

class, passing itself as an argument to let the visitor access its state, if
necessary

operationA()

accept(v)
visitConcreteElementB(b)

operationB()

June 2003 Copyright (C) 2003 by Dragan Milićev 175/187

Consequences
Visitor makes adding new operations easy. A new operation
is added simply by adding a new visitor, instead of spreading
the functionality over many classes
A visitor gathers related operations and separate unrelated
ones. Any algorithm-specific data structures can be hidden in
a visitor
Adding new ConcreteElement classes is hard, because a new
abstract operation is needed in the Visitor class, and a
corresponding implementation in ConcreteVisitor. Sometimes
a default implementation (often empty) can be provided in
Visitor to reduce the overhead. If it is more likely to change
the algorithm applied over an object structure, and the
object structure is stable, it is useful to apply the Visitor DP.
Otherwise, it is easier to define operations in the classes that
make up the structure

June 2003 Copyright (C) 2003 by Dragan Milićev 176/187

Consequences
Visitors can accumulate state as they visit each element in
the object structure. This is better than accumulating the
state in arguments of operations, global objects, or objects
in the structure
Visitor assumes that the ConcreteElement interface is
powerful enough to let visitors do their job. As a result, it
often forces to provide public operations to access the
element’s internal state, possibly compromising its
encapsulation

June 2003 Copyright (C) 2003 by Dragan Milićev 177

Chapter 18: Composite

Motivation
Intent and Applicability
Structure and Collaborations
Consequences
Examples of Usage

June 2003 Copyright (C) 2003 by Dragan Milićev 178/187

Motivation
A TSS model may consist of many different elements, e.g. flow sources

and sinks, pipes, servers, and semaphores. It may become very
clumsy to manipulate with and organize if all of its elements are put in
the model as a bag of unordered elements.

A possible solution may be to introduce a concept of a package as a
general grouping mechanism. A package may group all other model
elements, as well as other nested packages. This way, we may
organize the elements into a tree-shaped hierarchy of packages and
other primitive elements.

However, we may need to treat packages and other elements uniformly.
We may want to visit them by visitors, or we may want to copy/paste
an element (to clone it). If we keep the Package class unrelated with
the others, we will have the client code more complex because it will
treat the elements and packages differently, even if it doesn’t want to.

June 2003 Copyright (C) 2003 by Dragan Milićev 179/187

Motivation

The Composite DP offers a solution. The key is that the
abstract class ModelElement provides the interface and
represents both primitives (e.g. source, pipe, etc.) and
their compositions (package).

ModelElement
clone() : ModelElement
add(ModelElement e)
remove(ModelElement)
getElements()

Package

clone()
add(ModelElement e)
remove(ModelElement)
getElements()

FlowSource

clone()

Package p = new Package;
for all e in elements
 p.add(e.clone())
...

Pipe

clone()

add e to elements

*
elements

return new Pipe

June 2003 Copyright (C) 2003 by Dragan Milićev 180/187

Motivation

It describes how to use recursive composition of objects,
allowing tree-shaped hierarchical structures, whereby leaf
nodes are primitives, and non-leaf nodes are composites.
It makes the client’s code simple because it may treat all
nodes equally (as generalized elements).

: Package

: Package: FlowSource

: Pipe

: QueuedServer : Package

: Package

: Pipe

: FlowSource

: QueuedServer

June 2003 Copyright (C) 2003 by Dragan Milićev 181/187

Intent and Applicability
Intent (object/structural):
Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly.
Applicability: use the Composite DP when you
want:
 to represent part-whole hierarchies of objects
 clients to be able to ignore the difference between

composition of objects and individual objects; clients
will treat all objects in the hierarchical structure
uniformly

June 2003 Copyright (C) 2003 by Dragan Milićev 182/187

Structure and Collaborations
Component

operation()
add(Component)
remove(Component)
getChildren()

Composite

operation()
add(Component)
remove(Component)
getChildren()

for all c in children
 c.operation()
...Leaf

operation()

*

children
Client

: Composite

: Composite: Leaf

: Leaf

: Leaf : Leaf

: Leaf

June 2003 Copyright (C) 2003 by Dragan Milićev 183/187

Structure and Collaborations
Participants:
 Component (ModelElement)

 declares the interface for objects in the composition
 implements default behavior for the interface common to all classes
 (optional) declares an interface for accessing and managing its child and

parent components in the recursive structure and implements it if
appropriate

 Leaf (FlowSource, Pipe, etc.)
 represents leaf objects in the composition; a leaf has no children
 defines behavior for primitive objects in the composition

 Composite (Package)
 defines behavior for components having children
 stores child components
 implements child-related operations in the Component interface

 Client
 manipulates objects in the composition through the Component interface

June 2003 Copyright (C) 2003 by Dragan Milićev 184/187

Structure and Collaborations
Collaborations:
 Clients use the Component class interface to interact with objects in

the composite structure; if the recipient is a Leaf, the request is
handled directly; if the recipient is a Composite, then it usually
forwards request to its child components, possibly performing
additional operations before and/or after forwarding (recursion
through polymorphism)

Client:
 theRoot.operation()

Composite::operation () {
 for each c in children c.operation()
}

Leaf::operation () {
 do specific actions
}

June 2003 Copyright (C) 2003 by Dragan Milićev 185/187

Consequences
The Composite DP:
 defines recursive object hierarchies of primitive and composite

objects, whereby primitive objects can be composed into more
complex objects, which in turn can be composed, etc. recursively

 makes the clients simple, because they can treat composite
structures and individuals uniformly; they usually don’t know (and
shouldn’t care) whether they are dealing with a leaf or a composite
(avoidance of if-then and case structures in code)

 makes it easier to add new kinds of components; newly defined
Composite or Leaf subclasses work automatically with existing
structures and clients

 can make the design overly general; sometimes it is necessary to
restrict the types of components in a Composite; then you must
rely on the underlying type-detection system to enforce the
constraints

June 2003 Copyright (C) 2003 by Dragan Milićev 186/187

Examples of Usage
Graphical editors:
 a graphic (abstract component)
 concrete graphics: rectangles, lines, circles, etc. (leaves)
 a grouped graphic (composite)

File system:
 a file-system element (abstract component)
 a file (leaf)
 a folder (composite)

UML metamodel:
 a model element (abstract component)
 concrete model elements: class, attribute, association, etc. (leaves)
 a package (composite)

June 2003 Copyright (C) 2003 by Dragan Milićev 187

Part IV: Conclusions

An Example from Your Domain?
Summary
What’s Next?
Questions and Answers
Discussion
Evaluation

	Object-Oriented Technology
	Outline
	Part I: Introduction
	Chapter 1: About this Tutorial
	Subject
	Objectives
	Prerequisites
	Resources
	Chapter 2: Introduction to OO Technology
	Why OO Technology?
	Slide 11
	What Makes OO Technology?
	Chapter 3: Introduction to Modeling
	Models and Modeling
	Sample Application
	Abstraction and Conceptualization
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Part II: Concepts
	Chapter 4: Classes
	Motivation
	Concepts
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Support in UML
	Slide 35
	Support in C++
	Support in Java
	Advanced Concepts
	Slide 39
	Chapter 5: Attributes
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Chapter 6: Structural Relationships
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Chapter 7: Generalization/Specialization
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Chapter 8: Operations
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Chapter 9: Polymorphism
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Chapter 10: Encapsulation
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Chapter 11: Interfaces
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Chapter 12: Interactions
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Support in C++ and Java
	Part III: Design Patterns
	Chapter 13: About Design Patterns
	What are Design Patterns?
	Slide 143
	Pattern Description
	Pattern Classification
	Chapter 14: Singleton
	Slide 147
	Intent and Applicability
	Structure and Collaborations
	Implementation
	Consequences
	Chapter 15: Strategy
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Chapter 16: Template Method
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Chapter 17: Visitor
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Chapter 18: Composite
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Examples of Usage
	Part IV: Conclusions

