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Part I: Introduction

About this Tutorial
Introduction to OO Technology
Introduction to Modeling
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Chapter 1: About this Tutorial

Subject
Objectives
Prerequisites
Resources
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Subject
Fundamental OO concepts
Basic principles of OO software design
OO languages, techniques, and tools
 OO programming languages (C++ and Java)
 OO modeling language UML
 Design patterns

OO programming paradigm and its application to 
engineering domains



June 2003 Copyright (C) 2003 by Dragan Milićev 6/187

Objectives
Get familiar with the basic concepts and principles 
of the OO paradigm
Get introduced to the most popular OO 
programming and modeling languages
Get convinced in benefits of using OO technology
Get ready to understand the design of complex 
OO software systems
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Prerequisites
Experience in developing software in some 
engineering domains:
 Modeling, simulation, and optimization
 Embedded and real-time systems
 Domain-specific modeling languages, computer-aided 

design tools

Understanding of fundamental concepts of the 
procedural programming paradigm:
 Type and variable
 Declaration, expression, statement, condition, loop
 Subprogram (procedure and function), argument 

(formal and actual), invocation, recursion
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Resources
Books on OO programming languages C++ and 
Java (many good available)
Books on UML, OO modeling, and design patterns:
 G. Booch, J. Rumbaugh, I. Jacobson, “The Unified 

Modeling Language User Guide”, Addison-Wesley, 1999
 E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design 

Patterns”, Addison-Wesley, 1995
Discussion with Dr. Milićev:
dmilicev@rcub.bg.ac.yu
www.rcub.bg.ac.yu/~dmilicev

Other books on OO technology, programming 
languages, UML, and design patterns

mailto:dmilicev@rcub.bg.ac.yu
http://www.rcub.bg.ac.yu/~dmilicev
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Chapter 2: Introduction to OO 
Technology

Why OO Technology?
What Makes OO Technology?
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Why OO Technology?
The most demanding problems of software 
development:
 Complexity: all non-trivial software systems nowadays 

are complex; the users keep requiring more ambitious 
features; the development is long and costly

 Maintenance: the cost of error correction and 
responding to modified or extended requirements is 
long, risky, and costly

The traditional (procedural) paradigm could not 
meet these needs successfully enough!
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Why OO Technology?
How to cope with complexity, ever increasing users’ needs, 
and demanding software maintenance?
 Abstraction: use of highly abstract concepts, conceptually close to 

the problem domain, and with a lot of implicit executable semantics
 Decomposition: clear separation of concerns, cohesive and loosely 

coupled modules with weak and well-controlled interfaces, localized 
design decisions, clear and stable software architecture

 Intensive software reuse at various levels of granularity: code 
excerpts, idioms, templates, libraries, patterns, frameworks, 
designs, artifacts, …

These are prerequisites for improved development 
productivity and less risky maintenance
OO technology tries to overcome the drawbacks of more 
traditional approaches to meet these goals
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What Makes OO Technology?

Object orientation is a different way of thinking about 
designing software!

Concepts 
and 

Principles

Programming Languages

C++ Java

Smalltalk Eiffel

C#

Others…

UML
Patterns

Libraries
Frameworks

Tools and 
Environments
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Chapter 3: Introduction to Modeling

Models and Modeling
Sample Application
Abstractions and Conceptualization
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Models and Modeling
A model is a simplification of reality
We build models so that we can better understand the 
system we are developing
We build models of complex systems because we cannot 
comprehend such a system in its entirety
Models:
 help us to visualize a system as it is or as we want it to be
 permit us to specify the structure or behavior of a system
 give us a template that guides us in constructing a system
 document the decisions we have made

Modeling is a central part of all the activities that lead up 
to the deployment of good software
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Sample Application
Traffic Simulation System (TSS)
Task: find a proper timing of 
traffic lights, so there is no 
congestion at crossroads
Requirements:
 Random occurrences of vehicles at 

streets
 Vehicles pass the streets and 

squares with random delay
 Vehicles turn left and right 

randomly
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West str. North sq.

South sq.
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Abstraction and Conceptualization
An abstraction is the essential characteristics of an entity 
that distinguish it from all other kinds of entities. It is a 
simplified representation of an entity from the problem 
domain
Proposed abstractions in TSS:

Flow Source: generates a random traffic flow at street 
entrances

Flow Sink: sinks the input traffic flow at streets that are of 
no interest

Pipe: models a random delay of traffic through a street

Queued Server: models a line at a traffic light and passage 
through a crossroad

Switch 1 to 3: models random turns of vehicles

Cross Semaphore: models a traffic light with two controlled 
directions
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Abstraction and Conceptualization
An abstraction defines a boundary relative 
to the perspective of the viewer
An abstraction neglects some differences 
from entities in real world, in favor of 
generalizing their commonalities
Abstractions are characterized with their 
semantics, properties, relationships, and 
behavior
A key abstraction is an abstraction that is 
important enough to be incorporated into 
the system's conceptual model regardless to 
its concrete implementation
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Abstraction and Conceptualization
An abstraction defines a 
set of instances.
For example, North sq., 
South sq., or West sq. are 
all instances of the 
queued server key 
abstraction. Similarly, 
East str. and South str. 
are instances of the flow 
sink abstraction

N
or

th
 s

tr
.

S
ou

th
 s

tr
.

West str. North sq.

South sq.

West str. : Queued Server

North sq. : Queued Server

East str. : Flow Sink

South str. : Flow Sink
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Abstraction and Conceptualization
An abstraction is characterized with its properties.
For example, the properties for the flow source 
abstraction are name, description, and mean 
frequency of vehicle occurrences, and for the pipe 
abstraction are name, description, and mean delay 
of vehicles, etc.
Each instance of an abstraction will have its own 
value of each property.
For example, the West str. flow source will have the 
number 1/5 as the value of its mean frequency 
property, and the North str. pipe will have 4 as the 
value of its mean delay property
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Abstraction and Conceptualization
Abstractions have their relationships.
For example, the flow target of the West str. flow 
source is the West str. Pipe, and the South sq. 
cross semaphore controls the South sq. queued 
server

West : Flow Source

West st. : Pipe

South sq. : Queued Server

South str. : Flow Sink

South sq. : Cross Semaphore



June 2003 Copyright (C) 2003 by Dragan Milićev 21/187

Abstraction and Conceptualization
Abstractions have their behavior, meaning that 
their instances react on certain stimuli.
For example, a queued server stops serving 
vehicle occurrences when it is closed by a cross 
semaphore, or a switch transfers a vehicle 
occurrence to one of its targets randomly

South sq. : Queued Server

South str. : Flow Sink

South sq. : Cross Semaphore

West str. :  Switch 1 to 3

North str. : Flow Sink

East str. : Flow Sink
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Abstraction and Conceptualization
The process of discovering and inventing the proper 
abstractions is called conceptualization
The model that comprises of key abstractions and their 
properties and relationships is called the conceptual 
model of the problem domain
OO modeling is the process of modeling using OO 
concepts
Principles of OO decomposition drive this process:
 Proper separation of concerns and assignment of 

responsibilities
 Generalization/specialization hierarchies
 Designing interactions among objects
 Programming by interfaces

OO design patterns help us to find elegant solutions to 
frequent problems in different contexts
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Abstraction and Conceptualization

N
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West str. North sq.

South sq.

Real world

North : Flow Source

North str. : Pipe

North sq. : Queued Server

South sq. : Queued Server

South str. : Flow Sink

North sq. : Cross Semaphore

West : Flow Source

South sq. : Cross Semaphore

West st. : Pipe

West str. : Queued Server West str. :  Switch 1 to 3

North str. : Flow Sink

East str. : Flow Sink

Model
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Part II: Concepts

Classes
Attributes
Structural Relationships
Generalization/Specialization
Operations
Polymorphism
Encapsulation
Interfaces
Interactions
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Chapter 4: Classes

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts
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Motivation
In TSS, we have identified the key abstractions, 

like flow source, pipe, queued server, etc. They 
represent sets of instances that exist in the 
system at runtime.

The instances from the same set (of the same 
abstraction) share the common semantics, 
structure, relationships, and behavior.
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Concepts
In OO software engineering, abstractions are 
modeled with classes
Class is a description of a set of objects that share 
the same properties, behavior, relationships, and 
semantics
Object is an instance of a class - a concrete 
manifestation of an abstraction. It is an entity with 
well-defined boundary and identity, which 
encapsulates state and behavior
FlowSink, CrossSemaphore, etc. are classes in the 
model, and “South str.” and “North sq.” are objects 
of these classes in the executing system
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Concepts

Conceptual Model/Design Time

QueuedServer CrossSemaphore

Object Space/Runtime

West sq.
: QueuedServer

North sq.
: QueuedServer

North sq.
: CrossSemaphore

South sq. 
: CrossSemaphore

South sq.
: QueuedServer
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Concepts
A class is an element of the conceptual 
model of a domain
Classes reside:
 in the conceptual space (model)
 at design time

Classes describe sets of objects that share 
the same structure and behavior. A class 
describes that structure and behavior, and 
represents a template for creating objects
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Concepts
Objects are instances of classes
Objects:
 reside in the system's object space 
 live at runtime

Each object has its:
 identity
 type
 internal state that is defined by the dynamic value of the 

structure defined in its class
 capability to provide behavior as defined in its class, when 

this is requested from it

The set of all objects of one class in the system's 
object space is called the extent of that class
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Concepts
A class and its objects are related by the type-
instance dichotomy (objects are instances of 
classes)
A class is an abstract, conceptual thing. Objects are 
concrete, physical things
A class is only a description of a set of objects, i.e., 
the structure and behavior that objects share
Classes live in the developers' and users' minds. 
Objects live in time and space
Classes reside at the design side, and objects at the 
execution side of the dichotomy
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Concepts
When a class is defined in the conceptual 
model, it has the following semantics:
 Objects of that class can exist in the system's 

object space at runtime. These objects can be 
created and destroyed

 These objects will share the same structure, 
behavior, and relationships

 The objects will have the same semantics, i.e., 
they represent instances of an abstraction that 
has a particular important meaning in the 
domain's conceptual space
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Concepts
An object has the following characteristics:
 An object is an instance of its class. An object of 

a class can be distinguished from all other 
objects of the same and other classes

 An object has its lifetime, meaning that it lives 
since its creation, until its destruction. An object 
can be accessed only during its lifetime. Besides, 
an object takes some space in the computer 
system's memory. Therefore, objects live in time 
and space
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Support in UML
In UML, an object can be an instance of several 
classes at the same time
Notation for a class:

Models a random 
delay of traffic 
through a street

Pipe

Responsibility (optional)

Notation for an element of the model that 
represents a particular or prototype object:

West str. : Pipe
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Support in UML
The action semantics of UML defines two basic 
actions:
 Create a new object of a certain class
 Destroy an object

The notation for these actions is not specified, but 
it is left to the implementations to define the 
surface language for specifying actions in the 
program
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Support in C++
Definition of a class:
class Pipe {
  //...Definition of structure and behavior
};

Creation of a new object (the operator new returns a 
pointer to the created object):
new Pipe

Destruction of an object over a pointer to it:
Pipe* aPipe = new Pipe; // aPipe is a pointer
                        // to the created object
//... Usage of the object over the pointer aPipe
delete aPipe; // Destroy the object over the pointer

In C++, there are other types of lifetimes of objects with 
implicit construction and destruction
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Support in Java
Definition of a class:
class Pipe {
  //...Definition of structure and behavior
}

Creation of a new object (the operator new returns a 
reference to the created object):
Pipe aPipe = new Pipe; // aPipe is a reference
                       // to the created object

In Java, an object is destroyed implicitly by the built-in 
garbage collector, once there are no more references 
linked to it
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Advanced Concepts
A class is persistent if its objects can survive the 
termination of the execution context of their creation. 
Examples:
 A TSS model should be stored into a file to be restored for a new 

execution of the simulation application
 Database applications

A class is active if its objects encapsulate separate threads 
of control (processes). For example, the elements of a TSS 
model (e.g. flow sources, semaphores, etc.) can be 
implemented by concurrent threads in the underlying 
runtime environment
C++ and Java do not support persistency explicitly 
(objects are stored in volatile computer memory). Java 
supports active classes, but C++ does not
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Advanced Concepts
An abstract data type is a set of instances that share the 
same semantics, properties, relationships, and behavior, 
but that are pure values that do not have their identities, 
meaning that two instances with the same values cannot 
be distinguished
Instances of data types are predominantly used as 
attribute values of objects or arguments of operations that 
may be arbitrarily copied (they usually have meaningful 
copy semantics)
Examples: Integer, Complex, String, Date, Time, Currency, 
etc.
C++ and Java do not distinguish classes and data types, 
while UML does
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Chapter 5: Attributes

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts
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Motivation
In TSS, although instances of the same class share the same 

set of properties, each of it has a different value of a 
property.

For example, the properties for the flow source 
abstraction are name, description, and mean 
frequency of vehicle occurrences, and for the pipe 
abstraction are name, description, and mean delay 
of vehicles, etc.

For example, the West str. flow source will have the 
number 1/5 as the value of its mean frequency 
property, and the North str. pipe will have 4 as the 
value of its mean delay property.
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Concepts
Properties of abstractions are modeled with 
attributes
Attribute is a named property of a class that 
describes a range of values that instances of the 
property can hold
An attribute is a member of a class
For example, the attributes of the class Pipe may 
be:
 name: represents a short title of the element
 description: allows a longer textual description of the 

element
 mean delay: mean value of a random delay of vehicles 

through the pipe
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Concepts
An attribute is defined by its:
 name: a string that uniquely identifies the attribute in the 

scope of its class (e.g. name, descr, and meanDelay are 
names of the attributes of the Pipe class)

 type: defines the range of values that the instances of that 
property can hold, along with the operations applicable on 
these values (e.g. the type of the meanDelay attribute is 
Real)

 default value: the initial value that an instance of the 
attribute has when an object is created (e.g. the attribute 
meanDelay of the class Pipe can have the default value set 
to zero)

The values of the attributes can be accessed and 
modified according to the specification of their 
types
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Concepts
Attribute is a conceptual thing and lives at 
the “design” side of the dichotomy. It is a 
member of a class
Objects have values of the attributes
The values of the attributes are instances of 
these attributes. Each object of the class 
has its own value of the attribute, which is 
independent of the other objects' values
In some languages, the lifetime of attribute 
instances are tied to the lifetimes of their 
enclosing objects
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Concepts
Objects change their states, which are 
defined by the values of their attributes, 
throughout their lifetimes
The attributes define a static structure of 
the objects of a class, which is shared by 
these objects, and the attribute values 
define the current states of the objects, 
which are proprietary to the objects
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Support in UML
In UML, the type of attributes can be a class or a 
data type
In UML, an attribute may have multiple values, 
with the specified cardinality
UML does not specify the dependency of the 
lifetime of attribute values on the lifetime of the 
enclosing object
In UML, an attribute is a reference to an instance 
of a class or a data type. The reference’s lifetime 
is bound to the enclosing object’s lifetime, but the 
lifetime of the referenced instance is not
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Support in UML
Notation for attributes:

name : String = “New pipe”
descr : String
meanValue : Real = 0.0

Pipe

Attributes (optional)

: Pipe
name = “West str.”
meanDelay = 4.0

Notation for an element of the model that 
represents a particular or prototype object at 
runtime, with a specific set of attribute values:
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Support in UML
The action semantics of UML defines two basic 
actions:
 Read the value of an attribute of a certain object
 Write the given value of an attribute of a certain object

The notation for these actions is not specified, but 
it is left to the implementations to define the 
surface language for specifying actions in the 
program
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Support in C++
In C++, attributes can be instances of:
 Built-in data types (e.g., int, char, float, etc.), including 

pointers/references to other objects
 Classes (object incorporated by value)

The lifetime of an attribute value is bound to the lifetime of 
the enclosing object: the attribute value is created and 
destroyed along with the object
However, if the attribute is a pointer/reference to another 
object, the destruction is not implicitly propagated to the 
referred object
Default (initial) values of attributes are supported indirectly 
(through constructors, to be explained later)
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Support in C++
Specification of attributes embodied by value 
(their lifetime is bound to the enclosing object):
class Pipe {
  String name; // Attribute embodied by value
  String descr;
  double meanDelay;
};

Specification of attributes embodied by 
pointer/reference (their lifetime is not implicitly 
bound to the enclosing object):
class Pipe {
  String* name; // Attribute embodied by pointer.
                // No initial value for the pointer 
    ...         // is assumed 
  };
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Support in C++
Access to attribute values:
 If the attribute is embodied by value:

Pipe* aPipe = new Pipe;
aPipe->meanDelay = 4.0; // Write attribute value
double temp = aPipe->meanDelay; // Read attr. value
// Access the embodied object of the class String:
aPipe->name.setValue(“West str.”); 
...
delete aPipe; // Destroy the object

 If the attribute is embodied by pointer:
Pipe* aPipe = new Pipe;
// Create the pointed object of the class String: 
aPipe->name = new String;
// Access the pointed object over the pointer attr.: 
aPipe->name->setValue(“West str.”);
...
delete aPipe->name; // Destroy the pointed object
delete aPipe; // Destroy the object
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Support in Java
In Java, attributes can be instances of built-in data types 
only (e.g., int, char, float, etc.), including references to 
other objects of classes
The lifetime of an attribute value is bound to the lifetime of 
the enclosing object: the attribute value is created and 
destroyed along with the object
However, if the attribute is a reference to another object, 
the destruction of the referenced object is determined by 
other references that refer to it (it is destroyed implicitly 
when no references refer to it any more)
Default (initial) values of attributes are supported directly
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Support in Java
Specification of attributes:
class Pipe {
  // References to objects of type String:
  String name = new String(“New pipe”);
  String descr = new String;

  // Attribute of a built-in type:
  double meanDelay = 0.0;
}

Access to attribute values:
Pipe aPipe = new Pipe;
Pipe.meanDelay = 4.0; // Write attribute value
double temp = aPipe.meanDelay; // Read attr. value
// Access the embodied object of the class String:
aPipe.name.setValue(“West str.”); 
...
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Advanced Concepts
An attribute can be of class scope (instead of 
instance scope), meaning that all objects of the 
attribute’s class share the same value
UML, C++, and Java support attributes of class 
scope directly (called static attributes in C++ and 
Java)
An attribute can be read-only, meaning that its 
value cannot be modified
UML, C++, and Java support read-only attributes 
(through const types in C++ and final specifier 
in Java)
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Chapter 6: Structural Relationships

Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts
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Motivation
In TSS, objects do not exist unrelated. On the 

contrary, they are connected to form a complex 
structure, whereby the interconnections 
conceptualize different aspects.

For example, the flow target of the West str. flow 
source is the West str. Pipe, and the South sq. 
cross semaphore controls the South sq. queued 
server.

West : Flow Source

West st. : Pipe

South sq. : Queued Server

South str. : Flow Sink

South sq. : Cross Semaphore
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Concepts
Different OO languages support different structural 
relationships, but ultimately they all allow interconnections 
of objects in graph-like structures, whereby the objects are 
interconnected by links that conceptualize relationships 
from the problem domain and allow navigation between 
objects
Association is a structural relationship among 
classes that describes a set of links, in which a link 
is a connection among objects
Association is a semantic relationship between two 
classes that involves connections among their 
instances 
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Conceptual Model/Design Time

QueuedServer CrossSemaphore

Concepts

Object Space/Runtime

North str.
: QueuedServer

West str.
: QueuedServer

North sq.
: CrossSemaphore

South sq.
: CrossSemaphore

South str.
: QueuedServer

controls

controls

controls

controls
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Concepts
Links exist at runtime, in the system's object space
Links are structural connections between objects
A link does not have its identity – it is identified by 
the objects it connects
A link does not have its independent life – a link 
dies when an object on any side is destroyed. In 
general, a link cannot exist without the objects on 
both sides
In general, a link either exists or not – there can be 
no more than one link of the same association 
between the same two objects (unless the link has 
other specifiers)
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Concepts
Links are structural connections between objects, 
meaning that the system can navigate through the 
object structure, by accessing the objects linked to 
one object over the links of a certain association
Links are instances of associations
Association is a relationship between classes, while 
links are connections between instances of classes
Association is a description of a set of links
Association is a conceptual thing that exists in the 
conceptual model, at design time – type/design side 
of the dichotomy
Links are physical things that exist in the object 
space, at runtime – instance/execution side of the 
dichotomy
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Concepts
The object structure of the system can be regarded 
as a typed graph, whereby objects are the nodes, 
and links are the edges of the graph
The graph is typed, because each node (object) has 
its type – that is the class of which the object is an 
instance, and each edge (link) has its type – that is 
the association of which the link is an instance
The system manipulates with the graph by creating 
and destroying the objects, reading and modifying 
their attribute values, creating and destroying its 
links, and traversing the objects over the links
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Concepts
Multiplicity is an adornment of an 
association end
Multiplicity is a specification of the range of 
allowable cardinalities of the links at the 
opposite side of the association

CrossSemaphore QueuedServer
controls

1 4

FlowSource Pipe
flow

* 1
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Concepts
Multiplicity specifications can be:
 0..1 (zero or one) 
 1 (exactly one)
 * (zero to arbitrary many)
 1..* (one to arbitrary many)
 a specific range m..n (m to n, where n can be * 

– arbitrary many)

The multiplicity m at the side B of an 
association means that one object at the 
side A can be linked with m objects of the 
side B by links of this association
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Concepts
Each association end can be adorned with a role
In all objects of the class at side A, there will exist a 
property named as the role at side B
This property represents a “hook” on which the links 
of the corresponding association are “hanged,” and 
designates a set of linked objects

CrossSemaphore QueuedServer
controls

serverssemaphore

North sq.
: CrossSemaphore

servers
: QueuedServer

: QueuedServer
: QueuedServer

: QueuedServer
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Concepts
Navigability is the specification of the capability to 
navigate to the linked objects in the set 
designated by the property that is the 
consequence of the assoc. role
If the association is not navigable at one side, 
there will be no property that results in the object 
set in the objects of the opposite class
An association can be bidirectional or 
unidirectional (navigable at one side only)

FlowSource Pipe
targetsource
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Support in UML
UML supports associations as described so far, with the 
given notation, along with some advanced concepts like:
 N-ary association (association between many classes)
 Association class (a class that is also an association)
 Qualifiers of association ends
 Other specifiers of association ends (ordered, unique, read-only, 

derived, subsets, unions, etc.) that specify the characteristics of the 
object set designated by the property

UML action semantics define actions for manipulating links:
 Create link of an association between a set of objects
 Destroy a link
 Navigate over links (access the object set of a property)

UML 2.0 will equalize attributes (possibly multivalued) and 
association ends: both designate properties of objects that 
result in sets of instances of classes or data types
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Support in C++
C++ supports unidirectional associations through pointers 
to objects:

class FlowSource {
  ...
  Pipe* target;
};

Associations with multiplicity * must be implemented by 
collections of pointers – data types implemented with 
classes (no built-in data structure for this):

class Model {
  ...
  CollectionOfSemaphores allSemaphores;
};
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Support in C++
Creation of links is done by setting the values of pointers:

class FlowSource {
  ...
  Pipe* target;
};
...
FlowSource* aFS = new FlowSource;
Pipe* aPipe = new Pipe;
aFS->target = aPipe;

Destruction of links is done by setting the value of a 
pointer to null:
aFS->target = 0;

C++ pointers are unsafe: there is no runtime checking of 
pointer validity (against null and dangling pointers)!
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Support in Java
Java supports object links in a very similar manner as C+
+, except for the notation (no operators needed):

class FlowSource {
  ...
  Pipe target;
}
...
FlowSource aFS = new FlowSource;
Pipe aPipe = new Pipe;
aFS.target = aPipe;
...
aFS.target = null;

Java references are more safe than C++ pointers: there 
are no dangling references, because an object cannot be 
deleted if a reference refers to it!
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Advanced Concepts
Association class is an association that is also a class
An association class can participate in relationships and 
have members as any other class
Instances of association classes are link-objects
A link-object is a link that is also an object
Supported in UML, but not in C++ and Java

Company Person

Employment

dateHired : Date
salary : Real
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Chapter 7: 
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Motivation
Concepts
Support in UML
Support in C++
Support in Java
Advanced Concepts
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Motivation
The discovered abstractions in TSS have 

some things in common:
 they all have name and description attributes
 apart from semaphores, the target of a traffic 

flow element may be any other flow element
 a traffic flow element should count the number 

of vehicle occurrences it has transported, for the 
simulation report purposes.

Unless there is a proper generalization of 
these abstractions,
 the software model will contain a lot of 

redundancy and
 there will be no easy way to connect flow 

elements arbitrarily and interchangeably.

North sq. : Queued Server

South sq. : Queued Server

West str. : Queued Server West str. :  Switch 1 to 3

East str. : Flow Sink
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Motivation
Suppose there is a new requirement for TSS to introduce 

another abstraction of adaptable cross semaphore.
Adaptable semaphore is a kind of a cross semaphore, 

because it also controls two directions and opens their flow 
alternatively with a predefined time intervals.

However, adaptable semaphore is a special kind of a cross 
semaphore, because it adapts its timing according to the 
traffic congestion at queued servers (i.e., their maximal 
recorded queue size). If the maximal recorded queue size 
of an associated queued server is greater than a defined 
value, the semaphore will increment the green-light 
duration for the corresponding direction.
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Concepts
In OO paradigm, one of the most important kinds 
of relationships is the generalization/specialization 
relationship
Generalization/specialization is a relationship 
between classes, in which objects of the specialized 
class are substitutable for objects of the 
generalized class
The specialized class is also called the subclass, the 
derived class, the child, or the descendent. The 
generalized class is also called the superclass, the 
base class, the parent, or the ancestor
This relationship is sometimes also called 
inheritance



June 2003 Copyright (C) 2003 by Dragan Milićev 75/187

Concepts
ModelElement

name : String
descr : String

FlowElement

counter : Integer=0

Pipe QueuedServerSwitch1to3

CrossSemaphore

tHor, tVer : Time
curDir : {hor, ver}

flow

target

sources

0..1

*

 controls

0..4

AdaptableSemaphore

maxHor, maxVer : Integer
incTime : Time
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Concepts
Generalization/specialization relationship 
has two significant semantic manifestations:
 (Inheritance) The derived class inherits all the 

attributes, operations, relationships, and semantics from 
the base class (transitively)

 (Substitution) Whenever and wherever an object of the 
base class is expected, an object of the derived class 
can occur

If an object is a direct instance of a certain 
class D, it is said that this object is of type 
D, and also of type B, where B is a base 
class of D (transitively), and it is an 
(indirect) instance of B
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Concepts
A class can be abstract, meaning that it cannot 
have direct instances. Such a class is aimed as a 
generalization of other, concrete classes that can 
have instances. Example: ModelElement, 
FlowElement (names written in italic)
A class can be derived from several base classes 
(multiple inheritance)
Generalization/specialization is a conceptual 
relationship that exists in the conceptual model, at 
design time. It has the described semantic 
manifestation in the object space, at runtime, but 
does not have an explicit "instance" counterpart
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Conceptual Model/Design Time

Object Space/Runtime

North str.
: QueuedServer

West str.
: QueuedServer

North sq.
: AdaptableSemaphore

South sq.
: CrossSemaphore

South str.
: QueuedServer

controls

controls

controls

controls

QueuedServer CrossSemaphore

AdaptableSemaphore

Concepts
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Support in UML
UML supports generalization/specialization directly, 
with the semantics and notation described so far
UML supports multiple inheritance
UML supports the substitution rule directly and 
consistently, because all instances (of classes and 
data types) are accessed indirectly, over 
references (also referred to as object IDs in UML):
 properties of objects (designated by attributes or 

association ends) result in (sets of) references
 operation parameters are references
 actions access objects through references
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Support in C++
Definition of a derived class:
class AdaptableSemaphore : public CrossSemaphore {
  int maxHor, maxVer;
  Time incTime;
}; 

Support of inheritance:
AdaptableSemaphore* sem = new AdaptableSemaphore;
sem->tHor = 5; // Access to an inherited attribute
sem->maxHor = 30; // Access to an owned attribute

Support of the substitution rule: conversion of 
pointers/references (upcasting), including when passing  
parameters
Derived*  Base*
AdaptableSemaphore*  CrossSemaphore*

CrossSemaphore* sem = new AdaptableSemaphore; //Conversion
sem->tHor = 5; // Access to an attribute of the base class
sem->maxHor = 30; // Incorrect!
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Support in C++
The substitution rule is not supported when objects are 
embodied by value:

class Model {
  ...
  CrossSemaphore sem;
  // sem is always and nothing but a direct
  // instance of CrossSemaphore,
  // and no substitution is possible!
  ...
};

Consequence: if substitution is needed (and it is generally in 
OO systems), do not use objects by values, but only by 
intermediaries (pointers/references)!
C++ supports multiple inheritance, but with some subtle 
consequences and problems
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Support in Java
Definition of a derived class:
class AdaptableSemaphore extends CrossSemaphore {
  int maxHor, maxVer;
  ...
} 

Support of inheritance:
AdaptableSemaphore sem = new AdaptableSemaphore;
sem.tHor = 5; // Access to an inherited attribute
sem.maxHor = 30; // Access to an owned attribute

Support of the substitution rule: conversion of references 
(upcasting), including when passing parameters
Ref to Derived  Ref to Base
Ref to AdaptableSemaphore  Ref to CrossSemaphore

CrossSemaphore sem = new AdaptableSemaphore; //Conversion
sem.tHor = 5; // Access to an attribute of the base class
sem.maxHor = 30; // Incorrect!
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Support in Java
The substitution rule is supported directly and consistently, 
without exceptions, because only references to objects and 
instances of built-in types can be named (objects of 
classes are always unnamed):

class Model {
  ...
  CrossSemaphore sem;
  // sem is always and nothing but a reference
  // to a (possibly indirect) instance of CrossSemaphore,
  // and substitution is always possible!
  ...
};

Java does not support multiple inheritance
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Advanced Concepts
OO theory recognizes two kinds of inheritance:
 Inheritance of interfaces, which implies substitution: the derived 

abstraction inherits the interface of the base abstraction, thus 
being capable of satisfying the same clients and substituting the 
generalized instances

 Inheritance of implementations, which reduces redundancies (but 
does not necessarily implies substitution): the derived abstraction 
takes all pieces of structure and behavior from the base 
abstraction, but does not necessarily satisfies the same interface

Different OO languages support different combinations of 
these kinds, but a commonly accepted approach nowadays 
(in most popular languages) is the described one with 
generalization/specialization, which includes both kinds
C++ supports both kinds separately or together
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Support in UML
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Advanced Concepts
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Motivation
The structure of TSS created so far is not sufficient 

to perform the main system’s task – simulation of 
traffic. It is only a basis for the system’s behavior 
that is built upon it.

For example, a pipe must react on a traffic 
occurrence on its entrance by generating a 
delayed occurrence on its exit.

A cross semaphore must change the open direction 
on the notification of the passage of a time 
interval.

Similarly, other objects in the system must provide 
various services to other objects.
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Concepts
Operation is the specification of a service 
that can be requested from any object of 
the class in order to affect behavior
Method is an implementation of an 
operation
An operation is an element of the 
conceptual model, i.e., a member of a class
An operation specifies that a service may be 
requested from any direct or indirect 
instance of that class
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Concepts
An operation has its name, may have its formal 
arguments (parameters), and possibly its return 
type
At runtime, an operation of an object may be 
invoked. The actual arguments are then supplied
The invocation of the operation is manifested by 
the behavior specified by the corresponding method 
of the class the object belongs to, no way how the 
object was accessed (i.e., possibly as an instance of 
a base class)

Pipe

acceptFlow()
notify() 

CrossSemaphore

notify() 
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Support in UML
UML supports operations and methods as 
described, with the following notation of operation 
specification:
operationName (argumentList) : returnType

where argumentList and returnType are 
optional, and argumentList is a comma-
separated list of argument specifications:
argName : argType = defaultValue

Actual arguments are always references to objects 
(of classes or data types)
Methods are defined in terms of actions
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Support in UML
Action is a unit of behavior used to 
construct methods
An action can read and/or modify a part of 
the object space in a consistent manner
A method is a complex mesh of actions, 
connected by control and object flow to 
provide a complex execution of the actions
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Support in UML
A read/write action is an atomic action that 
represents a request to perform an atomic 
access to or modification of the object space
There are read/write actions of different 
kinds, such as "Create object," "Delete 
object," "Modify attribute value," "Create 
link," “Read links,” or "Delete link"
Each action can have its pins. Pins represent 
the parameters of an action
UML action semantics uses the combined 
data-flow and control-flow paradigms of 
action execution
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Support in UML

Action 1

Action 3

Action 2

Action 4

Legend:

Input Pin

Output Pin

Data flow
Control
flow
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Support in UML
UML action semantics defines actions for invoking 
an operation of an object over a reference:
 with synchronous invocation (the caller action does not 

complete until the invoked method is completed)
 with asynchronous invocation (the caller action 

completes without waiting for the invoked method to 
complete)
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Support in C++
Operation specification:

class Pipe {
  ...
  void acceptFlow(); // Accepts a vehicle occurrence
  void notify(); // Notifies that the delay has elapsed
  ...
};

Method definition uses the traditional procedural 
programming style (as in the C language):
void Pipe::acceptFlow () {
  // Access to an (inherited) attribute
  // of the object of which the method is invoked:
  counter = counter+1;
  // Request notification after the delay
  // by calling an operation of the same object:
  raiseEvent(); 
}
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Support in C++
Method invocation:
void Pipe::notify () {
  // If there is a target, send the vehicle to it:
  if (target!=0) target->acceptFlow();
}

Method bodies may contain expressions and statements in 
a usual procedural style (sequences, conditions, loops, etc.)
C and C++ recognize functions only; procedures are a 
special case of functions with no return value (void as the 
return type)
Arguments can be passed by value or by reference
Only synchronous call is supported
C++ allows ordinary non-member (global) subprograms 
(vertical compatibility with C)
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Support in Java
Very similar to C++ (except for some slight 
notational differences)
The language for programming methods is almost 
equal to C/C++
Arguments of built-in types are passed by value, 
and objects of classes by reference (substitution is 
implied)
Calls are always synchronous
No non-member (global) functions are allowed
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Advanced Concepts
Problem: how to ensure that an object has a proper initial 
state when it is created, e.g., its attribute values are properly 
initialized?
Possible solution:
class Pipe {
  ...
  void init();
  ...
};

void Pipe::init() {
  counter = 0;
  ... // Other necessary initializations
}

// When an object is created,
// init() must be called immediately:
Pipe* aPipe = new Pipe;
aPipe->init(); 
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Advanced Concepts
This approach is error-prone, because programmers can easily 
miss to invoke the init() operation!
C++ and Java support constructors. A constructor is a 
member function (named the same as its class) that is 
implicitly invoked every time an object is created. The 
compiler ensures constructor invocation at all places of object 
creation, so that no errors can occur:
class Pipe {
  Pipe();  // Constructor
  ...
};

Pipe::Pipe() {
  counter = 0;
  ... // Other necessary initializations
}

Pipe* aPipe = new Pipe; //Constructor is called implicitly
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Advanced Concepts
Constructors are alike other member operations in many 
aspects:
 they have this/self reference (to be explained soon)
 they may have arguments as any other operation (to provide 

parameterized construction)
 a class may have several constructors, provided they differ in 

number and types of arguments

When an object is constructed, the constructor of the base 
class is invoked before the constructor of the derived class 
is executed (and so on transitively)
C++ and Java support destructors also: these are 
operations that are implicitly called on object destruction
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Advanced Concepts
In the scope of a method of a class, there is an 
implicitly defined reference to the object for which 
the method is invoked:
 called self in UML
 called this in C++ (pointer to the object) and Java

Every direct access to a member of the object 
(property or operation) is actually an indirect 
access over this reference:
void Pipe::acceptFlow () {
  counter = counter+1; // implicitly this->counter
  raiseEvent(); // implicitly this->raiseEvent() 
}
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Advanced Concepts
The self/this reference may be used to pass the 
reference to the server object to other objects, in order to 
create links to it:
Pipe::Pipe () {
  // Sign this newly created pipe
  // to the entire model;
  // Model::add() accepts an argument
  // of type ModelElement*;
  // theModel is a globally accessible reference
  // to an object of Model:   
  theModel->add(this);
}

Model

add(ModelElement)
remove(ModelElement)

ModelElement
elements

*
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Advanced Concepts
An operation can be of class scope (instead of 
instance scope), meaning that it is a service of the 
class, not of a particular object, and it can be 
called without specifying the server object
UML, C++, and Java support operations of class 
scope directly (called static operations in C++ and 
Java)
An operation can be query, meaning that it does 
not modify the state of the server object
UML and C++ support query operations (called 
constant member functions in C++)
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Motivation
In TSS, any flow element (e.g. a pipe or a flow source), can have any 

other flow element (e.g. a switch or a flow sink) as its flow target. 
When the former generates a vehicle occurrence at its output, the 
target flow element must accept that flow occurrence through its 
corresponding service (operation).

However, different kinds of flow elements process the accepted flow in 
completely different ways. For example, a flow sink simply counts the 
occurrence and does not propagate it, while a pipe propagates it after 
a certain delay.

How to provide different behavior of different kinds of flow elements for 
the same service “accept a flow occurrence,” so that the client 
(source) elements do not depend on the type of the server (target) 
elements and that the targets can be attached to sources 
interchangeably?
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Concepts
A derived class may redefine (or override) 
an operation of its base class
This means that the derived class provides 
another implementation (i.e., method) for 
the same operation, offering different 
behavior for the same service
If a class does not override an operation, it 
inherits the method of that operation from 
its base class (transitively)
An operation may be abstract, meaning that 
its implementation is not provided in the 
class. Such a class is then also abstract



June 2003 Copyright (C) 2003 by Dragan Milićev 106/187

Concepts
At runtime, an operation of an object may be 
invoked. The invocation of the operation is 
manifested by the behavior specified in the 
corresponding method of the class to which the 
object belongs, regardless to how the object was 
accessed (i.e., possibly as a kind of an object of a 
base class)
In other words, a client that invokes an operation 
of a server object can access the server object as a 
generalized entity (i.e., as an object of the base 
class). In that case, the method of the derived 
class will be invoked. This mechanism is called 
polymorphism
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Concepts

FlowElement

acceptFlow()

Pipe QueuedServerSwitch1to3

flow

target

sources

0..1

*

acceptFlow()
notify()

acceptFlow()

Redefined operation:
void Pipe::acceptFlow () {
  counter = counter+1;
  raiseEvent();
}

Polymorphism at invocation place:  
 void Pipe::notify() {

  if (target!=0)
    target->acceptFlow();
}

acceptFlow()



June 2003 Copyright (C) 2003 by Dragan Milićev 108/187

Concepts
The purpose of polymorphism is to make the clients 
that invoke an operation independent of the 
variation of the operation's implementation
The client is spared from knowing the specialties 
about the server–the client tends to regard the 
server as a generalized thing and to access it 
through its generalized interface
The specialties of different kinds of servers are 
incorporated in the polymorphic operations and 
their overridden derivatives
This way, the interfaces between clients and 
servers become looser, and therefore more 
controllable
This is a key point to constructing flexible software
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Concepts
This is because a modification of the behavior of 
the client side can be achieved by adding parts of 
software (i.e., overriding operations in derived 
classes), and not modifying parts of software, 
which is always error-prone and risky
The client does not experience any modification if a 
new class at the server side is added in the 
hierarchy or a polymorphic operation is overridden 
in a derived class in the server-side hierarchy, and 
yet the software behaves differently
This mechanism is one of the most important 
contributions of the object-oriented programming 
paradigm
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Support in UML
UML directly supports polymorphism, but does not 
specify the rule for method resolution, because it 
is done differently in different implementation 
languages
To override an operation, the same operation 
(with the same name, arguments, and return 
type) is specified in the derived class, with its own 
method, and with the “redefine” relationship to 
the overridden operation
Operations are polymorphic by default. If an 
operation should not be polymorphic, it is tagged 
as leaf. All operation invocations are polymorphic
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Support in C++
In C++, operations are non-polymorphic by default. To be 
polymorphic, an operation must be specified as virtual at 
least in the base class:
class ModelElement {
  ...
  virtual void acceptFlow();
};

An operation call is polymorphic if the server object is 
accessed over a pointer/reference:
 void Pipe::notify() {
  if (target!=0) target->acceptFlow();
}

Abstract operations are specified with =0:
class ModelElement {
  ...
  virtual void acceptFlow() = 0;
};
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Support in Java
In Java, operations are polymorphic by default. To be non-
polymorphic, an operation must be specified as final :
class ModelElement {
  ...
  final void acceptFlow() {...}
}

Operation calls are always polymorphic, since a server 
object is always accessed over a reference:
if (target!=null) target.acceptFlow();

Abstract operations are specified with abstract:
class ModelElement {
  ...
  abstract void acceptFlow();
}
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Motivation
It has been assumed so far that all members of classes are 

freely accessible from anywhere in the program. However, 
this can be error prone, because there is no protection 
from accidental or intentional corruption of object states. 
For example, a client can modify the counter of 
transported vehicles of a pipe incorrectly.

Besides, such software is very likely to be inflexible. If a client 
relies on a part of the server’s implementation, the server’s 
implementation cannot be modified without affecting the 
client (the domino effect is very likely).

These issues are caused by the fact that the interactions 
between objects are not specified in a controlled manner, 
so that violations of defined interactions cannot occur.
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Concepts
One of the fundamental principles of software engineering 
adopted by OO technology through first-class concepts is 
encapsulation
Encapsulation encompasses the following assumptions:
 For a software component (class, module, package, or whatever 

piece of software for which encapsulation is available), two parts 
can be distinguished: interface and implementation

 Other software components can access only the interface of the 
component; its implementation is encapsulated, hidden, and 
inaccessible to the clients
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Concepts
Different languages support encapsulation in 
different ways and at different levels of granularity
Most of them support encapsulation at class level, 
whereby each member of a class can be:
 public: available from anywhere (constitutes the public 

interface of the class)
 protected: available from the scope of the same class 

and derived classes only (constitutes a restricted 
interface to derived classes as “privileged” clients)

 private: available only from the scope of the same class 
(constitutes the implementation of the class)
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Support in UML
UML supports the described levels of visibility 
(accessibility) of class members, including 
properties (attributes and association ends) and 
operations. Notation:
 public: +
 protected: #
 private: - FlowElement

+ acceptFlow()
# getCounter() : Integer

flow

+target

sources

0..1

*

- counter : Integer = 0
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Support in UML
Package is a general grouping mechanism in UML. 
A package owns model elements, such as classes, 
associations, and other packages, too. This way, 
packages are used to organize the model 
hierarchically
UML supports encapsulation of package elements, 
too, whereby an element of a package can be (the 
same notation as for class members):
 public: accessible from anywhere
 private: accessible from the same package only
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Support in C++
C++ supports accessibility levels of class members as 
described (public, private, protected):
class FlowElement : public ModelElement {
public:
  virtual void acceptFlow();
protected:
  FlowElement();
  // A protected constructor implies that the class
  // is abstract, because direct instances of it
  // cannot be created!
  int getCounter(); // Returns the value of counter
private:
  int counter;
};

From outside the class, it is no more possible:
Pipe* aPipe = new Pipe;
aPipe->counter = 5; // Compilation error!
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Support in Java
Java supports accessibility levels of class members as 
described (public, private, protected). Each class member 
must have the accessibility specifier in front of its 
declaration
Java supports packages and accessibility of their elements 
(classes and nested packages):
public abstract class FlowElement
  extends ModelElement
{
    public void acceptFlow() {...}
    protected FlowElement() {...}
    public int getCounter() { return counter; }
    private int counter = 0;
}
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Chapter 11: Interfaces

Motivation
Concepts
Support in UML
Support in C
Support in Java
Advanced Concepts
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Motivation
In TSS, we can generally allow other kinds of flow elements 

(but not all) to be controlled by semaphores. For example, 
besides queued servers, why shouldn’t we allow 
semaphores to control flow sources, too. In general, 
semaphores only require that the controlled elements 
provide the “switch on” and “switch off” services.

Similarly, a scheduler of timed events must notify different 
kinds of model elements at proper moments (e.g., delay of 
vehicles in pipes, change of direction in semaphores, etc.). 
All that the scheduler needs is that the servers respond to 
the “notification” message.

In general, we need a concept that allows loose coupling of 
classes, whereby the client class relies only on the 
assumption that the server provides a set of services.
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Concepts
Interface is a collection of operations that are used to 
specify a service of a class or component

<<interface>>
IFlowSource

+switchOn()
+switchOff()
+isOn() : Boolean

Interface is a specification of obligations that the server 
side fulfills, and the client side requires for a successful 
collaboration. Therefore, an interface defines a contract 
between two interested parties
Interface consists of abstract operations only and has no 
structure and no methods
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Concepts
A class or a component may realize a set of interfaces, 
offering the specified services to the clients, meaning that 
it implements the operations of the interfaces providing 
the methods for them

<<interface>>
IFlowSource

+switchOn()
+switchOff()
+isOn() : Boolean

CrossSemaphore

A class or a component may depend on a set of interfaces, 
meaning that it requires from its clients to realize those 
interfaces (provide methods for the operations)

QueuedServer

FlowSource
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Concepts
Interface realization (implementation) implies 
substitutability: any object whose class realizes the 
required interface can be the server of an object that 
depends on the interface

Interface consists of abstract operations only, thus 
allowing extremely loose coupling between software 
components
Interfaces can be specialized, meaning that the specialized 
interface inherits and extends the generalized interface 
(interface inheritance)

: QueuedServer: FlowSource: CrossSemaphore

switchOn()

: IFlowSource
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Support in UML
UML fully supports interfaces. All classifiers may 
realize interfaces (class, data type, component, 
node)
Alternative notations:

<<interface>>
IFlowSource

+switchOn()
+switchOff()
+isOn() : Boolean

CrossSemaphore
QueuedServer

CrossSemaphore QueuedServer

IFlowSource

Or:
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Support in C++
C++ does not support interfaces directly
An interface can be specified by an abstract class with nothing but 
abstract operations:
class IFlowSource {
public:
  virtual void switchOn() = 0;
  virtual void switchOff() = 0;
  virtual void isOn() = 0;
};

Implementation of interfaces is done by derivation of classes:
class QueuedServer : public FlowElement, 
                     public IFlowSource {
public:
  virtual void switchOn();
  virtual void switchOff();
  virtual void isOn();
  ...
};
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Support in Java
Java supports interfaces directly and completely. Although a 
class may extend (specialize) only one base class, it can 
implement (realize) many interfaces
Specification of an interface:
interface IFlowSource {
  void switchOn();
  void switchOff();
  void isOn();
}

Implementation of interfaces:
public class QueuedServer extends FlowElement
                          implements IFlowSource {
  public void switchOn() {...}
  public void switchOff() {...}
  public void isOn() {...}
  ...
}
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Advanced Concepts
Similarities between interfaces and (possibly abstract) 
classes:
 both are classifiers, because they designate sets of instances
 both have operations as specifications of services that may be 

requested from the instances
 both can be specialized and generalized

Differences between interfaces and classes:
 unless it is abstract, a class may have direct instances; instances of 

interfaces are always indirect
 even when it is abstract, a class may have properties (attributes 

and association ends) and methods; interfaces consist of abstract 
operations only

 a class specifies a contract in a concrete way, with (most often) 
some implementation of the contract; interfaces specify contracts 
in a pure, abstract way
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Motivation
Concepts
Support in UML
Support in C++ and Java
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Motivation
The behavior of TSS is provided by interactions between 

objects, whereby objects invoke operations in a complex 
manner. Some of these interactions lay in the core of the 
system’s behavior, making its key mechanisms.

One of the key mechanisms in TSS is the simulation of 
discrete events in time. Some model elements, e.g. flow 
sources, pipes, queued servers, and semaphores, generate 
timed events, which carry the information about the time 
at which they should be notified to react in some way. A 
centralized scheduler holds a list of raised events, sorted 
chronologically, simulates the passage of time, and notifies 
the corresponding model elements by handling the events 
in the chronological order.
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Motivation
For example, when a flow source is notified of an event, it 

generates a vehicle occurrence, transports it to its target, 
and then raises another event scheduled at a future 
moment after a random delay relative to the previous 
event, in order to be notified to generate a new vehicle 
occurrence and repeat the same procedure.

Similarly, when a pipe accepts a flow occurrence, it raises an 
event with a random delay. When it is notified about the 
passing of the delay, it generates a vehicle occurrence to 
its target, thus simulating the transportation delay of 
vehicles.

Generally, it would be useful to have a means to visualize,  
specify, construct, and document the scenarios of 
interactions between objects in the software system.
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Concepts
Interaction is a behavior that comprises a set of messages that 
are exchanged among a set of objects within a particular 
context to accomplish a purpose
Objects interact according to the designed scenarios, which are 
specific sequences of actions that illustrate behavior
Interactions are used to model dynamic aspects of 
collaborations, representing societies of objects playing specific 
roles, all working together to carry out some behavior that is 
bigger than the sum of the elements
Those roles represent prototypical instances of classes, 
interfaces, or other classifiers, and their dynamic aspects are 
visualized, specified, constructed, and documented as flows of 
controls that may encompass simple, sequential threads 
through a system, as well as more complex flows that involve 
branching, looping, recursion, and concurrency
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Concepts
An interaction has its context:
 a collaboration of objects in a part of the system (e.g., a key 

mechanism of the system)
 a method, where objects local to the method and globally 

accessible to the method collaborate to provide the implementation 
of an operation 

 behavior of a class, where attributes of a class and other globally 
accessible objects collaborate to provide the behavior of the class

Interactions consist of:
 objects and roles that take part in the interaction
 links between objects
 messages (e.g. operation calls) that flow over links between 

objects
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Support in UML
UML supports interactions in a very complex and flexible 
way. Interactions are depicted in interaction diagrams
There are two kinds of interaction diagrams, which depict 
the same interaction from two different viewpoints:
 collaboration diagram has a shape of a graph of objects and links 

with flow of messages over the links, thus emphasizing the 
structural connections between participants

 sequence diagram has a shape of a timeline, where objects are 
placed across the x axis and messages are placed along the y axis, 
thus emphasizing the time ordering and focus of control

Collaboration and sequence diagrams are semantically 
equivalent, because they rely on the same information and 
depict the same interaction, emphasizing its different 
details
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Support in UML
Collaboration diagram for raising an event

e : RandomTimed
FlowElement

{self}

1: raiseEvent()

: RandomGenerator

{association}rndGen

1.1: getRndNum()
r

ev : Event

1.2: <<create>> (e,r)

1.2.1: put(ev)

: Scheduler

{global}

: Event
: Event

: Event

{association}
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Support in UML
Sequence diagram for raising an event

r

put(ev)

e : RandomTimed
FlowElement : RandomGenerator : Scheduler

raiseEvent()

getRndNum()

ev : Event
<<create>> (e,r)
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Support in UML
UML interaction diagrams allow specifications of 
many other details:
 creation and deletion of objects and links
 different flow of control issues (branching, looping, 

recursion)
 threads of control

Although very rich in concepts, UML interaction 
diagrams do not have fully formal semantics, so 
they cannot be executable in a general case
A modeling tool may help in generating 
implementation code from interaction diagrams in 
some special cases
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Support in C++ and Java
C++ and Java do not support specification of interactions 
directly, but interactions are spread across the 
implementations of many operations:
void RandomTimedFlowElement::raiseEvent () {
  Time tm = 0;
  if (rndGen) tm = rndGen->getRandom(); else return;
  new Event(this,tm);
}

Event::Event (ITimedElement* targetElement, Time tm)
  : time(tm), target(targetElement) {
  theScheduler->put(this);
}

This is one of the most important disadvantages and 
restrictions of OO programming in languages like C++ and 
Java – poor readability of scenarios and key mechanisms
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Part III: Design Patterns

About Design Patterns
Singleton
Strategy
Template Method
Visitor
Composite
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Chapter 13: About Design Patterns

What are Design Patterns?
Pattern Description
Pattern Classification
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What are Design Patterns?
Design patterns are simple and elegant solutions to 
specific, commonly recognized problems in OO software 
design
DPs are not concrete, physical artifacts of software 
development. Instead, they are ideas and directions to 
solve a design problem
DPs are expressed in terms of collaborations, which consist 
of the structure, expressed in terms of abstract roles that 
take part in collaborations to accomplish a purpose, and 
the interactions of those participants
In every concrete problem, the developer must concretize 
the roles to specific participants in the system
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What are Design Patterns?
DPs cannot be taken as ready-to-use pieces of code, 
model, or any other artifact. They are reused as solutions 
and ideas instead to help developers to make clear and 
stable OO design
DPs are crucial for software reuse
However, DPs are not like other means of reusability:
 algorithms: known procedures to solve some problems
 libraries: units of code ready to be used as parts of the system, 

consisting of subprograms, types, etc.
 frameworks: ready-to-use collaborations of classes and objects that 

provide certain mechanisms in a specific problem domain



June 2003 Copyright (C) 2003 by Dragan Milićev 144/187

Pattern Description
A design pattern has four essential elements:
 Name: an identifier of a pattern; a handle we can use to 

describe a design problem, its solution, and its 
consequences; used to increase the understandability 
among developers

 Problem: describes when to apply the pattern, i.e., a 
commonly recognized problem and its context

 Solution: describes the elements that make up the 
design, i.e., a collaboration, consisting of the structure 
(roles, responsibilities, relationships) and behavior 
(interactions)

 Consequences: the results and trade-offs of applying 
the pattern
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Pattern Classification
According to their purpose, DPs can be:
 creational: concern the process of object creation
 structural: deal with the composition of classes and objects
 behavioral: characterize the ways in which classes or objects 

interact and distribute responsibility

According to their scope, DPs can be:
 class: deal primarily with classes and their relationships
 object: deal with dynamic connections and interactions between 

objects

The rest of the Tutorial presents a small set of selected 
DPs from the referential book of “the gang of four” 
(Gamma et al.), explained using the TSS example
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Chapter 14: Singleton

Motivation
Intent and Applicability
Structure and Collaborations
Implementation
Consequences
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Motivation
In TSS, the class Scheduler should have exactly one 

instance, because we want to have a centralized, globally 
accessible object of that class to accept and handle events.

This requirement can be refined as follows:
 the class has one instance that is properly initialized and certain to 

exist when it is accessed
 there is no way to create more instances accidentally or on purpose
 the sole instance is easily and globally accessible.

A global reference variable makes an object accessible, but it 
does not keep from creating multiple objects.

A better solution is to make the class itself responsible for 
keeping track of its sole instance. The class can ensure 
that no other instance can be created.
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Intent and Applicability
Intent (object/creational) :
Ensure a class has exactly one instance, and 
provide a global point of access to it
Applicability: use the Singleton DP when
 there must be exactly one instance of a class, and it 

must be accessible to clients from a well-known access 
point

 when the sole instance should be extensible by 
subclassing, and clients should be able to use an 
extended instance without modifying their code
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Structure and Collaborations

Participants:
 Singleton (Scheduler):

 defines an Instance operation that lets clients access its unique 
instance; Instance is a class-scope operation (static)

 may be responsible for creating its own instance
 is responsible for keeping from creating more instances

Collaborations:
 Clients access a Singleton instance solely thought Singleton’s 

Instance operation

Singleton

+Instance():Singleton
#Singleton()

- instance:Singleton

return instance
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Implementation
Class definition (Java):
class Scheduler {
  // The sole access point:
  public static Scheduler Instance() {
    return instance;
  }
  //... Other operations are possible:
  public void put(Event) {...}
  //...
  // Protected constructor prevents from
  // creating more objects, but allows subclassing
  protected Scheduler() {...}
  // The sole instance of the class:
  private static instance = new Scheduler;
}

Access to the singleton object (Java):
Scheduler.Instance().put(this);
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Consequences
Controlled access to sole instance: because the Singleton 
class encapsulates its sole instance, it can have strict 
control over how and when clients access it
Reduced name space: it is an improvement over global 
variables that pollute the global namespace
Permits refinement of operations: the Singleton class may 
be subclassed, and it is easy to configure an application 
with an instance of a derived class, even at runtime
Permits variable number of instances: it is easy to have 
more than one, but a controlled number of instances
More flexible than class-scope operations that can be also 
used to package a singleton’s functionality; however, class-
scope operations cannot be polymorphic and it is not 
possible to have more than one instance
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Chapter 15: Strategy

Motivation
Intent and Applicability
Structure and Collaborations
Consequences
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Motivation
In TSS, many flow elements generate events at random time 

intervals. They all need generation of random numbers.
However, in a general case, they may need random numbers 

of different distribution (uniform, exponential, etc.), which 
are generated using different algorithms.

Hard-wiring all such algorithms into the classes that require 
them is not desirable for several reasons:
 clients that need random numbers get more complex if they 

include the random number generation code; they become bigger 
and harder to maintain

 different algorithms will be appropriate at different times; we don’t 
want to support multiple algorithms if we don’t use them at all

 it’s difficult to add new algorithms and vary existing ones when 
random number generation is part of a client.
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Motivation
These problems can be avoided if we define classes that 

encapsulate different random number generation 
algorithms. An algorithm that is encapsulated in this way is 
called a strategy.

RandomTimed
FlowElement

#raiseEvent()

RandomGenerator

+ getRndNum() : Time

UniformGenerator

+ getRndNum() : Time

ExpGenerator

+ getRndNum() : Time

rndGen

1

Time tm = rndGen.getRndNum();
...
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Intent and Applicability
Intent (object/behavioral):
Define a family of algorithms, encapsulate each one, and 
make them interchangeable. Strategy lets the algorithm 
vary independently from the clients that use it.
Also known as Policy
Applicability: use the Strategy DP when:
 many related classes differ only in their behavior; Strategies 

provide a way to configure a class with one of many behaviors
 you need different variants of an algorithm, e.g. reflecting different 

time/space trade-offs
 an algorithm uses data that clients should not know about; use the 

Strategy DP to avoiding complex, algorithm-specific data structures
 a class defines many behaviors, and these appear as multiple 

conditional statements in its operations; instead of many 
conditionals, move related branches into their own Strategy class



June 2003 Copyright (C) 2003 by Dragan Milićev 156/187

Structure and Collaborations

Participants:
 Strategy (RandomGenerator)

 declares an interface common to all supported algorithms; Context uses 
this interface to call the algorithm defined by ConcreteStrategy

 ConcreteStrategy (UniformGenerator, ExpGenerator)
 implements the algorithm using the Strategy interface

 Context (RandomTimedFlowElement)
 is configured with a ConcreteStrategy object
 maintains a reference to a Strategy object
 may define an interface that lets Strategy access its data

Context

contextInterface()

Strategy

algorithmInterface()

ConcreteStrategy1

algorithmInterface()

ConcreteStrategyN

algorithmInterface()...



June 2003 Copyright (C) 2003 by Dragan Milićev 157/187

Structure and Collaborations
Collaborations:
 Strategy and Context interact to implement the chosen 

algorithm. A context may pass all data required by the 
algorithm to the strategy when the algorithm is called. 
Alternatively, the context can pass a reference to itself 
as an argument to Strategy operations. That lets the 
strategy call back on the context as required

 A context forwards requests from its clients to its 
strategy. Clients usually create and pass a 
ConcreteStrategy object to the context; thereafter, 
clients interact with the context exclusively. There is 
often a family of ConcreteStrategy classes for a client to 
choose from
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Consequences
Benefits:
 Reusable families of related algorithms, factored by inheritance
 An alternative to subclassing the Context class directly to give it 

different behavior, by hard-wiring the behavior into Context, thus 
making Context harder to understand, maintain, and extend

 Strategies eliminate conditional statements
 A choice of implementation among different implementations of the 

same behavior

Drawbacks:
 Communication overhead between Strategy and Context
 Increased number of objects, especially if strategies are non-

shareable (encapsulate some state); shareable strategies can 
reduce the problem, but they should not maintain state across 
invocations
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Chapter 16: Template Method

Motivation
Intent and Applicability
Structure and Collaborations
Consequences
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Motivation
A random number r with the distribution function F(r) is 

generated from a random number u with the uniform 
distribution by the following mapping function:
r = F -1(u)

Therefore, the algorithm for generating random numbers of 
arbitrary distribution is:
double RandomGenerator::getRndNum () {
  double u = urnd();
  double r = convert(u);
  return r;
}

where urnd() is a function that generates a uniform 
random number, and convert() is a polymorphic 
member function that implements F -1(u).



June 2003 Copyright (C) 2003 by Dragan Milićev 161/187

Motivation
Consequently, the abstract class RandomGenerator can 

implement the operation getRndNum() by defining a 
fixed algorithm for generating random numbers of 
arbitrary distribution, while the derived concrete classes 
will define the step convert().

Such a method in a base class is called a template method. It 
defines a fixed algorithm in terms of some concrete and 
some abstract steps that will be specified by derived 
classes. In other words, a template method fixes the 
ordering of the steps of an algorithm, while leaving the 
derived classes to specify some of them.
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Intent and Applicability
Intent (class/behavioral):
Define the skeleton of an algorithm in a method, deferring 
some steps to subclasses. Template Method lets subclasses 
redefine certain steps of an algorithm without changing the 
algorithm’s structure.
Applicability: the Template Method DP should be used:
 to implement the invariant parts of an algorithm once and leave it up 

to subclasses to implement the behavior that can vary
 when common behavior among subclasses should be factored and 

localized in a common class to avoid code duplication (“refactoring to 
generalize” or “algorithmic generalization”); first identify the 
differences in the existing code of subclasses’ methods, then separate 
the differences into new operations, and finally gather the common 
parts into a template method that calls these operations

 to control subclasses extensions; a template method allows 
subclasses to provide behavior only at specific points
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Structure and Collaborations

Participants:
 AbstractClass (RandomGenerator)

 defines abstract primitive operations that concrete subclasses redefine 
to implement steps of an algorithm

 implements a template method defining the skeleton of an algorithm; 
the template method calls primitive operations as well as operations 
defined in AbstractClass or those of other objects

 ConcreteClass (UniformGenerator, ExpGenerator)
 implements the primitive operations to carry out specific steps

Collaborations:
 ConcreteClass relies on AbstractClass to implement the invariant 

steps of the algorithm

AbstractClass

templateMethod()
primitiveOp1()
primitiveOp2()...

primitiveOp1()
...
primitiveOp2()
... ConcreteClass

primitiveOp1()
primitiveOp2()
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Consequences
Template methods are a fundamental technique for code reuse. They 
are particularly important in class libraries and frameworks, because 
they are the means for factoring out common behavior in library 
classes
A parent class calls the operations of a subclass, not the other way 
around (“the Hollywood principle: Don’t call us, we’ll call you”)
Template methods call the following kinds of operations:
 concrete operations (of AbstractClass or client classes), which cannot be 

redefined in subclasses
 abstract operations, which must be redefined in subclasses
 “hook operations,” which are polymorphic operations with a default 

behavior in the base class (often empty), which can but need not be 
redefined in subclasses

It is important for the designers of subclasses to know which 
operations are of which of these kinds
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Consequences
A subclass can extend a parent class operation’s behavior by 
overriding the operation and calling the parent operation 
explicitly:
void DerivedClass::anOperation () {
  // Extended behavior...
  BaseClass::anOperation();
  // Extended behavior...
}

Unfortunately, it is easy to forget to call the inherited 
operation. It is better to transform such an operation into a 
template method and then let subclasses override a hook:
void BaseClass::anOperation () {
  // Base class behavior...
  hookOperation(); // does nothing in BaseClass
  // Base class behavior...
}
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Chapter 17: Visitor

Motivation
Intent and Applicability
Structure and Collaborations
Consequences
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Motivation
In TSS, we need to perform different operations on the 

defined structure of model elements. We want to check 
the model against violations (e.g., a target assigned to a 
flow sink or a semaphore without controlled sources), to 
generate a documentation (a list of model elements with 
their properties), or to generate a simulation report (with 
the details about transported vehicles and sizes of 
queues). Most of these operations will need to treat 
objects differently, according to their class.

One approach assumes incorporation of these operations into 
the existing class hierarchy.
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Motivation

This leads to a system that is hard to understand and maintain, 
because the main class hierarchy is “spoiled” with the 
operations and code for different unrelated activities. Adding 
a new operation usually requires recompilation of the entire 
hierarchy. It would be better if each new operation could be 
added separately, and the main hierarchy were independent 
of the applied operations.

ModelElement

checkValidity()
generateDoc()
simulReport()

Pipe

checkValidity()
generateDoc()
simulReport()

FlowSource

checkValidity()
generateDoc()
simulReport()

QueuedServer

checkValidity()
generateDoc()
simulReport()
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Motivation

This can be achieved by packing related operations from 
each class in a separate object, called visitor, and passing 
it to elements of the model structure as it is traversed. 
When an element “accepts” the visitor, it sends a request 
to the visitor that encodes the element’s class (call-back). 
It also includes the element as an argument. The visitor 
will then execute the operation for that element.

Visitor

visitFlowSource()
visitPipe()
visitQueuedServer()

Documenter

visitFlowSource()
visitPipe()
visitQueuedServer()

ModelChecker

visitFlowSource()
visitPipe()
visitQueuedServer()

SimulReporter

visitFlowSource()
visitPipe()
visitQueuedServer()
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Motivation

Ultimately, there will be two class hierarchies: one for the 
elements being operated on (the ModelElement hierarchy) 
and one for the visitors that define operations on the 
elements (the Visitor hierarchy). A new operation is created 
by adding a new subclass to the visitor hierarchy, without 
affecting the main hierarchy.

ModelElement

accept(Visitor)

Pipe

accept(Visitor v)

FlowSource

accept(Visitor v)

v.visitFlowSource(this)

v.visitPipe(this)
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Intent and Applicability
Intent (object/behavioral):
Represent an operation to be performed on the elements of 
an object structure. Visitors lets you define a new operation 
without changing the classes of the elements on which it 
operates.
Applicability: use the Visitor DP when:
 an object structure contains many classes of objects with different 

interfaces, and you want to perform operations on these objects that 
depend on their concrete classes

 many distinct and unrelated operations need to be performed on 
objects in a structure, and you want to avoid “polluting” their classes 
with these operations; Visitor lets you keep related operations 
together in one class

 the classes defining the object structure rarely change, but you often 
want to define new operations over the structure; changing the 
object structure requires changing interfaces of all visitors
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Structure and Collaborations
Visitor

visitConcreteElementA(ConcreteElementA)
visitConcreteElementB(ConcreteElementB)

Element

accept(Visitor)

ConcreteElementA

accept(Visitor v)
operationA()

v.visitConcreteElementA(this)

ConcreteVisitor1

visitConcreteElementA(ConcreteElementA)
visitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

visitConcreteElementA(ConcreteElementA)
visitConcreteElementB(ConcreteElementB)

ConcreteElementB

accept(Visitor v)
operationB()

v.visitConcreteElementB(this)

ObjectStructure

Client
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Structure and Collaborations
Participants:
 Visitor (Visitor)

 declares a visit operation for each class of ConcreteElement in the 
object structure; the operation’s name and signature identifies the class 
that sends the visit request to the visitor; that lets the visitor determine 
the concrete class of the element being visited; then the visitor can 
access the element directly through its particular interface

 ConcreteVisitor (ModelChecker, Documenter, SimulReporter)
 implements each operation declared by Visitor; each operation 

implements a fragment of the algorithm defined for the corresponding 
class of object in the structure; ConcreteVisitor provides the context for 
the algorithm and stores its local state; this state often accumulates 
results during the traversal of the structure

 Element (ModelElement)
 defines an accept operation that takes a Visitor as an argument

 ConcreteElement (FlowSource, Pipe, QueuedServer, etc.)
 implements an accept operation that takes a Visitor as an argument and 

calls back the operation of the visitor that corresponds to its class
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Structure and Collaborations
: ObjectStructure a : ConcreteElementA

accept(v)

b : ConcreteElementB v : ConcreteVisitor

visitConcreteElementA(a)

Collaborations:
 A client must create a ConcreteVisitor object and then traverse the object 

structure, visiting each element with the visitor
 When an element is visited, it calls the Visitor operation that corresponds to its 

class, passing itself as an argument to let the visitor access its state, if 
necessary

operationA()

accept(v)
visitConcreteElementB(b)

operationB()
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Consequences
Visitor makes adding new operations easy. A new operation 
is added simply by adding a new visitor, instead of spreading 
the functionality over many classes
A visitor gathers related operations and separate unrelated 
ones. Any algorithm-specific data structures can be hidden in 
a visitor
Adding new ConcreteElement classes is hard, because a new 
abstract operation is needed in the Visitor class, and a 
corresponding implementation in ConcreteVisitor. Sometimes 
a default implementation (often empty) can be provided in 
Visitor to reduce the overhead. If it is more likely to change 
the algorithm applied over an object structure, and the 
object structure is stable, it is useful to apply the Visitor DP. 
Otherwise, it is easier to define operations in the classes that 
make up the structure
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Consequences
Visitors can accumulate state as they visit each element in 
the object structure. This is better than accumulating the 
state in arguments of operations, global objects, or objects 
in the structure
Visitor assumes that the ConcreteElement interface is 
powerful enough to let visitors do their job. As a result, it 
often forces to provide public operations to access the 
element’s internal state, possibly compromising its 
encapsulation
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Chapter 18: Composite

Motivation
Intent and Applicability
Structure and Collaborations
Consequences
Examples of Usage
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Motivation
A TSS model may consist of many different elements, e.g. flow sources 

and sinks, pipes, servers, and semaphores. It may become very 
clumsy to manipulate with and organize if all of its elements are put in 
the model as a bag of unordered elements.

A possible solution may be to introduce a concept of a package as a 
general grouping mechanism. A package may group all other model 
elements, as well as other nested packages. This way, we may 
organize the elements into a tree-shaped hierarchy of packages and 
other primitive elements.

However, we may need to treat packages and other elements uniformly. 
We may want to visit them by visitors, or we may want to copy/paste 
an element (to clone it). If we keep the Package class unrelated with 
the others, we will have the client code more complex because it will 
treat the elements and packages differently, even if it doesn’t want to.



June 2003 Copyright (C) 2003 by Dragan Milićev 179/187

Motivation

The Composite DP offers a solution. The key is that the 
abstract class ModelElement provides the interface and 
represents both primitives (e.g. source, pipe, etc.) and 
their compositions (package).

ModelElement
clone() : ModelElement
add(ModelElement e)
remove(ModelElement)
getElements()

Package

clone()
add(ModelElement e)
remove(ModelElement)
getElements()

FlowSource

clone()

Package p = new Package;
for all e in elements
  p.add(e.clone())
...

Pipe

clone()

add e to elements

*
elements

return new Pipe
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Motivation

It describes how to use recursive composition of objects, 
allowing tree-shaped hierarchical structures, whereby leaf 
nodes are primitives, and non-leaf nodes are composites. 
It makes the client’s code simple because it may treat all 
nodes equally (as generalized elements).

: Package

: Package: FlowSource

: Pipe

: QueuedServer : Package

: Package

: Pipe

: FlowSource

: QueuedServer
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Intent and Applicability
Intent (object/structural):
Compose objects into tree structures to represent 
part-whole hierarchies. Composite lets clients treat 
individual objects and compositions of objects 
uniformly.
Applicability: use the Composite DP when you 
want:
 to represent part-whole hierarchies of objects
 clients to be able to ignore the difference between 

composition of objects and individual objects; clients 
will treat all objects in the hierarchical structure 
uniformly
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Structure and Collaborations
Component

operation()
add(Component)
remove(Component)
getChildren()

Composite

operation()
add(Component)
remove(Component)
getChildren()

for all c in children
  c.operation()
...Leaf

operation()

*

children
Client

: Composite

: Composite: Leaf

: Leaf

: Leaf : Leaf

: Leaf
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Structure and Collaborations
Participants:
 Component (ModelElement)

 declares the interface for objects in the composition
 implements default behavior for the interface common to all classes
 (optional) declares an interface for accessing and managing its child and 

parent components in the recursive structure and implements it if 
appropriate

 Leaf (FlowSource, Pipe, etc.)
 represents leaf objects in the composition; a leaf has no children
 defines behavior for primitive objects in the composition

 Composite (Package)
 defines behavior for components having children
 stores child components
 implements child-related operations in the Component interface

 Client
 manipulates objects in the composition through the Component interface
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Structure and Collaborations
Collaborations:
 Clients use the Component class interface to interact with objects in 

the composite structure; if the recipient is a Leaf, the request is 
handled directly; if the recipient is a Composite, then it usually 
forwards request to its child components, possibly performing 
additional operations before and/or after forwarding (recursion 
through polymorphism)

Client:
  theRoot.operation()

Composite::operation  () {
  for each c in children c.operation()
}

Leaf::operation () {
  do specific actions 
}
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Consequences
The Composite DP:
 defines recursive object hierarchies of primitive and composite 

objects, whereby primitive objects can be composed into more 
complex objects, which in turn can be composed, etc. recursively

 makes the clients simple, because they can treat composite 
structures and individuals uniformly; they usually don’t know (and 
shouldn’t care) whether they are dealing with a leaf or a composite 
(avoidance of if-then and case structures in code)

 makes it easier to add new kinds of components; newly defined 
Composite or Leaf subclasses work automatically with existing 
structures and clients

 can make the design overly general; sometimes it is necessary to 
restrict the types of components in a Composite; then you must 
rely on the underlying type-detection system to enforce the 
constraints
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Examples of Usage
Graphical editors:
 a graphic (abstract component)
 concrete graphics: rectangles, lines, circles, etc. (leaves)
 a grouped graphic (composite)

File system:
 a file-system element (abstract component)
 a file (leaf)
 a folder (composite)

UML metamodel:
 a model element (abstract component)
 concrete model elements: class, attribute, association, etc. (leaves)
 a package (composite)
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Part IV: Conclusions

An Example from Your Domain?
Summary
What’s Next?
Questions and Answers
Discussion
Evaluation
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