Test-Driven Development
(TDD)

Branko Marovic¢



Testing?

Programmers dislike testing

They will test reasonably thoroughly the first time
— The second time, testing is usually less thorough

— The third time, well..

Testing Is “boring”

Testing Is the job of another department / person

Developers like to

— Design?

— Code

— Make code beautiful?

— Run

— Get feedback by seeing their code working

— Be in control over machine 2



TDD vs. late testing

design » code I’ \ ?

 When testing should take place in the lifecycle?
— Test-driven development advocates early testing
— Implementation and testing as two parallel activities

« “Before you write code, think about what it will
do. Write a test that will use the methods you
haven’t even written yet.”

e Test-Driven Development alternative names
— Domain-Driven Development
— Coding by Example




Who should write the tests?

e The programmers!
— Cannot wait for somebody else to write them
— They know what could go wrong

» Discover errors as soon as possible
 lIterative development in many small steps




TDD: Stories

 Narrative user stories iteratively describe
user/business requirements covering use cases
or Scrum product backlog items

e User stories and corresponding (new) behaviors
are expressed In programming language by
writing corresponding unit tests

 Developers immediately try to interpret the story
and required behavior — forced to think from
perspective of users and features



Stories and Examples

Describe the most important scenarios (with the
customer)

Agree on what functionality needs to be
Implemented In order to realize each scenario

A set of well defined examples — a testing plan
for the user story

Expected results — acceptance criteria — for each
test. Must include both

— EXxpected output

— EXxpected new system state

Do not expect all scenarios to be known In
advance 6



TDD: Examples

Write examples/tests before any implementation code

— Developers must think about interfaces first (instead of
Implementation)

— Tests provide a specification of intent : what a piece of code is
supposed to do

— Tests provide illustrative examples of usage of target code

Tests drive or dictate the developed code
— “Do the simplest thing that could possibly work”
— Developers have less choice in what they write
— Less guesswork or dramatic decisions
— No over-engineering in implementations and interfaces
— Code is easier to understand and maintain

Coding in iterative increments
— Immediate consequences of design decisions
— Quick feedback and visible results — happier developers

Strong emphasis on refactoring !



Writing examples

First try write to an example how it should work
Structure it using “given, when, then ” scheme

One example per test!
— Make several tests for a one example is if it makes tests more readable
— Some even propone only one assert per test!
— Simple check of corresponding failure may be added to the same test
— Check complex failures separately

Generate methods/class declarations from example
— Ctrl+1 —Eclipse suggestion / quick fix
— Alt+Enter — NetBeans suggestion / hint

Also
— Eclipse
» Ctrl+Space — auto complete
» Alt+Enter — content assist — generate constructor, getters, setter
» Shift+Space — incremental assist
Ctrl+Shift+Space — parameters hint
Ctrl+2, L on expression — variable declaration and assignment
— NetBeans
Ctrl+Space — code completion (Alt+Enter full assignment usage)
» Alt-Insert — generate constructor, getters, setter



Key points for writing tests

Write examples of stories, not tests
Do the simplest thing

One intention/statement (“should”)
— (One) example

— Each (JUnit) test method should be associated with a single
example

In test method always group code in “” sections — AKA
“3A Pattern”

— Arrange = Given
— Act = When
— Assert = Then

Do not make test mutually dependant — prepare test data
In #given



Workflow

Write a single test

Compile, fail — missing behavior

Refactor using Ctrl+1, Alt+Enter just to make it compile
Compile, pass

Run test, fall

Write minimal (simplest possible) implementation to pass the test —
make it work

Run test, pass

Refactor — change internal design for clarity and “once and only once” —
make it better

9. Runtest, pass
10. Repeat until done

ok owhE

© N

. Let compiler and automated test tell you about errors and omissions

. Regularly run all tests
— Automate: Maven, continuous integration...
— ... and check test results!

10



TDD Stages

/v Write a test \

Refactor code

(and test) SRl

Run test,

. Fix compile errors
watch it pass P

. Run test,
UHiAS @O watch it fail

"~

11



Live with tests

« Refactor both used code and test regularly

 New tests guide implementation or extension of
already existing interfaces and features of target
code

e For user interaction there are Swing and web
tools and JUnit test generators, e.g. Selenium
— Test and implement needed business methods
— Make GUI
— Make GUI test
— Not that straightforward!

12



xUnit Testing Frameworks

* Ported to various languages and platforms

— JUnit, CppUnit, DUnit, VBUnIt, RUnit, PyUnit,
Sunit, HtmlUnit, ...

— Good list at www.Xxprogramming.com

e Standard test architecture
— A test structure definition
— Assertions
— Tools to run tests (all, some...)
— Tools to asses results

13



Refactoring

e \When the code and/or intent is not clear
e Duplication

— Once And Once Only (OAOQ) AKA DRY (Do not
Repeat Yourself)

 Code smells
— Need for extensive comments
— Large methods or classes
— Inappropriate intimacy between classes
— Too many responsibilities
— Spread responsibility

14



Refactor tests to keep them
readable

Make minimal test suite fixture setup/teardown
Localize context/data setup within test

Apply builder pattern

Use fluent interfaces

Name and type data — avoid long arrays of numbers,
strings or parameters

Keep magic numbers under control
Minimize coupling between tests

Use a mocking framework to access or simulate external
or missing parts of the system

xUnits provide basic assertions — consider using assert
frameworks to increase simplicity and readability!

15



Making effective tests

Setup For Test Fixture

¥
— Setup For Unit TEV

Linit Test

eardown For Linit Te -

A

Teardown For Test Fisture |

A fixture is a set of objects that we have instantiated for our tests to use ~
piece of code that sets scene for tests.

Use #given instead of test setup method

If a feature is difficult to test, refactor it

Address complex architectures with layered tests

Builder and fluent interfaces can be used to create a DSL (Domain Specific
Language)

Make assertions readable (FEST framework) — avoid “if (... )" : use
assertions DSL

Consider adding checks elsewhere: preconditions (Google Guava), Java

assertions, mocks 16



Example

hree stories on translation...

17



Test doubles

* A test double is an object “stand-in”
— Looks like the real thing from the outside
— Execute faster
— Easier to develop and maintain

« Dummies, stubs, fakes, mocks, spies

e Useful In
— State based testing
— Interaction based testing

18



Mocks

A mock can replace or simulate complex,
Inaccessible or missing part of the system

e Useful to insulate test targets

— Can test an object without writing/setting all its
environment

— Allows a stepwise implementation as we successively
add more and more parts

— On failure, we can be almost sure that the problem is
In
* New object (replacing mock)
» Changed object (using mock)
19



Mockito framework

Can track invocations and responses of a real
object

Stub can be set to return

— Hardcoded values

— Seguences of values

— Conditional values

— EXceptions on specific calls

Verifications (on stubs or real spied objects) of
— Invocations with specific arguments

— Numbers of invocations

— Invocation order
— Unused or last invocations

Good example of a fluent interface

20



 Mocks usage

Example

21



Embracing TDD

e Do not start big!

e Start new tasks with TDD

— Add tests to code that you need to change or maintain
— but only to small parts

— Grow an architecture

— Use technology migration or project handover as an
opportunity

 TDD limitations
— Some documentation is still needed
— GUI must be implemented before being tested

— Does not fully replace traditional (functional,
integration, acceptance...) tests

22



Summary

TDD promotes the development of high-quality code!

Short feedback loop
Detailed specification through examples
Design emerges through development in small and safe steps — refactoring

Clean design by focusing on implementation of callable and testable
features

TDD supports evolutionary development and reduces fear of changes
No code without tests, as they:

— Dictate the code

— Verify it

— Provide evidence that the software works

— Act as documentation — working examples of how to invoke some code

Confidence boost — “It works!”
Reduced reliance on the debugger

Some user acceptance tests be included into TDD process ’s



test-driven
development
A Practical Guide

- William C. Wake
Foreword by Dave Thomas

'R'EFACTORING

IMPROVING THE DESIGN
OF Ex1STING CODE

MARTIN FOWLER
Wit Cunts i by Kent Beck, John Brant,

Willinm Opdyke. st Don Roberts

Resources (Books)

test-driven development:
A Practical Guide

Dave Astels

TEST-DRIVEN ‘8
DEVELOPMENT

Test-Driven Development:
By Example
Kent Beck

Extreme Programming Explored
(The Green Book)

Bill Wake

Extreme Programming Applied:
Playing To Win (The Purple Book)

Ken Auer, Roy Miller

Refactoring:

Ken Auer

Improving the Design of Existing Code foreword by Wind O
Martin Fowler e A




Resources (web)

Behaviour driven development: hitp://behaviour-
driven.org

Mock Objects: http://www.mockobjects.com

Mockito open source framework for Java,
http://mockito.org/

FEST — family of Java libraries for easy software testing,
Including assertions, Java reflection, Swing:
http://code.google.com/p/fest/

JUnit testing framework: http://www.junit.org/

25



Credits

Material for some slides originates from
e Craig Murphy,
http://www.CraigMurphy.com

26



