
1

Test-Driven Development 
(TDD)

Branko Marović



2

Testing?

• Programmers dislike testing
• They will test reasonably thoroughly the first time

– The second time, testing is usually less thorough
– The third time, well..

• Testing is “boring”
• Testing is the job of another department / person
• Developers like to 

– Design?
– Code
– Make code beautiful?
– Run
– Get feedback by seeing their code working
– Be in control over machine



3

TDD vs. late testing

• When testing should take place in the lifecycle?
– Test-driven development advocates early testing
– Implementation and testing as two parallel activities

• “Before you write code, think about what it will 
do. Write a test that will use the methods you 
haven’t even written yet.”

• Test-Driven Development alternative names 
– Domain-Driven Development
– Coding by Example

analysis design code test ?



4

Who should write the tests?
• The programmers!

– Cannot wait for somebody else to write them
– They know what could go wrong

• Discover errors as soon as possible
• Iterative development in many small steps

AAAA

BBBB



5

5

TDD: Stories

• Narrative user stories iteratively describe 
user/business requirements covering use cases 
or Scrum product backlog items

• User stories and corresponding (new) behaviors 
are expressed in programming language by 
writing corresponding unit tests

• Developers immediately try to interpret the story 
and required behavior – forced to think from 
perspective of users and features



6

Stories and Examples

• Describe the most important scenarios (with the 
customer)

• Agree on what functionality needs to be 
implemented in order to realize each scenario

• A set of well defined examples – a testing plan 
for the user story

• Expected results – acceptance criteria – for each 
test. Must include both
– Expected output
– Expected new system state

• Do not expect all scenarios to be known in 
advance



7

TDD: Examples

• Write examples/tests before any implementation code
– Developers must think about interfaces first (instead of 

implementation)
– Tests provide a specification of intent : what a piece of code is 

supposed to do 
– Tests provide illustrative examples of usage of target code

• Tests drive or dictate the developed code
– “Do the simplest thing that could possibly work”
– Developers have less choice in what they write
– Less guesswork or dramatic decisions
– No over-engineering in implementations and interfaces
– Code is easier to understand and maintain

• Coding in iterative increments
– Immediate consequences of design decisions
– Quick feedback and visible results – happier developers

• Strong emphasis on refactoring !



8

Writing examples
• First try write to an example how it should work
• Structure it using “given, when, then ” scheme
• One example per test!

– Make several tests for a one example is if it makes tests more readable
– Some even propone only one assert per test!
– Simple check of corresponding failure may be added to the same test
– Check complex failures separately

• Generate methods/class declarations from example
– Ctrl+1 –Eclipse suggestion / quick fix
– Alt+Enter – NetBeans suggestion / hint

• Also
– Eclipse

• Ctrl+Space – auto complete
• Alt+Enter – content assist – generate constructor, getters, setter
• Shift+Space – incremental assist
• Ctrl+Shift+Space – parameters hint
• Ctrl+2, L on expression – variable declaration and assignment

– NetBeans
• Ctrl+Space – code completion (Alt+Enter full assignment usage)
• Alt-Insert – generate constructor, getters, setter



9

Key points for writing tests

• Write examples of stories, not tests
• Do the simplest thing
• One intention/statement (“should”) 

– (One) example
– Each (JUnit) test method should be associated with a single

example
• In test method always group code in “ ” sections – AKA 

“3A Pattern”
– Arrange = Given
– Act = When
– Assert = Then

• Do not make test mutually dependant – prepare test data 
in #given



10

Workflow
1. Write a single test
2. Compile, fail – missing behavior
3. Refactor using Ctrl+1, Alt+Enter just to make it compile
4. Compile, pass
5. Run test, fail
6. Write minimal (simplest possible) implementation to pass the test –

make it work
7. Run test, pass
8. Refactor – change internal design for clarity and “once and only once” –

make it better
9. Run test, pass
10. Repeat until done

• Let compiler and automated test tell you about errors and omissions
• Regularly run all tests 

– Automate: Maven, continuous integration…
– … and check test results!



11

TDD Stages
Write a testWrite a testWrite a testWrite a test

Compile

Fix compile errors

Run test,

watch it fail
Write code

Run test, 
watch it pass

Refactor code
(and test)



12

Live with tests

• Refactor both used code and test regularly
• New tests guide implementation or extension of 

already existing interfaces and features of target 
code

• For user interaction there are Swing and web 
tools and JUnit test generators, e.g. Selenium
– Test and implement needed business methods
– Make GUI
– Make GUI test
– Not that straightforward!



13

xUnit Testing Frameworks
• Ported to various languages and platforms

– JUnit, CppUnit, DUnit, VBUnit, RUnit, PyUnit, 
Sunit, HtmlUnit, …

– Good list at www.xprogramming.com

• Standard test architecture
– A test structure definition

– Assertions
– Tools to run tests (all, some…)

– Tools to asses results



14

Refactoring

• When the code and/or intent is not clear
• Duplication

– Once And Once Only (OAOO) AKA DRY (Do not 
Repeat Yourself)

• Code smells
– Need for extensive comments
– Large methods or classes
– Inappropriate intimacy between classes
– Too many responsibilities
– Spread responsibility

– …



15

Refactor tests to keep them 
readable

• Make minimal test suite fixture setup/teardown
• Localize context/data setup within test
• Apply builder pattern
• Use fluent interfaces
• Name and type data – avoid long arrays of numbers, 

strings or parameters
• Keep magic numbers under control
• Minimize coupling between tests
• Use a mocking framework to access or simulate external 

or missing parts of the system
• xUnits provide basic assertions – consider using assert 

frameworks to increase simplicity and readability!



16

Making effective tests

• A fixture is a set of objects that we have instantiated for our tests to use ~ 
piece of code that sets scene for tests.

• Use #given instead of test setup method
• If a feature is difficult to test, refactor it
• Address complex architectures with layered tests
• Builder and fluent interfaces can be used to create a DSL (Domain Specific 

Language)
• Make assertions readable (FEST framework) – avoid “if (... )” : use 

assertions DSL
• Consider adding checks elsewhere: preconditions (Google Guava), Java 

assertions, mocks



17

Example

• Three stories on translation…



18

Test doubles

• A test double is an object “stand-in”
– Looks like the real thing from the outside
– Execute faster
– Easier to develop and maintain

• Dummies, stubs, fakes, mocks, spies
• Useful in

– State based testing
– Interaction based testing



19

Mocks

• A mock can replace or simulate complex, 
inaccessible or missing part of the system

• Useful to insulate test targets
– Can test an object without writing/setting all its 

environment
– Allows a stepwise implementation as we successively 

add more and more parts
– On failure, we can be almost sure that the problem is 

in
• New object (replacing mock)
• Changed object (using mock)



20

Mockito framework
• Can track invocations and responses of a real 

object
• Stub can be set to return

– Hardcoded values 
– Sequences of values
– Conditional values
– Exceptions on specific calls

• Verifications (on stubs or real spied objects) of 
– Invocations with specific arguments
– Numbers of invocations
– Invocation order
– Unused or last invocations

• Good example of a fluent interface



21

Example

• Mocks usage



22

Embracing TDD

• Do not start big!
• Start new tasks with TDD

– Add tests to code that you need to change or maintain 
– but only to small parts

– Grow an architecture
– Use technology migration or project handover as an 

opportunity

• TDD limitations
– Some documentation is still needed
– GUI must be implemented before being tested
– Does not fully replace traditional (functional, 

integration, acceptance…) tests



23

Summary 

TDD promotes the development of high-quality code!
• Short feedback loop

• Detailed specification through examples
• Design emerges through development in small and safe steps – refactoring

• Clean design by focusing on implementation of callable and testable 
features

• TDD supports evolutionary development and reduces fear of changes

• No code without tests, as they:
– Dictate the code

– Verify it

– Provide evidence that the software works 
– Act as documentation – working examples of how to invoke some code

• Confidence boost – “It works!”

• Reduced reliance on the debugger
• Some user acceptance tests be included into TDD process



24

Resources (Books)
test-driven development:
A Practical Guide
Dave Astels

Test-Driven Development:
By Example 

Kent Beck

Extreme Programming Explored
(The Green Book)
Bill Wake

Extreme Programming Applied:
Playing To Win (The Purple Book)

Ken Auer, Roy Miller

Refactoring:
Improving the Design of Existing Code
Martin Fowler



25

Resources (web)

• Behaviour driven development: http://behaviour-
driven.org

• Mock Objects: http://www.mockobjects.com
• Mockito open source framework for Java, 

http://mockito.org/

• FEST – family of Java libraries for easy software testing, 
including assertions, Java reflection, Swing: 
http://code.google.com/p/fest/

• JUnit testing framework: http://www.junit.org/



26

Credits

Material for some slides originates from 
• Craig Murphy, 

http://www.CraigMurphy.com


